Ag NP-Decorated Glass Surfaces for Sensing in Medical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cleaning Pre-Treatment
2.3. Glass Surface Modification
2.4. Decoration of Thiopropylated Glass Surfaces with Ag NPs
2.5. Structural Quantification of the Ag NPs’ Deposited Amount
2.6. Adsorption of Amino Acids to Ag-Glass-Decorated Platforms
2.7. Characterization Methods
3. Results and Discussions
3.1. Decoration of Glass Platforms with Ag NPs–UV-Vis Spectroscopy
3.2. Theoretical Decoration Capacity
3.3. FTIR Microscopy
3.4. Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engels, H.-W.; Weidenhaupt, H.-J.; Pieroth, M.; Hofmann, W.; Menting, K.-H.; Mergenhagen, T.; Schmoll, R.; Uhrlandt, S. 4. Chemicals and Additives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 1–67. [Google Scholar]
- Available online: https://go.drugbank.com/drugs/DB01033 (accessed on 7 December 2023).
- Franchini, C.; Muraglia, M.; Corbo, F.; Florio, M.A.; Di Mola, A.; Rosato, A.; Matucci, R.; Nesi, M.; van Bambeke, F.; Vitali, C. Synthesis and biological evaluation of 2-mercapto-1,3-benzothiazole derivatives with potential antimicrobial activity. Arch. Pharm. 2009, 342, 605–613. [Google Scholar]
- Ishiia, K.; Katayama, M.; Hori, K.; Yodoi, J.; Nakanishi, T. Effects of 2-mercaptoethanol on survival and differentiation of fetal mouse brain neurons cultured in vitro. Neurosci. Lett. 1993, 163, 159–162. [Google Scholar]
- Hock, N.; Racaniello, G.F.; Aspinall, S.; Denora, N.; Khutoryanskiy, V.V.; Bernkop-Schnurch, A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. Adv. Sci. 2022, 9, e2102451. [Google Scholar]
- Ru, E.C.L.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar]
- Silvestri, A.; Patzold, J.; Fratzl, P.; Scheffel, A.; Faivre, D. Surface-Enhanced Raman Scattering Microspectroscopy Enables the Direct Characterization of Biomineral-Associated Organic Material on Single Calcareous Microskeletons. J. Phys. Chem. Lett. 2020, 11, 8623–8629. [Google Scholar]
- Kanada, S.; Ono, K.; Fukuba, T.; Yamamoto, T.; Fujii, T. Modification of the Glass Surface Property in PDMS-Glass Hybrid Microfluidic Devices. Anal. Sci. 2012, 28, 39–44. [Google Scholar]
- Tsai, M.-Y.; Hsu, C.-C.; Chen, P.-H.; Lin, C.-S.; Chen, A. Surface modification on a glass surface with a combination technique of sol–gel and air brushing processes. Appl. Surf. Sci. 2011, 257, 8640–8646. [Google Scholar]
- Singh, R.K.; Tiwari, M.K.; Singh, R.; Lee, J.K. From protein engineering to immobilization: Promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci. 2013, 14, 1232–1277. [Google Scholar] [CrossRef]
- Englade-Franklin, L.E.; Saner, C.K.; Garno, J.C. Spatially selective surface platforms for binding fibrinogen prepared by particle lithography with organosilanes. Interface Focus 2013, 3, 20120102. [Google Scholar]
- Highland, Z.L.; Garno, J.C. Spatially selective binding of green fluorescent protein on designed organosilane nanopatterns prepared with particle lithography. Biointerphases 2017, 12, 02C402. [Google Scholar]
- Vistas, C.R.; Águas, A.C.P.; Ferreira, G.N.M. Silanization of glass chips—A factorial approach for optimization. Appl. Surf. Sci. 2013, 286, 314–318. [Google Scholar] [CrossRef]
