Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,243)

Search Parameters:
Keywords = generalized quantum systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 5130 KB  
Article
SecureEdge-MedChain: A Post-Quantum Blockchain and Federated Learning Framework for Real-Time Predictive Diagnostics in IoMT
by Sivasubramanian Ravisankar and Rajagopal Maheswar
Sensors 2025, 25(19), 5988; https://doi.org/10.3390/s25195988 - 27 Sep 2025
Abstract
The burgeoning Internet of Medical Things (IoMT) offers unprecedented opportunities for real-time patient monitoring and predictive diagnostics, yet the current systems struggle with scalability, data confidentiality against quantum threats, and real-time privacy-preserving intelligence. This paper introduces Med-Q Ledger, a novel, multi-layered framework [...] Read more.
The burgeoning Internet of Medical Things (IoMT) offers unprecedented opportunities for real-time patient monitoring and predictive diagnostics, yet the current systems struggle with scalability, data confidentiality against quantum threats, and real-time privacy-preserving intelligence. This paper introduces Med-Q Ledger, a novel, multi-layered framework designed to overcome these critical limitations in the Medical IoT domain. Med-Q Ledger integrates a permissioned Hyperledger Fabric for transactional integrity with a scalable Holochain Distributed Hash Table for high-volume telemetry, achieving horizontal scalability and sub-second commit times. To fortify long-term data security, the framework incorporates post-quantum cryptography (PQC), specifically CRYSTALS-Di lithium signatures and Kyber Key Encapsulation Mechanisms. Real-time, privacy-preserving intelligence is delivered through an edge-based federated learning (FL) model, utilizing lightweight autoencoders for anomaly detection on encrypted gradients. We validate Med-Q Ledger’s efficacy through a critical application: the prediction of intestinal complications like necrotizing enterocolitis (NEC) in preterm infants, a condition frequently necessitating emergency colostomy. By processing physiological data from maternal wearable sensors and infant intestinal images, our integrated Random Forest model demonstrates superior performance in predicting colostomy necessity. Experimental evaluations reveal a throughput of approximately 3400 transactions per second (TPS) with ~180 ms end-to-end latency, a >95% anomaly detection rate with <2% false positives, and an 11% computational overhead for PQC on resource-constrained devices. Furthermore, our results show a 0.90 F1-score for colostomy prediction, a 25% reduction in emergency surgeries, and 31% lower energy consumption compared to MQTT baselines. Med-Q Ledger sets a new benchmark for secure, high-performance, and privacy-preserving IoMT analytics, offering a robust blueprint for next-generation healthcare deployments. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

16 pages, 571 KB  
Article
Converting Entanglement into Ensemble Basis-Free Coherence
by Aleksei Kodukhov
Entropy 2025, 27(10), 1005; https://doi.org/10.3390/e27101005 - 26 Sep 2025
Abstract
The resource theory of coherence addresses the extent to which quantum properties are present in a given quantum system. While coherence has been extensively studied for individual quantum states, measures of coherence for ensembles of quantum states remain an area of active research. [...] Read more.
The resource theory of coherence addresses the extent to which quantum properties are present in a given quantum system. While coherence has been extensively studied for individual quantum states, measures of coherence for ensembles of quantum states remain an area of active research. The entanglement-based approach to ensemble coherence—arising from the measurement–ensemble duality principle and the Born rule—connects the ensemble coherence with both the entanglement resource and the measurement’s uncertainty. This paper presents two methods for generating ensemble coherence from a fixed amount of entanglement between two qubit systems. The first method involves applying a von Neumann measurement to one part of a non-maximally entangled bipartite state, resulting in a pair of non-orthogonal states whose coherence can equal the initial entanglement. The second method considers a class of symmetric observables capable of generating ensembles used in quantum key distribution (QKD) protocols such as B92, BB84, and three-state QKD. As a result, this work contributes to understanding how much ensemble coherence can be obtained from a given amount of entanglement. Full article
(This article belongs to the Special Issue Quantum Foundations: 100 Years of Born’s Rule)
Show Figures

