Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (107)

Search Parameters:
Keywords = glass greenhouse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 292
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

13 pages, 1208 KiB  
Article
Acaricidal Activity of Biosurfactants Produced by Serratia ureilytica on Tetranychus urticae and Their Compatibility with the Predatory Mite Amblyseius swirskii
by Arnoldo Wong-Villareal, Esaú Ruiz-Sánchez, Marcos Cua-Basulto, Saúl Espinosa-Zaragoza, Avel A. González-Sánchez, Ernesto Ramos-Carbajal, Cristian Góngora-Gamboa, René Garruña-Hernández, Rodrigo Romero-Tirado, Guillermo Moreno-Basurto and Erika P. Pinson-Rincón
Microbiol. Res. 2025, 16(7), 150; https://doi.org/10.3390/microbiolres16070150 - 4 Jul 2025
Viewed by 349
Abstract
This study evaluated the acaricidal effects of biosurfactants produced by Serratia ureilytica against the two-spotted spider mite Tetranychus urticae and their compatibility with the predatory mite Ambliseus swirski. The biosurfactants were obtained via liquid cultures of the bacterial strains. In the laboratory, [...] Read more.
This study evaluated the acaricidal effects of biosurfactants produced by Serratia ureilytica against the two-spotted spider mite Tetranychus urticae and their compatibility with the predatory mite Ambliseus swirski. The biosurfactants were obtained via liquid cultures of the bacterial strains. In the laboratory, T. urticae was exposed via acaricide-immersed leaves and A. swirskii via acaricide-coated glass vials. In the greenhouse, mite-infested plants were sprayed with the biosurfactants. In the laboratory, biosurfactants produced by S. ureilytica NOD-3 and UTS exhibited strong acaricidal activity, causing 95% mortality in adults and reducing egg viability by more than 60%. In the greenhouse trial, all biosurfactants significantly suppressed T. urticae populations at all evaluated periods (7, 14, and 21 days post-application). Gas chromatography–mass spectrometry (GC-MS) analysis of the biosurfactants identified several fatty acids, including hexadecanoic acid, pentanoic acid, octadecanoic acid, decanoic acid, and tetradecanoic acid, as well as the amino acids L-proline, L-lysine, L-valine, and glutamic acid. These fatty acids and amino acids are known structural components of lipopeptides. Furthermore, the bioinformatic analysis of the genomes of the three S. ureilytica strains revealed nonribosomal peptide synthetase (NRPS) gene clusters homologous to those involved in the biosynthesis of lipopeptides. These findings demonstrate that S. ureilytica biosurfactants are promising eco-friendly acaricides, reducing T. urticae populations by >95% while partially sparing A. swirskii. Full article
Show Figures

Figure 1

26 pages, 3332 KiB  
Article
Dependence of the Abundance of Reed Glass-Winged Cicadas (Pentastiridius leporinus (Linnaeus, 1761)) on Weather and Climate in the Upper Rhine Valley, Southwest Germany
by Sai Kiran Kakarla, Eric Schall, Anna Dettweiler, Jana Stohl, Elisabeth Glaser, Hannah Adam, Franziska Teubler, Joachim Ingwersen, Tilmann Sauer, Hans-Peter Piepho, Christian Lang and Thilo Streck
Agriculture 2025, 15(12), 1323; https://doi.org/10.3390/agriculture15121323 - 19 Jun 2025
Viewed by 552
Abstract
The planthopper Pentastiridius leporinus, commonly called reed glass-winged cicada, transmits the pathogens “Candidatus Arsenophonus phytopathogenicus” and “Candidatus Phytoplasma solani”, which are infesting sugar beet and, most recently, also potato in the Upper Rhine valley area of Germany. They cause the [...] Read more.
The planthopper Pentastiridius leporinus, commonly called reed glass-winged cicada, transmits the pathogens “Candidatus Arsenophonus phytopathogenicus” and “Candidatus Phytoplasma solani”, which are infesting sugar beet and, most recently, also potato in the Upper Rhine valley area of Germany. They cause the “Syndrome Basses Richesses” associated with reduced yield and sugar content in sugar beet, leading to substantial monetary losses to farmers in the region. No effective solutions exist currently. This study uses statistical models to understand to what extent the abundance of cicadas depends on climate regions during the vegetation period (April–October). We further investigated what influence temperature and precipitation have on the abundance of the cicadas in sugar beet fields. Furthermore, we investigated the possible impacts of future climate on cicada abundance. Also, 22 °C and 8 mm/day were found to be the optimal temperature and precipitation conditions for peak male cicada flight activity, while 28 °C and 8 mm/day were the optimum for females. By the end of the 21st century, daily male cicada abundance is projected to increase significantly under the worst-case high greenhouse gas emission scenario RCP8.5 (RCP-Representative Concentration Pathways), with confidence intervals suggesting a possible 5–15-fold increase compared to current levels. In contrast, under the low-emission scenario RCP2.6, male cicada populations are projected to be 60–70% lower than RCP8.5. An understanding of the influence of changing temperature and precipitation conditions is crucial for predicting the spread of this pest to different regions of Germany and other European countries. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