- Shakeri, A.; Jarad, N.A.; Leung, A.; Soleymani, L.; Didar, T.F. Biofunctionalization of Glass- and Paper-Based Microfluidic Devices: A Review. Adv. Mater. Interfaces 2019, 6, 1900940. [Google Scholar]
- Petkova, G.A.; Záruba, K.; Žvátora, P.; Král, V. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res. Lett. 2012, 7, 287. [Google Scholar] [PubMed]
- Upadhyay, L.S.B.; Verma, N. Dual immobilization of biomolecule on the glass surface using cysteine as a bifunctional linker. Process Biochem. 2014, 49, 1139–1143. [Google Scholar] [CrossRef]
- Halliwell, C.M.; Cass, A.E.G. A Factorial Analysis of Silanization Conditions for the Immobilization of Oligonucleotides on Glass Surfaces. Anal. Chem. 2001, 73, 2476–2483. [Google Scholar]
- Marinescu, L.; Ficai, D.; Ficai, A.; Oprea, O.; Nicoara, A.I.; Vasile, B.S.; Boanta, L.; Marin, A.; Andronescu, E.; Holban, A.M. Comparative Antimicrobial Activity of Silver Nanoparticles Obtained by Wet Chemical Reduction and Solvothermal Methods. Int. J. Mol. Sci. 2022, 23, 5982. [Google Scholar] [CrossRef]
- Gheorghe-Barbu, I.; Corbu, V.M.; Vrancianu, C.O.; Marinas, I.C.; Popa, M.; Dumbrava, A.S.; Nita-Lazar, M.; Pecete, I.; Muntean, A.A.; Popa, M.I.; et al. Phenotypic and Genotypic Characterization of Recently Isolated Multidrug-Resistant Acinetobacter baumannii Clinical and Aquatic Strains and Demonstration of Silver Nanoparticle Potency. Microorganisms 2023, 11, 2439. [Google Scholar] [CrossRef]
- Pallavicini, P.; Dacarro, G.; Galli, M.; Patrini, M. Spectroscopic evaluation of surface functionalization efficiency in the preparation of mercaptopropyltrimethoxysilane self-assembled monolayers on glass. J. Colloid Interface Sci. 2009, 332, 432–438. [Google Scholar]
- Ilie, C.-I.; Spoială, A.; Motelica, L.; Marinescu, L.; Dolete, G.; Trușcă, D.-R.; Oprea, O.-C.; Ficai, D.; Ficai, A. Decoration of a Glass Surface with AgNPs Using Thio-Derivates for Environmental Applications. Coatings 2024, 14, 96. [Google Scholar] [CrossRef]
- Scientific, T. Thermo Scientific Evolution 300 UV-Vis Spectrophotometer; Thermo Electron Scientific Instruments LLC: Madison, WI, USA, 2013; pp. 1–16. [Google Scholar]
- WTW. inoLab® Multi 9630 IDS; WTW GmbH: London, UK, 2014; pp. 1–8. [Google Scholar]
- Chen, W.-S.; Chen, H.-R.; Lee, C.-H. The Photocatalytic Performance of Ag-Decorated SiO2 Nanoparticles (NPs) and Binding Ability Between Ag NPs and Modifiers. Coatings 2022, 12, 146. [Google Scholar] [CrossRef]
- Gao, C.; Guo, T.; Ye, X.S.; Zhang, H.F.; Liu, H.N.; Wu, Z.J. Adsorption of Silver Nanoparticles on Modified Surfaces. Key Eng. Mater. 2015, 645–646, 75–79. [Google Scholar]
- Polowczyk, I.; Koźlecki, T.; Bastrzyk, A. Adsorption of Silver Nanoparticles on Glass Beads Surface. J Adsorpt. Sci. Technol. 2015, 33, 731–738. [Google Scholar]
- Wang, Y.; Tang, L. Chemisorption assembly of Au nanorods on mercaptosilanized glass substrate for label-free nanoplasmon biochip. Anal. Chim. Acta 2013, 796, 122–129. [Google Scholar] [PubMed]
- Liu, X.M.; Thomason, J.L.; Jones, F.R. The Concentration of Hydroxyl Groups on Glass Surfaces and Their Effect on the Structure of Silane Deposits. In Silanes Other Coupling Agents Volume 5; CRC Press: Boca Raton, FL, USA, 2009; pp. 25–38. [Google Scholar]
