SERS-Tags: Selective Immobilization and Detection of Bacteria by Strain-Specific Antibodies and Surface-Enhanced Raman Scattering
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Microorganisms
2.3. Fabrication of Gold Nanorods
2.4. Fabrication of SERS-Tags
2.5. Fabrication of Gold-Coated Slides
2.6. Sandwich Immunoassay
2.7. Electron Microscopy
2.8. Raman Spectroscopy
3. Results and Discussion
3.1. AuNRs—SERS Substrate Characterization
3.2. Selective Immunochemical Immobilization of Bacteria on Au-Coated Slide
3.3. Detection of E. coli Using SERS-Tags in the Sandwich Immunoassay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-MPA | 3-mercaptopropionic acid |
11-MUA | 11-mercaptoundecanoic acid |
AA | L-ascorbic acid |
abs. EtOH | Absolute ethanol |
AEF | Analytical enhancement factor |
aF | Focal spot area |
Ag | Silver |
AgNO3 | Silver nitrate |
aNR | Area of each AuNR |
aS | Total area of the spot |
aTot | Total surface area |
Au | Gold |
AuNRs | Gold nanorods |
BSA | Bovine serum albumin |
dH2O | Deionized H2O |
cSERS | Molar concentrations—SERS |
cRS | Molar concentrations—Raman spectroscopy |
CFU | Colony-forming unit |
DTNB | 5,5′-dithiobis-2-nitrobenzoic acid |
EDC | N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride |
E. coli | Escherichia coli K-12 |
FOV | Field of view |
HAuCl4 | Hydrogen tetrachloroaurate |
IRS | Raman signal intensity |
ISERS | SERS signal intensity |
LSPR | Localized surface plasmon resonance |
LSPW | Longitudinal surface plasmon wavelength |
MALDI-TOF | Matrix-assisted laser desorption/ionization-time of flight |
MES buffer | 2-(N-Morpholino)-ethane sulphonic acid |
mNR | Calculated average weight |
MS | Mass spectrometry |
mTot | Total weight of gold used in AuNR synthesis |
NA | Numerical aperture |
NHS | N-hydroxysuccinimide sodium salt |
NIR | Near infrared |
NSurf | Average number of adsorbed molecules for the SERS measurement |
NVol | Average number of molecules |
PBS | Phosphate-buffered saline |
PCR | Polymerase chain reaction |
RT | Room temperature |
RS | Raman spectroscopy |
S. aureus | Staphylococcus aureus |
S. marcescens | Serratia marcescens CCM 8587 |
SAM | Self-assembled monolayer |
SERS | Surface-enhanced Raman spectroscopy |
SERS EF | SERS enhancement factor |
STEM | Scanning transmission electron microscopy |
TNB | 2-nitro-5-mercaptbenzoic acid |
TSPW | Transversal surface plasmon wavelength |
References
- Nikaido, H. Multidrug Resistance in Bacteria. Annu. Rev. Biochem. 2009, 78, 119–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, K.; Evans, J.; Tanner, H.; Gossain, S.; Hussain, A. The Clinical Impact of Rapid, Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures. PLoS ONE 2016, 11, e0169332. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Aragón, J.; Ballestero-Téllez, M.; Gutiérrez-Gutiérrez, B.; de Cueto, M.; Rodríguez-Baño, J.; Pascual, Á. Direct Bacterial Identification from Positive Blood Cultures Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry: A Systematic Review and Meta-Analysis. Enfermedades Infecc. Microbiol. Clin. Engl. Ed 2018, 36, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rushworth, J.V.; Hirst, N.A.; Millner, P.A. Biosensors for Whole-Cell Bacterial Detection. Clin. Microbiol. Rev. 2014, 27, 631–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samek, O.; Bernatová, S.; Dohnal, F. The Potential of SERS as an AST Methodology in Clinical Settings. Nanophotonics 2021, 10, 2537–2561. [Google Scholar] [CrossRef]
