Time-of-Flow Distributions in Discrete Quantum Systems: From Operational Protocols to Quantum Speed Limits
Abstract
1. Introduction
2. Heuristic, Empirical and Theoretical Definition of the Time-of-Flow for Discrete Quantum Systems
- Prepare initial state. Initialize the system in a fixed quantum state and let it evolve unitarily under a given dynamics (open or closed systems).
- Perform projective measurement at time . At a chosen time , perform a projective measurement of the observable to check whether the system is in the target state .
- Repeat to obtain statistics. Repeat the measurement independently over many trials (typically ) to estimate the empirical frequency
- Sample over a time grid. Repeat the above procedure for a discrete set of times to obtain a time-resolved profile of the population . Importantly, each measurement is performed on an independent trial and only once per trajectory. This discrete-time sampling avoids continuous monitoring and thereby prevents Zeno-like inhibition of the dynamics, making it experimentally feasible in discrete systems such as qubit platforms.
- Estimate rate of change. Compute the finite differencesThis ensures that can be interpreted as a properly normalized discrete approximation to the TF probability distribution.
3. The Two-Level Spin Transition Model
3.1. Theoretical Results
3.2. Numerical Optimization
3.3. The Two-Level Delta-Pulse Model: A Limiting Case
4. Optimization of Shortcut to Adiabaticity (STA) Parameters Using TOA Distributions
STA Model and TOA Distribution
5. Three-Level Model with Time-Dependent Detuning and Temporal Magnifier
6. Time-of-Flow Distribution and Decoherence in Open Systems
6.1. Time-of-Flow Distribution for a General Markovian System
6.2. Quantum Speed Limit Associated to the TF Distribution
6.3. Lower Bound for the Standard Deviation of the TF Distribution and Uncertainty Relation
6.4. Dephasing Model and Quantum Speed Limits
6.5. Explicit TF–QSL Bound in a Hadamard Dephasing Model
7. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TF | Time-of-flow |
TOA | Time-of-arrival |
TOD | Time-of-departure |
QSL | Quantum Speed Limit |
TF-QSL | TF-based quantum speed limit |
MT-QSL | Mandelstam-Tamm quantum speed limit |
STA | Shortcut to adiabaticity |
Appendix A. Generalization of the Formula (8)
Appendix B. Limiting Case: The Delta-Pulse Model
Appendix C. Proof of the Compact Form of Γ for the Three-Level Model
Appendix D. TF–QSL Bound for the Hadamard Dephasing Model
References
- Pauli, W. Handbuch der physik. Geiger Scheel 1933, 2, 83–272. [Google Scholar]
- Muga, J.G.; Mayato, R.S.; Egusquiza, I.L. (Eds.) Time in Quantum Mechanics—Vol. 1, 2nd ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 734. [Google Scholar] [CrossRef]
- Muga, G.; Ruschhaupt, A.; del Campo, A. (Eds.) Time in Quantum Mechanics—Vol. 2, 1st ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 789. [Google Scholar] [CrossRef]
- Page, D.N.; Wootters, W.K. Evolution without evolution: Dynamics described by stationary observables. Phys. Rev. D 1983, 27, 2885–2892. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum time. Phys. Rev. D 2015, 92, 045033. [Google Scholar] [CrossRef]
- Maccone, L.; Sacha, K. Quantum Measurements of Time. Phys. Rev. Lett. 2020, 124, 110402. [Google Scholar] [CrossRef]
- Gambetta, J.; Blais, A.; Boissonneault, M.; Houck, A.A.; Schuster, D.I.; Girvin, S.M. Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect. Phys. Rev. A 2008, 77, 012112. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Cirac, J.I.; Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 2012, 8, 264–266. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum limits to dynamical evolution. Phys. Rev. A 2003, 67, 052109. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum Measurement Bounds beyond the Uncertainty Relations. Phys. Rev. Lett. 2012, 108, 260405. [Google Scholar] [CrossRef]
- Tóth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 2014, 47, 424006. [Google Scholar] [CrossRef]