18 pages, 8807 KiB  
Article
Optimizing Energy Efficiency and Light Transmission in Greenhouses Using Rotating Low-Emissivity-Coated Envelopes
by Subin Song, JungHo Jeon and Seonghwan Yoon
Energies 2025, 18(7), 1613; https://doi.org/10.3390/en18071613 - 24 Mar 2025
Viewed by 605
Abstract
Growing demand for sustainable agricultural solutions has driven innovations in greenhouse design, particularly in urban areas. This study evaluated the relationship between transparent envelope thermal properties and greenhouse energy loads through regression analysis using DesignBuilder simulations. The thermal performance of the envelope was [...] Read more.
Growing demand for sustainable agricultural solutions has driven innovations in greenhouse design, particularly in urban areas. This study evaluated the relationship between transparent envelope thermal properties and greenhouse energy loads through regression analysis using DesignBuilder simulations. The thermal performance of the envelope was designated as independent variables to quantify its impact on heating and cooling loads. Based on this analysis, a rotatable low-emissivity (low-E) coating envelope system optimized for temperate climate zones was proposed. This system allows seasonal adjustment of coating orientation to enhance energy efficiency. Compared to traditional materials, this approach achieved up to 16% energy savings without compromising visible light transmittance, essential for crop growth. While double-glazed low-E glass demonstrated the highest energy reduction (22%), it reduced visible light transmittance by 20%, potentially affecting crop productivity. In contrast, the proposed system maintained high visible light transmittance while achieving significant energy efficiency, balancing energy performance and light environment requirements. Additionally, integrating the greenhouse with building structures resulted in a 31.91% reduction in building energy consumption through improved insulation. These findings highlight the potential of adaptable greenhouse envelopes to improve energy performance and support urban sustainability. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

30 pages, 7801 KiB  
Review
Porous Glass for Thermal Insulation in Buildings with a Focus on Sustainable Materials and Technologies: Overview and Challenges
by Francesco Baino and Pardeep Kumar Gianchandani
Ceramics 2025, 8(1), 28; https://doi.org/10.3390/ceramics8010028 - 12 Mar 2025
Cited by 1 | Viewed by 1430
Abstract
In response to environmental challenges and primary resource scarcity, sustainable approaches that rely on recycling and reusing waste materials are becoming valuable and highly appealing options in modern society. This paper deals with the usage of porous glass and glass-ceramic products derived from [...] Read more.
In response to environmental challenges and primary resource scarcity, sustainable approaches that rely on recycling and reusing waste materials are becoming valuable and highly appealing options in modern society. This paper deals with the usage of porous glass and glass-ceramic products derived from waste in the field of thermal insulation in buildings. After providing an overview of the current state of the art with a focus on existing commercial products and related manufacturing methods (foaming strategies), this review discusses the emerging trends toward greener approaches, including the use of by-products or waste substances as foaming agents (e.g., eggshells or mining residues), the use of vitrified bottom or fly ashes from municipal solid waste incinerators as starting materials, the application of surface treatment to reduce post-processing temperatures, and the promise of additive manufacturing technologies in this field. The increased use and spread of sustainable practices are expected to significantly contribute to glass recycling, to minimize landfilling, and to generally reduce energy consumption as well as greenhouse emissions. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