- Dudak, F.C.; Boyacı, İ.H. Rapid and Label-Free Bacteria Detection by Surface Plasmon Resonance (SPR) Biosensors. Biotechnol. J. 2009, 4, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Temur, E.; Boyacı, İ.H.; Tamer, U.; Unsal, H.; Aydogan, N. A Highly Sensitive Detection Platform Based on Surface-Enhanced Raman Scattering for Escherichia Coli Enumeration. Anal. Bioanal. Chem. 2010, 397, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Maquelin, K.; Kirschner, C.; Choo-Smith, L.-P.; van den Braak, N.; Endtz, H.P.; Naumann, D.; Puppels, G.J. Identification of Medically Relevant Microorganisms by Vibrational Spectroscopy. J. Microbiol. Methods 2002, 51, 255–271. [Google Scholar] [CrossRef]
- Bernatová, S.; Samek, O.; Pilát, Z.; Šerý, M.; Ježek, J.; Jákl, P.; Šiler, M.; Krzyžánek, V.; Zemánek, P.; Holá, V.; et al. Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules 2013, 18, 13188–13199. [Google Scholar] [CrossRef]
- Pilát, Z.; Bernatová, S.; Ježek, J.; Kirchhoff, J.; Tannert, A.; Neugebauer, U.; Samek, O.; Zemánek, P. Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. Coli under Antibiotic Stress. Sensors 2018, 18, 1623. [Google Scholar] [CrossRef] [Green Version]
- Rebrošová, K.; Šiler, M.; Samek, O.; Růžička, F.; Bernatová, S.; Ježek, J.; Zemánek, P.; Holá, V. Differentiation between Staphylococcus Aureus and Staphylococcus Epidermidis Strains Using Raman Spectroscopy. Future Microbiol. 2017, 12, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Bernatová, S.; Rebrošová, K.; Pilát, Z.; Šerý, M.; Gjevik, A.; Samek, O.; Ježek, J.; Šiler, M.; Kizovský, M.; Klementová, T.; et al. Rapid Detection of Antibiotic Sensitivity of Staphylococcus Aureus by Raman Tweezers. Eur. Phys. J. Plus 2021, 136, 233. [Google Scholar] [CrossRef]
- Hakonen, A.; Svedendahl, M.; Ogier, R.; Yang, Z.-J.; Lodewijks, K.; Verre, R.; Shegai, T.; Andersson, P.O.; Käll, M. Dimer-on-Mirror SERS Substrates with Attogram Sensitivity Fabricated by Colloidal Lithography. Nanoscale 2015, 7, 9405–9410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, M.-A.; Lee, S.-M.; Kim, G.; Baek, J.; Noh, M.S.; Kim, J.E.; Park, S.J.; Minai-Tehrani, A.; Park, S.-C.; Seo, Y.T.; et al. Multiplex Immunoassay Using Fluorescent-Surface Enhanced Raman Spectroscopic Dots for the Detection of Bronchioalveolar Stem Cells in Murine Lung. Anal. Chem. 2009, 81, 1008–1015. [Google Scholar] [CrossRef]
- Lin, C.-C.; Yang, Y.-M.; Chen, Y.-F.; Yang, T.-S.; Chang, H.-C. A New Protein A Assay Based on Raman Reporter Labeled Immunogold Nanoparticles. Biosens. Bioelectron. 2008, 24, 178–183. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Yan, F.; Stokes, D.L. Plasmonics-Based Nanostructures for Surface-Enhanced Raman Scattering Bioanalysis. In Protein Nanotechnology: Protocols, Instrumentation, and Applications; Vo-Dinh, T., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2005; pp. 255–283. ISBN 978-1-59259-858-8. [Google Scholar]