Figure 1

21 pages, 1271 KB  
Article
Feasibility and Limitations of Generalized Grover Search Algorithm-Based Quantum Asymmetric Cryptography: An Implementation Study on Quantum Hardware
by Tzung-Her Chen and Wei-Hsiang Hung
Electronics 2025, 14(19), 3821; https://doi.org/10.3390/electronics14193821 - 26 Sep 2025
Abstract
The emergence of quantum computing poses significant threats to conventional public-key cryptography, driving the urgent need for quantum-resistant cryptographic solutions. While quantum key distribution addresses secure key exchange, its dependency on symmetric keys and point-to-point limitations present scalability constraints. Quantum Asymmetric Encryption (QAE) [...] Read more.
The emergence of quantum computing poses significant threats to conventional public-key cryptography, driving the urgent need for quantum-resistant cryptographic solutions. While quantum key distribution addresses secure key exchange, its dependency on symmetric keys and point-to-point limitations present scalability constraints. Quantum Asymmetric Encryption (QAE) offers a promising alternative by leveraging quantum mechanical principles for security. This paper presents the first practical implementation of a QAE protocol on IBM Quantum devices, building upon the theoretical framework originally proposed by Yoon et al. We develop a generalized Grover Search Algorithm (GSA) framework that supports non-standard initial quantum states through novel diffusion operator designs, extending its applicability beyond idealized conditions. The complete QAE protocol, including key generation, encryption, and decryption stages, is translated into executable quantum circuits and evaluated on both IBM Quantum simulators and real quantum hardware. Experimental results demonstrate significant scalability challenges, with success probabilities deteriorating considerably for larger systems. The 2-qubit implementation achieves near-perfect accuracy (100% on the simulator, and 93.88% on the hardware), while performance degrades to 78.15% (simulator) and 45.84% (hardware) for 3 qubits, and declines critically to 48.08% (simulator) and 7.63% (hardware) for 4 qubits. This degradation is primarily attributed to noise and decoherence effects in current Noisy Intermediate-Scale Quantum (NISQ) devices, highlighting the limitations of single-iteration GSA approaches. Our findings underscore the critical need for enhanced hardware fidelity and algorithmic optimization to advance the practical viability of quantum cryptographic systems, providing valuable insights for bridging the gap between theoretical quantum cryptography and real-world implementations. Full article
Show Figures

Figure 1

23 pages, 901 KB  
Article
Time-of-Flow Distributions in Discrete Quantum Systems: From Operational Protocols to Quantum Speed Limits
by Mathieu Beau
Entropy 2025, 27(10), 996; https://doi.org/10.3390/e27100996 - 24 Sep 2025
Viewed by 163
Abstract
We propose a general and experimentally accessible framework to quantify transition timing in discrete quantum systems via the time-of-flow (TF) distribution. Defined from the rate of population change in a target state, the TF distribution can be reconstructed through repeated projective measurements at [...] Read more.
We propose a general and experimentally accessible framework to quantify transition timing in discrete quantum systems via the time-of-flow (TF) distribution. Defined from the rate of population change in a target state, the TF distribution can be reconstructed through repeated projective measurements at discrete times on independently prepared systems, thus avoiding Zeno inhibition. In monotonic regimes, it admits a clear interpretation as a time-of-arrival (TOA) or time-of-departure (TOD) distribution. We apply this approach to optimize time-dependent Hamiltonians, analyze shortcut-to-adiabaticity (STA) protocols, study non-adiabatic features in the dynamics of a three-level time-dependent detuning model, and derive a transition-based quantum speed limit (TF-QSL) for both closed and open quantum systems. We also establish a lower bound on temporal uncertainty and examine decoherence effects, demonstrating the versatility of the TF framework for quantum control and diagnostics. This method provides both a conceptual tool and an experimental protocol for probing and engineering quantum dynamics in discrete-state platforms. Full article
(This article belongs to the Special Issue Quantum Mechanics and the Challenge of Time)
Show Figures