14 pages, 1321 KiB  
Article
Bisphenol A Release from Fiber-Reinforced vs. Conventional Stainless-Steel Fixed Retainers: An In Vitro Study
by Efthimia Tsoukala, Niki Maragou, Andriani-Paraskevi Antonelaki, Nikolaos Thomaidis and Iosif Sifakakis
J. Funct. Biomater. 2025, 16(2), 68; https://doi.org/10.3390/jfb16020068 - 17 Feb 2025
Viewed by 850
Abstract
Objectives: The objectives of this study were to investigate in vitro BPA release from two common fiberglass fixed lingual canine-to-canine retainers and to compare these amounts with those released from a conventional multistranded stainless-steel orthodontic retainer. Methods: Fifty-four recently extracted teeth were divided [...] Read more.
Objectives: The objectives of this study were to investigate in vitro BPA release from two common fiberglass fixed lingual canine-to-canine retainers and to compare these amounts with those released from a conventional multistranded stainless-steel orthodontic retainer. Methods: Fifty-four recently extracted teeth were divided into groups of six teeth each, formed in an arch shape. Three different retainer types were evaluated: Ribbond, EverStick Ortho and Wildcut wire. Three identical specimens were constructed for each retainer type. BPA release was determined with validated the liquid chromatography–tandem mass spectrometry method at 1 and 24 h, as well as at 7, 14 and 30 days. The method’s limits of detection and quantification were 0.32 ng/mL and 0.96 ng/mL, respectively. A two-way mixed, repeated-measures analysis of variance with Greenhouse–Geisser correction was employed to verify the existence of any significant differences. Results: Higher levels of BPA were released from the polyethylene fiber and glass fiber retainer in comparison with the conventional retainer in the present study. The differences between the systems over time were not statistically significant at the 95% confidence level. Conclusions: In vitro BPA release during the first month did not differ between the examined retainer types. The highest BPA concentrations were observed at 1 month. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

17 pages, 1100 KiB  
Article
Single-Glazed Vacuum Tube Collector with SnAl2O3 Selective Flat Absorber Plate and Gravity Single-Stage Direct Water Flow: A Comprehensive Geometric Optimization
by Aleksandar Nešović and Robert Kowalik
Appl. Sci. 2025, 15(4), 1838; https://doi.org/10.3390/app15041838 - 11 Feb 2025
Cited by 1 | Viewed by 767
Abstract
This paper continues the mathematical research of the novel glass tube collectors for water heating. The subject of this research is a vacuum solar collector composed of a glass tube and a selective (using the SnAl2O3 coating) flat absorber plate. [...] Read more.
This paper continues the mathematical research of the novel glass tube collectors for water heating. The subject of this research is a vacuum solar collector composed of a glass tube and a selective (using the SnAl2O3 coating) flat absorber plate. Water heating is performed using gravitational driving force and single-stage direct flow. The thermal performance with the geometric optimization (absorber width and glass tube thickness) of the presented solar collector type was determined using the specially designed iterative calculation algorithm (phase 1) and the double multi-criteria analysis (phase 2). Different operational (absorber temperature, ambient temperature and wind speed), geometric (mass, surface occupation, total surface occupation and volume occupation), economic (manufacturing costs and exploitation costs) and ecological (embodied energy and greenhouse gas emission) indicators were taken into account. The results showed that the useful heat power has an increasing trend if the flat absorber plate width increases, while the thermal efficiency has a decreasing trend. It was also determined that the glass tube thickness and the thermal performance of the solar collector are oppositely dependent. The main conclusion of this paper is that the optimal performance of such non-conventional solar systems is achieved when the absorber plate width is between 85 and 90 mm. Full article
(This article belongs to the Special Issue Solar Energy Collection, Conversion and Utilization)
Show Figures