- Rimola, A.; Sodupe, M.; Ugliengo, P. Affinity Scale for the Interaction of Amino Acids with Silica Surfaces. J. Phys. Chem. C 2009, 113, 5741–5750. [Google Scholar]
- Spoiala, A.; Ilie, C.I.; Dolete, G.; Petrisor, G.; Trusca, R.D.; Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Ditu, M.L. The Development of Alginate/Ag NPs/Caffeic Acid Composite Membranes as Adsorbents for Water Purification. Membranes 2023, 13, 591. [Google Scholar] [CrossRef]
- Gothe, P.K.; Gaur, D.; Achanta, V.G. MPTMS self-assembled monolayer deposition for ultra-thin gold films for plasmonics. J. Phys. Commun. 2018, 2, 035005. [Google Scholar]
- Shen, L.M.; Chen, Q.; Sun, Z.Y.; Chen, X.W.; Wang, J.H. Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Anal. Chem. 2014, 86, 5002–5008. [Google Scholar]
- Kogelheide, F.; Kartaschew, K.; Strack, M.; Baldus, S.; Metzler-Nolte, N.; Havenith, M.; Awakowicz, P.; Stapelmann, K.; Lackmann, J.-W. FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules. J. Phys. D Appl. Phys. 2016, 49, 084004. [Google Scholar]
- Bowles, J.; Jähnigen, S.; Vuilleumier, R.; Calvo, F.; Clavaguéra, C.; Agostini, F. Influence of the environment on the infrared spectrum of alanine: An effective mode analysis. J. Chem. Phys. 2023, 158, 094305. [Google Scholar]
- Liu, J.; Zhou, F.-S.; Guo, R.; Jiang, Y.; Fan, X.; He, A.; Zhai, Y.; Weng, S.; Yang, Z.; Xu, Y.; et al. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique. J. Spectrosc. 2014, 2014, 925705. [Google Scholar]
- Gaillard, T.; Trivella, A.; Stote, R.H.; Hellwig, P. Far infrared spectra of solid state L-serine, L-threonine, L-cysteine, and L-methionine in different protonation states. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 150, 301–307. [Google Scholar] [PubMed]
- Ramesh Kumar, G.; Gokul Raj, S. Growth and PhysioChemical Properties of Second-Order Nonlinear Optical L-Threonine Single Crystals. Adv. Mater. Sci. Eng. 2009, 2009, 704294. [Google Scholar]
- Razvag, Y.; Gutkin, V.; Reches, M. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy. Langmuir 2013, 29, 10102–10109. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilie, C.-I.; Spoială, A.; Motelica, L.; Marinescu, L.; Ghizdăveț, Z.; Trușcă, D.-R.; Oprea, O.-C.; Ficai, D.; Ficai, A. Ag NP-Decorated Glass Surfaces for Sensing in Medical Applications. Coatings 2025, 15, 426. https://doi.org/10.3390/coatings15040426
Ilie C-I, Spoială A, Motelica L, Marinescu L, Ghizdăveț Z, Trușcă D-R, Oprea O-C, Ficai D, Ficai A. Ag NP-Decorated Glass Surfaces for Sensing in Medical Applications. Coatings. 2025; 15(4):426. https://doi.org/10.3390/coatings15040426
Chicago/Turabian StyleIlie, Cornelia-Ioana, Angela Spoială, Ludmila Motelica, Liliana Marinescu, Zeno Ghizdăveț, Doina-Roxana Trușcă, Ovidiu-Cristian Oprea, Denisa Ficai, and Anton Ficai. 2025. "Ag NP-Decorated Glass Surfaces for Sensing in Medical Applications" Coatings 15, no. 4: 426. https://doi.org/10.3390/coatings15040426
APA StyleIlie, C.-I., Spoială, A., Motelica, L., Marinescu, L., Ghizdăveț, Z., Trușcă, D.-R., Oprea, O.-C., Ficai, D., & Ficai, A. (2025). Ag NP-Decorated Glass Surfaces for Sensing in Medical Applications. Coatings, 15(4), 426. https://doi.org/10.3390/coatings15040426