Figure 1

20 pages, 1176 KB  
Article
QSEER-Quantum-Enhanced Secure and Energy-Efficient Routing Protocol for Wireless Sensor Networks (WSNs)
by Chindiyababy Uthayakumar, Ramkumar Jayaraman, Hadi A. Raja and Noman Shabbir
Sensors 2025, 25(18), 5924; https://doi.org/10.3390/s25185924 - 22 Sep 2025
Viewed by 204
Abstract
Wireless sensor networks (WSNs) play a major role in various applications, but the main challenge is to maintain security and balanced energy efficiency. Classical routing protocols struggle to achieve both energy efficiency and security because they are more vulnerable to security risks and [...] Read more.
Wireless sensor networks (WSNs) play a major role in various applications, but the main challenge is to maintain security and balanced energy efficiency. Classical routing protocols struggle to achieve both energy efficiency and security because they are more vulnerable to security risks and resource limitations. This paper introduces QSEER, a novel approach that uses quantum technologies to overcome these limitations. QSEER employs quantum-inspired optimization algorithms that leverage superposition and entanglement principles to efficiently explore multiple routing possibilities, thereby identifying energy-efficient paths and reducing redundant transmissions. The proposed protocol enhances the security of data transmission against eavesdropping and tampering by using the principles of quantum mechanics, thus mitigating potential security vulnerabilities. Through extensive simulations, we demonstrated the effectiveness of QSEER in achieving both security and energy efficiency objectives, which achieves 15.1% lower energy consumption compared to state-of-the-art protocols while maintaining 99.8% data integrity under various attack scenarios, extending network lifetime by an average of 42%. These results position QSEER as a significant advancement for next-generation WSN deployments in critical applications such as environmental monitoring, smart infrastructure, and healthcare systems. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

9 pages, 790 KB  
Article
Development of a Table-Top High-Power, High-Stability, High-Harmonic-Generation Extreme-Ultraviolet Laser Source
by Ruixuan Li, Hao Xu, Kui Li, Guangyin Zhang, Jin Niu, Jiyue Tang, Zhengkang Xu, Yuwei Xiao, Xiran Guo, Jinze Hu, Yutong Wang, Yongjun Ma, Guangyan Guo, Lifen Liao, Changjun Ke, Jie Li and Zhongwei Fan
Photonics 2025, 12(9), 942; https://doi.org/10.3390/photonics12090942 - 22 Sep 2025
Viewed by 243
Abstract
In this study, we present the development of a high-average-power, exceptionally stable extreme-ultraviolet (EUV) laser source based on a high-order harmonic generation (HHG) technique. The spectrum of an ytterbium-doped laser is broadened through self-phase modulation (SPM) in a gas-filled hollow fiber and compressed [...] Read more.
In this study, we present the development of a high-average-power, exceptionally stable extreme-ultraviolet (EUV) laser source based on a high-order harmonic generation (HHG) technique. The spectrum of an ytterbium-doped laser is broadened through self-phase modulation (SPM) in a gas-filled hollow fiber and compressed down to 25.3 fs for efficient harmonic generation. The high harmonics are generated in a krypton (Kr) gas cell, delivering a total power of 241 μW within the 30–60 nm spectral range, corresponding to a single harmonic output of 166 μW at a central wavelength of 46.8 nm. Notably, the system demonstrates good power stability with a root-mean-square (RMS) deviation of only 1.95% over 12 h of continuous operation. This advanced light source holds great potential for applications in nano- and quantum-material development and in semiconductor wafer defect detection. Future work aims to further enhance the output power in the 30–60 nm band to the milliwatt level, which would significantly bolster scientific research and technological development in related fields. Full article
(This article belongs to the Special Issue Ultrafast Lasers and Nonlinear Optics)
Show Figures