Figure 1

27 pages, 3101 KiB  
Article
Effects of Increasing CO2 Concentration on Crop Growth and Soil Ammonia-Oxidizing Microorganisms in a Fababean (Vicia faba L.) and Wheat (Triticum aestivum Yunmai) Intercropping System
by Xingshui Dong, Hui Lin, Feng Wang, Songmei Shi, Junwei Ma and Xinhua He
Plants 2025, 14(4), 516; https://doi.org/10.3390/plants14040516 - 8 Feb 2025
Cited by 1 | Viewed by 856
Abstract
Elevated carbon dioxide (eCO2) levels can enhance crop yields but may simultaneously reduce quality, impacting both macronutrient and micronutrient concentrations, and potentially decreasing protein content in cereal grains. This study examined the effects of elevated CO2 (eCO2) and [...] Read more.
Elevated carbon dioxide (eCO2) levels can enhance crop yields but may simultaneously reduce quality, impacting both macronutrient and micronutrient concentrations, and potentially decreasing protein content in cereal grains. This study examined the effects of elevated CO2 (eCO2) and nitrogen (N) fertilization on crop growth, yield, and soil nitrogen cycling through a glass greenhouse experiment using Eutric Regosol soil. The experimental design incorporated two CO2 gradients: ambient CO2 (aCO2) at approximately 410 ppm during the day and 460 ppm at night, and eCO2 at approximately 550 ppm during the day and 610 ppm at night. Additionally, two nitrogen fertilization treatments were applied: no fertilizer (N0) and 100 mg N kg−1 dry weight (DW) soil (N100). Crops were cultivated under two cropping systems: the monoculturing of fababean (Vicia faba L.) or wheat (Triticum aestivum Yunmai) and the intercropping of both species. The results demonstrated that eCO2 significantly enhanced the growth and yield of both fababean and wheat, particularly when nitrogen fertilization was applied. Nitrogen fertilizer application did not always enhance crop yield, considering the complexity of nitrogen management under elevated CO2 conditions. Furthermore, the intercropping of fababean and wheat presented multiple advantages, including improved crop yields, enhanced soil health, and increased ecosystem services. These findings suggest that intercropping can serve as a sustainable strategy to boost productivity and ecosystem resilience in the face of climate change. The changes in nitrogen application and CO2 concentration affect the gene copy number of ammonia-oxidizing bacteria and archaea, which may affect the nitrogen cycling process in soil. There are complex interactions between crop biomass, nitrogen accumulation, transpiration rate, photosynthetic rate and stomatal conductance with soil properties (e.g., pH, organic matter, nitrogen content) and microbial community structure. The interaction between CO2 concentration, nitrogen application level and crop intercropping pattern had significant effects on crop growth, soil properties and microbial communities. Future research should prioritize investigating the long-term effects of intercropping on soil productivity and the development of management strategies that optimize the benefits of this cropping system. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

17 pages, 4583 KiB  
Article
Numerical Analysis and Life Cycle Assessment of Type V Hydrogen Pressure Vessels
by Mohd Shahneel Saharudin, Syafawati Hasbi, Santosh Kumar Sahu, Quanjin Ma and Muhammad Younas
J. Compos. Sci. 2025, 9(2), 75; https://doi.org/10.3390/jcs9020075 - 7 Feb 2025
Cited by 2 | Viewed by 2013
Abstract
The growing concern about greenhouse gas emissions and global warming has heightened the focus on sustainability across industrial sectors. As a result, hydrogen energy has emerged as a versatile and promising solution for various engineering applications. Among its storage options, Type V composite [...] Read more.
The growing concern about greenhouse gas emissions and global warming has heightened the focus on sustainability across industrial sectors. As a result, hydrogen energy has emerged as a versatile and promising solution for various engineering applications. Among its storage options, Type V composite pressure vessels are particularly attractive because they eliminate the need for a polymer liner during manufacturing, significantly reducing material usage and enhancing their environmental benefit. However, limited research has explored the pressure performance and life cycle assessment of these vessels. To address this gap, this study investigates the pressure performance and carbon emissions of a Type V hydrogen pressure vessel using four composite materials: Kevlar/Epoxy, Basalt/Epoxy, E-Glass/Epoxy, and Carbon T-700/Epoxy. The results reveal that Carbon T-700/Epoxy is the most suitable material for high-pressure hydrogen storage due to its superior mechanical properties, including the highest burst pressure, maximum stress capacity, and minimal deformation under loading. Conversely, the LCA results, supported by insights from a large language model (LLM), show that Basalt/Epoxy provides a more sustainable option, exhibiting notably lower global warming potential (GWP) and acidification potential (AP). These findings highlight the trade-offs between mechanical performance and environmental impact, offering valuable insights for sustainable hydrogen storage design. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