- Chan, W.C.W.; Nie, S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Z.; Mu, X.; Ma, A.; Guo, S. Raman Tags: Novel Optical Probes for Intracellular Sensing and Imaging. Biotechnol. Adv. 2017, 35, 168–177. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A Comprehensive Review on Plasmonic-Based Biosensors Used in Viral Diagnostics. Commun. Biol. 2021, 4, 70. [Google Scholar] [CrossRef]
- Kim, K.; Kashefi-Kheyrabadi, L.; Joung, Y.; Kim, K.; Dang, H.; Chavan, S.G.; Lee, M.-H.; Choo, J. Recent Advances in Sensitive Surface-Enhanced Raman Scattering-Based Lateral Flow Assay Platforms for Point-of-Care Diagnostics of Infectious Diseases. Sens. Actuators B Chem. 2021, 329, 129214. [Google Scholar] [CrossRef]
- Jarvis, R.M.; Brooker, A.; Goodacre, R. Surface-Enhanced Raman Scattering for the Rapid Discrimination of Bacteria. Faraday Discuss 2006, 132, 281–292. [Google Scholar] [CrossRef]
- Kitahama, Y.; Itoh, T.; Pienpinijtham, P.; Ekgasit, S.; Han, X.X.; Ozaki, Y. Biological Applications of SERS Using Functional Nanoparticles. In ACS Symposium Series; Hepel, M., Zhong, C.-J., Eds.; American Chemical Society: Washington, DC, USA, 2012; Vol. 1113, pp. 181–234. ISBN 978-0-8412-2828-3. [Google Scholar]
- Kearns, H.; Goodacre, R.; Jamieson, L.E.; Graham, D.; Faulds, K. SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Anal. Chem. 2017, 89, 12666–12673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guven, B.; Basaran-Akgul, N.; Temur, E.; Tamer, U.; Boyacı, İ.H. SERS-Based Sandwich Immunoassay Using Antibody Coated Magnetic Nanoparticles for Escherichia Coli Enumeration. The Analyst 2011, 136, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Martí, A.A. Recent Trends in Molecular Beacon Design and Applications. Anal. Bioanal. Chem. 2012, 402, 3091–3102. [Google Scholar] [CrossRef]
- Heydari, E. Nanoplasmonic Biodetection Based on Bright-Field Imaging of Resonantly Coupled Gold-Silver Nanoparticles. Photonics Nanostructures 2019, 36, 100708. [Google Scholar] [CrossRef]
- Liu, J.; He, H.; Xiao, D.; Yin, S.; Ji, W.; Jiang, S.; Luo, D.; Wang, B.; Liu, Y. Recent Advances of Plasmonic Nanoparticles and Their Applications. Materials 2018, 11, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Cai, F.; Li, Y.; Chen, J.; Han, F.; Lin, W. A Review of the Application of Nanoparticles in the Diagnosis and Treatment of Chronic Kidney Disease. Bioact. Mater. 2020, 5, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Cai, J.; Zhang, X.; Li, W.-D.; Ge, H.; Hu, Y. Top-down Fabrication of Shape-Controlled, Monodisperse Nanoparticles for Biomedical Applications. Adv. Drug Deliv. Rev. 2018, 132, 169–187. [Google Scholar] [CrossRef]
- Wang, A.X.; Kong, X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Mater. Basel Switz. 2015, 8, 3024–3052. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, C.; Wang, J.; Wang, D.; Xiao, R.; Wang, S. Magnetic Immunoassay for Cancer Biomarker Detection Based on Surface-Enhanced Resonance Raman Scattering from Coupled Plasmonic Nanostructures. Biosens. Bioelectron. 2016, 84, 15–21. [Google Scholar] [CrossRef]
- Han, X.X.; Kitahama, Y.; Itoh, T.; Wang, C.X.; Zhao, B.; Ozaki, Y. Protein-Mediated Sandwich Strategy for Surface-Enhanced Raman Scattering: Application to Versatile Protein Detection. Anal. Chem. 2009, 81, 3350–3355. [Google Scholar] [CrossRef]