Figure 1

20 pages, 6784 KB  
Article
Thermal Decomposition Mechanism of PF5 and POF3 with Carbonate-Based Electrolytes During Lithium-Ion Batteries’ Thermal Runaway
by Yao Tian, Xiaotiao Zhan, Yuxin Zhang, Zhen Qiao, Yuxiang Lu, Qing Xia, Jian Lu, Xia Zhang and Zhaoyang Chen
Fire 2025, 8(9), 370; https://doi.org/10.3390/fire8090370 - 19 Sep 2025
Viewed by 370
Abstract
Against the background of the accelerating global transition towards a low-carbon energy system, the lithium-ion battery (LIB) industry has witnessed a rapid development. Concurrently, fire accidents in LIB application scenarios have occurred frequently, with safety issues becoming increasingly prominent. Thermal runaway of LIBs [...] Read more.
Against the background of the accelerating global transition towards a low-carbon energy system, the lithium-ion battery (LIB) industry has witnessed a rapid development. Concurrently, fire accidents in LIB application scenarios have occurred frequently, with safety issues becoming increasingly prominent. Thermal runaway of LIBs is the direct cause of such fires. During the thermal runaway process of LIBs, lithium salts in the electrolyte undergo thermal decomposition reactions with carbonate-based electrolytes, releasing a large amount of heat and fire gases. Among them, the thermal decomposition reactions of LiPF6 with electrolytes are coupled and superimposed, exhibiting a significant synergistic effect. This paper employs quantum chemical calculation methods to investigate the thermal decomposition reaction mechanisms between PF5 and POF3, which generated from the thermal decomposition of LiPF6 and carbonate-based electrolytes (EC, DMC, and DEC) during the thermal runaway process of LIBs; and presents detailed chemical reaction mechanism models. The P atoms in PF5 or POF3 combine with the O atoms of the ether oxygen groups in carbonates, while the F atoms combine with the C atoms adjacent to the ether oxygen groups. This promotes the ring-opening or chain scission of carbonate molecules, reduces the energy required for the reaction, and accelerates the thermal decomposition reaction and the generation of fire gases. Modification of EC, DMC, and DEC through fluorination can effectively inhibit the catalytic effect of PF5 and POF3 and improve the oxidation resistance and thermal stability of the electrolytes. Full article
(This article belongs to the Special Issue Advances in New Energy Materials and Fire Safety)
Show Figures

Figure 1

22 pages, 3553 KB  
Article
An Extended Epistemic Framework Beyond Probability for Quantum Information Processing with Applications in Security, Artificial Intelligence, and Financial Computing
by Gerardo Iovane
Entropy 2025, 27(9), 977; https://doi.org/10.3390/e27090977 - 18 Sep 2025
Viewed by 199
Abstract
In this work, we propose a novel quantum-informed epistemic framework that extends the classical notion of probability by integrating plausibility, credibility, and possibility as distinct yet complementary measures of uncertainty. This enriched quadruple (P, Pl, Cr, Ps) enables a deeper characterization of quantum [...] Read more.
In this work, we propose a novel quantum-informed epistemic framework that extends the classical notion of probability by integrating plausibility, credibility, and possibility as distinct yet complementary measures of uncertainty. This enriched quadruple (P, Pl, Cr, Ps) enables a deeper characterization of quantum systems and decision-making processes under partial, noisy, or ambiguous information. Our formalism generalizes the Born rule within a multi-valued logic structure, linking Positive Operator-Valued Measures (POVMs) with data-driven plausibility estimators, agent-based credibility priors, and fuzzy-theoretic possibility functions. We develop a hybrid classical–quantum inference engine that computes a vectorial aggregation of the quadruples, enhancing robustness and semantic expressivity in contexts where classical probability fails to capture non-Kolmogorovian phenomena such as entanglement, contextuality, or decoherence. The approach is validated through three real-world application domains—quantum cybersecurity, quantum AI, and financial computing—where the proposed model outperforms standard probabilistic reasoning in terms of accuracy, resilience to noise, interpretability, and decision stability. Comparative analysis against QBism, Dempster–Shafer, and fuzzy quantum logic further demonstrates the uniqueness of architecture in both operational semantics and practical outcomes. This contribution lays the groundwork for a new theory of epistemic quantum computing capable of modelling and acting under uncertainty beyond traditional paradigms. Full article
(This article belongs to the Special Issue Probability Theory and Quantum Information)
Show Figures