32 pages, 10704 KiB  
Article
Carbon Emission Assessment During the Recycling Phase of Building Meltable Materials from Construction and Demolition Waste: A Case Study in China
by Boya Jiang, Hao Huang, Feng Ge, Baolin Huang and Habib Ullah
Buildings 2025, 15(3), 456; https://doi.org/10.3390/buildings15030456 - 1 Feb 2025
Cited by 2 | Viewed by 1523
Abstract
The improper disposal of construction and demolition waste (CDW) exacerbates the consumption of raw materials and emissions of greenhouse gasses. In this study, due to the high recycling rate, focusing on the meltable materials of CDW, the recycling phase of CDW is divided [...] Read more.
The improper disposal of construction and demolition waste (CDW) exacerbates the consumption of raw materials and emissions of greenhouse gasses. In this study, due to the high recycling rate, focusing on the meltable materials of CDW, the recycling phase of CDW is divided into four stages, namely the on-site disposal stage, the transportation stage, the reprocessing stage, and the reproduction stage. Second, based on these four stages, a carbon emission accounting model (CEAM) is established to evaluate the carbon emission benefits of meltable materials during these stages. Third, the CEAM is applied to a typical old residential area to evaluate the carbon emission reduction benefits of the CDW recycling. The results indicate that (1) the full-process carbon emissions of recycled steel, recycled flat glass, and recycled aluminum per unit mass are 677.77 kg/t, 1041.54 kg/t, and 845.39 kg/t, respectively, which are far lower than their corresponding ordinary meltable building materials (OMBMs); (2) the carbon emissions during the reproduction stage represent the primary component of carbon emissions in the MW recycling phase, accounting for 88.52% to 97.45% of the total carbon emissions; and (3) the carbon emissions generated by the recycling of cullet per unit mass are very high, reaching 1768 kg/t, which is 4.3 times that of scrap steel (409.05 kg/t) and 3.6 times that of scrap aluminum (483.76 kg/t). The research findings could provide theoretical methods and experimental data for decision-makers to formulate treatment plans for meltable materials in CDW, thereby empowering urban carbon emission reduction and promoting sustainable development. Construction parties engaged in demolition tasks should enhance on-site sorting and collaborate with recycling companies to ensure its efficient recycling. Recycling companies need to focus on high-carbon-emission stages, such as the reproduction stage, and strengthen technological research to improve carbon reduction benefits. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2678 KiB  
Article
Primary Particulate Matter and Aerosol Emissions from Biodiesel Engines During Idling in Plateau Environments of China
by Dingmin Xu, Hongyang Yu, Wenjie Cai, Jiacheng Xu and Jiaqiang Li
Sustainability 2025, 17(3), 976; https://doi.org/10.3390/su17030976 - 25 Jan 2025
Cited by 1 | Viewed by 1561
Abstract
Diesel vehicles are recognized as significant mobile sources of particulate matter emissions. As a renewable and environmentally friendly alternative to conventional fossil diesel, biodiesel offers the benefit of reducing greenhouse gas emissions. However, existing research on biodiesel emissions primarily focuses on primary emissions, [...] Read more.
Diesel vehicles are recognized as significant mobile sources of particulate matter emissions. As a renewable and environmentally friendly alternative to conventional fossil diesel, biodiesel offers the benefit of reducing greenhouse gas emissions. However, existing research on biodiesel emissions primarily focuses on primary emissions, with a limited understanding of their impact on secondary organic aerosol (SOA) formation. In this study, a diesel engine test bench was employed under idle conditions using three commonly used biodiesel blends. Exhaust emissions were directly introduced into the HAP-SWFU chamber, a quartz glass smog chamber designed to characterize both primary emissions and SOA formation during the photochemical oxidation process. The black carbon and primary organic aerosol (POA) emission factors for the three biodiesel blends under idle conditions ranged from 0.31 to 0.58 g kg−1 fuel and 0.99 to 1.06 g kg−1 fuel, respectively. The particle size of exhaust particulates peaked between 20 and 30 nm, and nucleation-idle conditions were found to be the dominating mode. The SOA production factor was between 0.92 and 1.15 g kg−1 fuel, and the SOA/POA ratio ranged from 1.35 to 2.37, with an average of 1.86. This study concludes that the POA emission factor for biodiesel under idle conditions is comparable to values reported in previous studies on pure diesel exhaust, with the maximum SOA production factor reduced by 38%. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