- Chen, X.; Lizuain, I.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J.G. Shortcut to Adiabatic Passage in Two- and Three-Level Atoms. Phys. Rev. Lett. 2010, 105, 123003. [Google Scholar] [CrossRef]
- An, S.; Lv, D.; del Campo, A.; Kim, K. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space. Nat. Commun. 2016, 7, 12999. [Google Scholar] [CrossRef] [PubMed]
- del Campo, A.; Kim, K. Focus on Shortcuts to Adiabaticity. New J. Phys. 2019, 21, 050201. [Google Scholar] [CrossRef]
- Watanabe, G.; Venkatesh, B.P.; Talkner, P.; del Campo, A. Quantum Performance of Thermal Machines over Many Cycles. Phys. Rev. Lett. 2017, 118, 050601. [Google Scholar] [CrossRef]
- Mandelstam, L. The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 1945, 9, 249. [Google Scholar]
- Margolus, N.; Levitin, L.B. The maximum speed of dynamical evolution. Phys. D Nonlinear Phenom. 1998, 120, 188–195. [Google Scholar] [CrossRef]
- Deffner, S.; Campbell, S. Quantum speed limits: From Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A Math. Theor. 2017, 50, 453001. [Google Scholar] [CrossRef]
- del Campo, A.; Egusquiza, I.L.; Plenio, M.B.; Huelga, S.F. Quantum Speed Limits in Open System Dynamics. Phys. Rev. Lett. 2013, 110, 050403. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, R.; Ziegler, K.; Barkai, E. Quantum walks: The mean first detected transition time. Phys. Rev. Res. 2020, 2, 033113. [Google Scholar] [CrossRef]
- Itano, W.M.; Heinzen, D.J.; Bollinger, J.J.; Wineland, D.J. Quantum Zeno effect. Phys. Rev. A 1990, 41, 2295–2300. [Google Scholar] [CrossRef]
- Beau, M.; Martellini, L. Quantum delay in the time of arrival of free-falling atoms. Phys. Rev. A 2024, 109, 012216. [Google Scholar] [CrossRef]
- Beau, M.; Barbier, M.; Martellini, R.; Martellini, L. Time-of-arrival distributions for continuous quantum systems and application to quantum backflow. Phys. Rev. A 2024, 110, 052217. [Google Scholar] [CrossRef]
- Beau, M. Context-Dependent Time-Energy Uncertainty Relations from Projective Quantum Measurements. arXiv 2025, arXiv:2507.23059. [Google Scholar]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Lidar, D.A. Lecture notes on the theory of open quantum systems. arXiv 2019, arXiv:1902.00967. [Google Scholar]
- Berry, M.V. Transitionless quantum driving. J. Phys. A Math. Theor. 2009, 42, 365303. [Google Scholar] [CrossRef]
- Bergmann, K.; Theuer, H.; Shore, B.W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 1998, 70, 1003–1025. [Google Scholar] [CrossRef]
- Shore, B.W. The Theory of Coherent Atomic Excitation; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Norambuena, A.; Mattheakis, M.; González, F.J.; Coto, R. Physics-Informed Neural Networks for Quantum Control. Phys. Rev. Lett. 2024, 132, 010801. [Google Scholar] [CrossRef]
- García-Pintos, L.P.; Nicholson, S.B.; Green, J.R.; del Campo, A.; Gorshkov, A.V. Unifying Quantum and Classical Speed Limits on Observables. Phys. Rev. X 2022, 12, 011038. [Google Scholar] [CrossRef]
- Mohan, B.; Pati, A.K. Quantum speed limits for observables. Phys. Rev. A 2022, 106, 042436. [Google Scholar] [CrossRef]
- Chenu, A.; Beau, M.; Cao, J.; del Campo, A. Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise. Phys. Rev. Lett. 2017, 118, 140403. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beau, M. Time-of-Flow Distributions in Discrete Quantum Systems: From Operational Protocols to Quantum Speed Limits. Entropy 2025, 27, 996. https://doi.org/10.3390/e27100996
Beau M. Time-of-Flow Distributions in Discrete Quantum Systems: From Operational Protocols to Quantum Speed Limits. Entropy. 2025; 27(10):996. https://doi.org/10.3390/e27100996
Chicago/Turabian StyleBeau, Mathieu. 2025. "Time-of-Flow Distributions in Discrete Quantum Systems: From Operational Protocols to Quantum Speed Limits" Entropy 27, no. 10: 996. https://doi.org/10.3390/e27100996
APA StyleBeau, M. (2025). Time-of-Flow Distributions in Discrete Quantum Systems: From Operational Protocols to Quantum Speed Limits. Entropy, 27(10), 996. https://doi.org/10.3390/e27100996