Figure 1

19 pages, 2127 KB  
Article
Study on Photocatalytic Peroxone Process for Treating Organic Pollutants in Leachate Based on Modified Carbon Quantum Dots
by Shuo Wu, Nuo Meng, Lin Ma, Xiguo Zhang, Shihu Ding and Wei Wang
Catalysts 2025, 15(9), 903; https://doi.org/10.3390/catal15090903 - 18 Sep 2025
Viewed by 272
Abstract
This study couples a carbon quantum dot photocatalyst with a proton relay installed (EDTA-CQDs) for efficient hydrogen peroxide (H2O2) production with an ozone (O3) system. In situ activation of O3 is achieved by the photogenerated H [...] Read more.
This study couples a carbon quantum dot photocatalyst with a proton relay installed (EDTA-CQDs) for efficient hydrogen peroxide (H2O2) production with an ozone (O3) system. In situ activation of O3 is achieved by the photogenerated H2O2, which integrates the photocatalytic hydrogen peroxide production (PHP) and advanced oxidation processes (AOPs) to form a new photocatalytic peroxone (H2O2/O3) system, achieving highly efficient solar-driven degradation of recalcitrant organic pollutants in landfill leachate without the addition of external H2O2. The composite system exhibits efficient degradation ability for various typical pollutants in landfill leachate, among which the degradation percentage of 100 mg L−1 hydroquinone (HQ) reaches 97% within 30 min. This is due to the synergistic effects of O3 oxidation, photoactivation of O3, activation of O3 by EDTA-CQDs, and activation of O3 by in situ-generated H2O2. In the EDTA-CQD-based H2O2/O3 system, free radicals can be dynamically regenerated after the addition of pollutants, achieving sustained and efficient degradation. Therefore, in the treatment of actual leachate, the removal percentages of COD, TOC, and UV254 are nearly 90%, 70%, and 55%, respectively, demonstrating the significant advantage of this system in treating high-concentration recalcitrant organic pollutants in wastewater of complex quality. Full article
(This article belongs to the Special Issue Environmental Catalysis and Nanomaterials for Water Pollution Control)
Show Figures

Graphical abstract

15 pages, 17666 KB  
Article
Multi-Dimensional Quantum-like Resources from Complex Synchronized Networks
by Debadrita Saha and Gregory D. Scholes
Entropy 2025, 27(9), 963; https://doi.org/10.3390/e27090963 - 16 Sep 2025
Viewed by 236
Abstract
Recent publications have introduced the concept of quantum-like (QL) bits, along with their associated QL states and QL gate operations, which emerge from the dynamics of complex, synchronized networks. The present work extends these ideas to multi-level QL resources, referred to as QL [...] Read more.
Recent publications have introduced the concept of quantum-like (QL) bits, along with their associated QL states and QL gate operations, which emerge from the dynamics of complex, synchronized networks. The present work extends these ideas to multi-level QL resources, referred to as QL dits, as higher-dimensional analogs of QL bits. We employ systems of k-regular graphs to construct QL-dits for arbitrary dimensions, where the emergent eigenspectrum of their adjacency matrices defines the QL-state space. The tensor product structure of multi-QL dit systems is realized through the Cartesian product of graphs. Furthermore, we examine the potential computational advantages of employing d-nary QL systems over two-level QL bit systems, particularly in terms of classical resource efficiency. Overall, this study generalizes the paradigm of using synchronized network dynamics for QL information processing to include higher-dimensional QL resources. Full article
Show Figures

Figure 1

29 pages, 5223 KB  
Review
Multifunctional Colloidal Quantum Dots-Based Light-Emitting Devices for On-Chip Integration
by Ruoyang Li, Jie Zhao, Yifei Qiao, Xiaoyan Liu and Shiliang Mei
Nanomaterials 2025, 15(18), 1422; https://doi.org/10.3390/nano15181422 - 16 Sep 2025
Viewed by 558
Abstract
Colloidal quantum dots (CQDs) have attracted significant attention in optoelectronics due to their size-tunable bandgap, high photoluminescence quantum yield, and solution processability, which enable integration into compact and energy-efficient systems. This review consolidates recent progress in multifunctional CQD-based light-emitting devices and on-chip integration [...] Read more.
Colloidal quantum dots (CQDs) have attracted significant attention in optoelectronics due to their size-tunable bandgap, high photoluminescence quantum yield, and solution processability, which enable integration into compact and energy-efficient systems. This review consolidates recent progress in multifunctional CQD-based light-emitting devices and on-chip integration strategies. This review systematically examines fundamental CQD properties (quantum confinement, carrier dynamics, and core–shell heterostructures), key synthesis methods including hot injection, ligand-assisted reprecipitation, and microfluidic flow synthesis, and device innovations such as light-emitting field-effect transistors, light-emitting solar cells, and light-emitting memristors, alongside on-chip components including ongoing electrically pumped lasers and photodetectors. This review concludes that synergies in material engineering, device design, and system innovation are pivotal for next-generation optoelectronics, though challenges such as environmental instability, Auger recombination, and CMOS compatibility require future breakthroughs in atomic-layer deposition, 3D heterostructures, and data-driven optimization. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