14 pages, 4423 KiB  
Article
Effect of CO2 Concentration on the Microbial Activity of Orenia metallireducens (Strain Z6) in Surface Inert Materials
by Shuyi Li, Wentao Song, Juan Liu, Maxim I. Boyanov, Edward J. O’Loughlin, Kenneth M. Kemner, Robert A. Sanford, Hongbo Shao, Qi Feng, Yu He, Yiran Dong and Liang Shi
Minerals 2025, 15(2), 112; https://doi.org/10.3390/min15020112 - 24 Jan 2025
Viewed by 818
Abstract
Carbon dioxide (CO2) sequestration has garnered widespread attention as a key strategy for mitigating CO2 emissions and combating the greenhouse effect. However, the mechanisms underlying the interactions between CO2, widespread siliceous minerals and biological processes remain unclear. The [...] Read more.
Carbon dioxide (CO2) sequestration has garnered widespread attention as a key strategy for mitigating CO2 emissions and combating the greenhouse effect. However, the mechanisms underlying the interactions between CO2, widespread siliceous minerals and biological processes remain unclear. The present study explored the potential impacts of different CO2 concentrations on microbial activity, environmental conditions and their feedback on the fate of CO2. A total of 20 experimental conditions was created, with the variables including different natural and synthetic siliceous minerals (e.g., quartz sand and a type of commercial glass beads), the presence or absence of the iron-reducing microorganism Orenia metallireducens (strain Z6) and varying CO2 concentrations (0%, 20%, 50%, 100%) in the presence of ferrihydrite and pyruvate. Geochemical, microbial and mineralogical analyses revealed that elevated CO2 concentrations significantly inhibited microbial Fe(III) reduction and pyruvate metabolism. Interestingly, compared to cultures without mineral amendments or those with glass beads alone, the addition of quartz sand enabled strain Z6 to better withstand the environmental stress caused by elevated CO2, promoting pyruvate fermentation and iron reduction. In addition to an increased pH, the formation of siderite, hematite and vivianite was also observed in the bioactive systems. Although both glass beads and quartz sand were primarily composed of silica, differences in the mineral structure, elemental composition and acid neutralization capacity rendered quartz sand more chemically active and unexpectedly led to greater CO2 sequestration. Full article
(This article belongs to the Special Issue Redox Reactivity of Iron Minerals in the Geosphere, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 2109 KiB  
Article
Evaluation of Fish Biosolids as a Fertilizer for Organic Tomato Transplant Production
by Cicely Schembri, Nicholas Kaczmar, John Osborn, Michael B. Timmons and Neil S. Mattson
Horticulturae 2025, 11(1), 57; https://doi.org/10.3390/horticulturae11010057 - 8 Jan 2025
Viewed by 1064
Abstract
Interest among consumers in the availability of organically produced fruits and vegetables is increasing. Seafood demand is increasingly being met by fish raised using aquaculture methods that provide fish excretory products that can meet organic standards for nutrient sources for organic vegetables. We [...] Read more.
Interest among consumers in the availability of organically produced fruits and vegetables is increasing. Seafood demand is increasingly being met by fish raised using aquaculture methods that provide fish excretory products that can meet organic standards for nutrient sources for organic vegetables. We conducted an experiment in a glass greenhouse to evaluate fish biosolids as a substrate amendment for organic tomato transplant production. We compared the fish biosolids treatment to several different organic fertilizers, along with a commonly used inorganic slow-release fertilizer (Osmocote). All treatments used a target N concentration of 400 mg/L incorporated into the substrate and we also included fish biosolids treatments of 200 and 800 mg N/L. Plant performance was monitored for 4 weeks starting with commercially available 2-week-old seedlings. The results showed that the 800 mg N/L fish biosolids treatment compared very favorably with the conventional Osmocote treatment at the conclusion of the trial. The 800 mg N/L fish biosolids treatment exceeded the Osmocote treatment for chlorophyll content and for leaf number for the first 3 weeks of the 4-week trial. Grower management protocols could further improve seedling performance by providing additional top dressings of fish biosolids or fish effluent waters as plants age. Full article
Show Figures