- Güçlü, K.; Özyürek, M.; Güngör, N.; Baki, S.; Apak, R. Selective Optical Sensing of Biothiols with Ellman’s Reagent: 5,5′-Dithio-Bis(2-Nitrobenzoic Acid)-Modified Gold Nanoparticles. Anal. Chim. Acta 2013, 794, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Baniukevic, J.; Hakki Boyaci, I.; Goktug Bozkurt, A.; Tamer, U.; Ramanavicius, A.; Ramanaviciene, A. Magnetic Gold Nanoparticles in SERS-Based Sandwich Immunoassay for Antigen Detection by Well Oriented Antibodies. Biosens. Bioelectron. 2013, 43, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Tamer, U.; Boyacı, İ.H.; Temur, E.; Zengin, A.; Dincer, İ.; Elerman, Y. Fabrication of Magnetic Gold Nanorod Particles for Immunomagnetic Separation and SERS Application. J. Nanoparticle Res. 2011, 13, 3167–3176. [Google Scholar] [CrossRef]
- Brandt, N.N.; Brovko, O.O.; Chikishev, A.Y.; Paraschuk, O.D. Optimization of the Rolling-Circle Filter for Raman Background Subtraction. Appl. Spectrosc. 2006, 60, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Mittelstaedt, W.; Packeisen, J.; Haase, M.; Hamann, A. An Alternative Way to Prepare Biocompatible Nanotags with Increased Reproducibility of Results. J. Nanomater. Mol. Nanotechnol. 2016, 5, 1000181. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Bakshi, S.; Leoncini, E.; Baker, C.; Cañas-Duarte, S.J.; Okumus, B.; Paulsson, J. Tracking Bacterial Lineages in Complex and Dynamic Environments with Applications for Growth Control and Persistence. Nat. Microbiol. 2021, 6, 783–791. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Huang, C.; Lai, H.-C. Revealing the Ultrastructure of the Membrane Pores of Intact Serratia Marcescens Cells by Atomic Force Microscopy. Heliyon 2019, 5, e02636. [Google Scholar] [CrossRef] [Green Version]
- Jorge, A.M.; Hoiczyk, E.; Gomes, J.P.; Pinho, M.G. EzrA Contributes to the Regulation of Cell Size in Staphylococcus Aureus. PLoS ONE 2011, 6, e27542. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benešová, M.; Bernatová, S.; Mika, F.; Pokorná, Z.; Ježek, J.; Šiler, M.; Samek, O.; Růžička, F.; Rebrošová, K.; Zemánek, P.; et al. SERS-Tags: Selective Immobilization and Detection of Bacteria by Strain-Specific Antibodies and Surface-Enhanced Raman Scattering. Biosensors 2023, 13, 182. https://doi.org/10.3390/bios13020182
Benešová M, Bernatová S, Mika F, Pokorná Z, Ježek J, Šiler M, Samek O, Růžička F, Rebrošová K, Zemánek P, et al. SERS-Tags: Selective Immobilization and Detection of Bacteria by Strain-Specific Antibodies and Surface-Enhanced Raman Scattering. Biosensors. 2023; 13(2):182. https://doi.org/10.3390/bios13020182
Chicago/Turabian StyleBenešová, Markéta, Silvie Bernatová, Filip Mika, Zuzana Pokorná, Jan Ježek, Martin Šiler, Ota Samek, Filip Růžička, Katarina Rebrošová, Pavel Zemánek, and et al. 2023. "SERS-Tags: Selective Immobilization and Detection of Bacteria by Strain-Specific Antibodies and Surface-Enhanced Raman Scattering" Biosensors 13, no. 2: 182. https://doi.org/10.3390/bios13020182
APA StyleBenešová, M., Bernatová, S., Mika, F., Pokorná, Z., Ježek, J., Šiler, M., Samek, O., Růžička, F., Rebrošová, K., Zemánek, P., & Pilát, Z. (2023). SERS-Tags: Selective Immobilization and Detection of Bacteria by Strain-Specific Antibodies and Surface-Enhanced Raman Scattering. Biosensors, 13(2), 182. https://doi.org/10.3390/bios13020182