39 pages, 2466 KB  
Review
Resource Allocation Techniques in Aerial-Assisted Vehicular Edge Computing: A Review of Recent Progress
by Sangman Moh
Electronics 2025, 14(18), 3626; https://doi.org/10.3390/electronics14183626 - 12 Sep 2025
Viewed by 322
Abstract
Aerial-assisted vehicular edge computing (AVEC) has emerged as a transformative approach to addressing the limitations of traditional vehicular edge computing (VEC) in dynamic vehicular environments. By integrating platforms such as unmanned aerial vehicles (UAVs), high-altitude platforms (HAPs), and satellites, AVEC systems offer enhanced [...] Read more.
Aerial-assisted vehicular edge computing (AVEC) has emerged as a transformative approach to addressing the limitations of traditional vehicular edge computing (VEC) in dynamic vehicular environments. By integrating platforms such as unmanned aerial vehicles (UAVs), high-altitude platforms (HAPs), and satellites, AVEC systems offer enhanced scalability, flexibility, and responsiveness, enabling efficient resource allocation and adaptive decision-making. This paper presents a comprehensive survey of resource allocation techniques in AVEC, addressing both traditional and reinforcement learning-based approaches. These techniques aim to optimize the allocation of bandwidth, computation, and energy resources across heterogeneous platforms, ensuring reliable and efficient operations in diverse scenarios. Additionally, the study examines key challenges inherent in AVEC, including achieving seamless interoperability among diverse platforms, addressing scalability in large-scale systems, and adapting to real-time environmental dynamics. To address these challenges, the paper proposes future research directions, such as leveraging advanced technologies like quantum computing for solving complex optimization problems, employing tiny machine learning (TinyML) to enable resource-efficient intelligence on low-power devices, and predictive task offloading to enhance proactive resource management. By presenting a detailed analysis of existing techniques and identifying critical research opportunities, this paper seeks to guide researchers and practitioners in developing more efficient, secure, and adaptive AVEC systems. The insights from this study contribute to advancing the design and deployment of resilient intelligent transportation networks, paving the way for the next generation of vehicular connectivity. Full article
(This article belongs to the Special Issue Unmanned Aircraft Systems with Autonomous Navigation, 2nd Edition)
Show Figures

Figure 1

11 pages, 351 KB  
Article
Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems
by Gregory S. Adkins and Ulrich D. Jentschura
Atoms 2025, 13(9), 81; https://doi.org/10.3390/atoms13090081 - 11 Sep 2025
Viewed by 215
Abstract
In exotic atomic systems with hadronic constituent particles, it is notoriously difficult to estimate the strong-interaction correction to energy levels. It is well known that, due to the strength of the nuclear interaction, the problem cannot be solved using Wigner–Brillouin perturbation theory alone. [...] Read more.
In exotic atomic systems with hadronic constituent particles, it is notoriously difficult to estimate the strong-interaction correction to energy levels. It is well known that, due to the strength of the nuclear interaction, the problem cannot be solved using Wigner–Brillouin perturbation theory alone. Recently, high-angular-momentum Rydberg states of exotic atomic systems with hadronic constituents have been identified as promising candidates in the search for new physics in the low-energy sector of the Standard Model. We thus derive a generalized Deser–Trueman formula for the induced energy shift for a general hydrogenic bound state with principal quantum number n and orbital angular momentum quantum number , and we find that the energy shift is given by the formula δE=2αn,β(ah/a0)2+1Eh/n3, where αn,0=1, αn,=s=1(s2n2), β=(2+1)/[(2+1)!!]2, Eh is the Hartree energy, ah is the hadronic radius and a0 is the generalized Bohr radius. The square of the double factorial, [(2+1)!!]2, in the denominator implies a drastic suppression of the effect for higher angular momenta. Full article
(This article belongs to the Section Nuclear Theory and Experiments)
Show Figures