Figure 1

16 pages, 6553 KiB  
Article
Cucumber Leaf Segmentation Based on Bilayer Convolutional Network
by Tingting Qian, Yangxin Liu, Shenglian Lu, Linyi Li, Xiuguo Zheng, Qingqing Ju, Yiyang Li, Chun Xie and Guo Li
Agronomy 2024, 14(11), 2664; https://doi.org/10.3390/agronomy14112664 - 12 Nov 2024
Cited by 1 | Viewed by 1437
Abstract
When monitoring crop growth using top-down images of the plant canopies, leaves in agricultural fields appear very dense and significantly overlap each other. Moreover, the image can be affected by external conditions such as background environment and light intensity, impacting the effectiveness of [...] Read more.
When monitoring crop growth using top-down images of the plant canopies, leaves in agricultural fields appear very dense and significantly overlap each other. Moreover, the image can be affected by external conditions such as background environment and light intensity, impacting the effectiveness of image segmentation. To address the challenge of segmenting dense and overlapping plant leaves under natural lighting conditions, this study employed a Bilayer Convolutional Network (BCNet) method for accurate leaf segmentation across various lighting environments. The major contributions of this study are as follows: (1) Utilized Fully Convolutional Object Detection (FCOS) for plant leaf detection, incorporating ResNet-50 with the Convolutional Block Attention Module (CBAM) and Feature Pyramid Network (FPN) to enhance Region of Interest (RoI) feature extraction from canopy top-view images. (2) Extracted the sub-region of the RoI based on the position of the detection box, using this region as input for the BCNet, ensuring precise segmentation. (3) Utilized instance segmentation of canopy top-view images using BCNet, improving segmentation accuracy. (4) Applied the Varifocal Loss Function to improve the classification loss function in FCOS, leading to better performance metrics. The experimental results on cucumber canopy top-view images captured in glass greenhouse and plastic greenhouse environments show that our method is highly effective. For cucumber leaves at different growth stages and under various lighting conditions, the Precision, Recall and Average Precision (AP) metrics for object recognition are 97%, 94% and 96.57%, respectively. For instance segmentation, the Precision, Recall and Average Precision (AP) metrics are 87%, 83% and 84.71%, respectively. Our algorithm outperforms commonly used deep learning algorithms such as Faster R-CNN, Mask R-CNN, YOLOv4 and PANet, showcasing its superior capability in complex agricultural settings. The results of this study demonstrate the potential of our method for accurate recognition and segmentation of highly overlapping leaves in diverse agricultural environments, significantly contributing to the application of deep learning algorithms in smart agriculture. Full article
(This article belongs to the Special Issue AI, Sensors and Robotics for Smart Agriculture—2nd Edition)
Show Figures

Figure 1

12 pages, 2426 KiB  
Article
Optimization of Contact Pad Design for Silver Nanowire-Based Transparent Heater to Improve Heating Characteristics
by Seo Bum Chu, Yoohan Ma, Jinwook Jung, Sungjin Jo, Dong Choon Hyun, Jae-Seung Roh, Jongbok Kim and Dongwook Ko
Nanomaterials 2024, 14(21), 1735; https://doi.org/10.3390/nano14211735 - 29 Oct 2024
Viewed by 1470
Abstract
Transparent heaters are gaining significant attention for applications such as antifog glass, smart windows, and smart farm greenhouses. A transparent heater basically consists of transparent conducting materials that serve as a heating area and contact pad electrode to apply power. To fabricate a [...] Read more.
Transparent heaters are gaining significant attention for applications such as antifog glass, smart windows, and smart farm greenhouses. A transparent heater basically consists of transparent conducting materials that serve as a heating area and contact pad electrode to apply power. To fabricate a transparent heater, materials with excellent light transmittance and low sheet resistance are required. Among various transparent conducting materials, such as Indium Tin Oxide (ITO), carbon nanotube (CNT), graphene, and silver nanowires (AgNWs), AgNWs are particularly favored due to their good electrical, optical, and mechanical properties. However, in order to improve the heating characteristics of transparent heaters, research is essential not only on improving the properties of transparent conducting materials but also on the design of contact pad electrodes that can uniformly improve current distribution. Here, we explore various shapes of contact pad electrodes for AgNW-based transparent heaters to improve current distribution. Shapes such as line, spot, twisted, and parallel-type contact pad electrodes are designed and investigated to optimize overall heating characteristics. We analyze the heating properties of these transparent heaters with various contact pad electrodes, demonstrating how their specific shape and size affect heating characteristics and uniformity. We also investigate the optimal shape of the contact pad electrode to minimize transmission loss through UV-VIS spectroscopy. As a result, we confirm that the shape of the contact pad electrode was important for simultaneously achieving high heating characteristics of 120 °C, good heating uniformity, and over 80% transparency in an AgNW-based transparent heater. Full article
Show Figures

Figure 1

Back to TopTop