Figure 1

67 pages, 2605 KB  
Article
Polar Codes for 6G and Beyond Wireless Quantum Optical Communications
by Peter Jung, Kushtrim Dini, Faris Abdel Rehim and Hamza Almujahed
Electronics 2025, 14(17), 3563; https://doi.org/10.3390/electronics14173563 - 8 Sep 2025
Viewed by 369
Abstract
Wireless communication applications above 300 GHz need careful analog electronics design that takes into account the frequency-dependent nature of ohmic resistance at these frequencies. The cumbersome development of electronics brings quantum optical communication solutions for the sixth generation (6G) THz band located between [...] Read more.
Wireless communication applications above 300 GHz need careful analog electronics design that takes into account the frequency-dependent nature of ohmic resistance at these frequencies. The cumbersome development of electronics brings quantum optical communication solutions for the sixth generation (6G) THz band located between 300 GHz and 10 THz into focus. In this manuscript, the authors propose to replace the classical radio frequency based inner physical layer transceiver blocks used in classical channel coded short range wireless communication systems by wireless quantum optical communication concepts. In addition to discussing the resulting generic concept of the wireless quantum optical communications and illustrating optimum quantum data detection schemes, novel reduced state quantum data detection and novel Kohonen maps-based quantum data detection, will be addressed. All the considered quantum data detection schemes provide soft outputs required for the lowest possible block error ratio (BLER) at the output of the channel decoding. Furthermore, a novel polar codes design approach determining the polar sequence by appropriately combining already available polar sequences tailored for low BLER is presented for the first time after illustrating the basics of polar codes. In addition, turbo equalization for wireless quantum optical communications using polar codes will be presented, for the first time explicitly stating the generation of soft information associated with the codebits and introducing a novel scheme for the computation of extrinsic soft outputs to be used in the turbo equalization iterations. New simulation results emphasize the viability of the theoretical concepts. Full article
(This article belongs to the Special Issue Channel Coding and Measurements for 6G Wireless Communications)
Show Figures

Figure 1

33 pages, 1260 KB  
Review
Identity Management Systems: A Comprehensive Review
by Zhengze Feng, Ziyi Li, Hui Cui and Monica T. Whitty
Information 2025, 16(9), 778; https://doi.org/10.3390/info16090778 - 8 Sep 2025
Viewed by 513
Abstract
Blockchain technology has introduced new paradigms for identity management systems (IDMSs), enabling users to regain control over their identity data and reduce reliance on centralized authorities. In recent years, numerous blockchain-based IDMS solutions have emerged across both practical application domains and academic research. [...] Read more.
Blockchain technology has introduced new paradigms for identity management systems (IDMSs), enabling users to regain control over their identity data and reduce reliance on centralized authorities. In recent years, numerous blockchain-based IDMS solutions have emerged across both practical application domains and academic research. However, prior reviews often focus on single application areas, provide limited cross-domain comparison, and insufficiently address security challenges such as interoperability, revocation, and quantum resilience. This paper bridges these gaps by presenting the first comprehensive survey that examines IDMSs from three complementary perspectives: (i) historical evolution from centralized and federated models to blockchain-based decentralized architectures; (ii) a cross-domain taxonomy of blockchain-based IDMSs, encompassing both general-purpose designs and domain-specific implementations; and (iii) a security analysis of threats across the full identity lifecycle. Drawing on a systematic review of 47 studies published between 2019 and 2025 and conducted in accordance with the PRISMA methodology, the paper synthesizes academic research and real-world deployments to identify unresolved technical, economic, and social challenges, and to outline directions for future research. The findings aim to serve as a timely reference for both researchers and practitioners working toward secure, interoperable, and sustainable blockchain-based IDMSs. Full article
Show Figures

Figure 1

Back to TopTop