Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = general energy decay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4856 KiB  
Article
PREFACE: A Search for Long-Lived Particles at the Large Hadron Collider
by Burak Hacisahinoglu, Suat Ozkorucuklu, Maksym Ovchynnikov, Michael G. Albrow, Aldo Penzo and Orhan Aydilek
Physics 2025, 7(3), 33; https://doi.org/10.3390/physics7030033 - 1 Aug 2025
Viewed by 189
Abstract
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass [...] Read more.
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass or by considerably small coupling to SM particles. The latter case implies relatively long lifetimes. Such long-lived particles (LLPs) then to have signatures different from those of SM particles. Searches in the “central region” are covered by the LHC general purpose experiments. The forward small angle region far from the interaction point (IP) is unexplored. Such particles are expected to have the energy as large as E = O(1 TeV) and Lorentz time dilation factor γ=E/m102103 (with m the particle mass) hence long enough decay distances. A new class of specialized LHC detectors dedicated to LLP searches has been proposed for the forward regions. Among these experiments, FASER is already operational, and FACET is under consideration at a location 100 m from the LHC IP5 (the CMS detector intersection). However, some features of FACET require a specially enlarged beam pipe, which cannot be implemented for LHC Run 4. In this study, we explore a simplified version of the proposed detector PREFACE compatible with the standard LHC beam pipe in the HL-LHC Run 4. Realistic Geant4 simulations are performed and the background is evaluated. An initial analysis of the physics potential with the PREFACE geometry indicates that several significant channels could be accessible with sensitivities comparable to FACET and other LLP searches. Full article
(This article belongs to the Section High Energy Physics)
Show Figures

Figure 1

18 pages, 2456 KiB  
Article
The Characterization of the Mechanical Harmonic Oscillator Extremum Envelope Shape According to Different Friction Types
by João C. Fernandes
Axioms 2025, 14(8), 554; https://doi.org/10.3390/axioms14080554 - 23 Jul 2025
Viewed by 117
Abstract
To characterize a phenomenological model of a mechanical oscillator, it is important to know the properties of the envelope of the three main physical motion variables: deviation from equilibrium, velocity, and acceleration. Experimental data show that friction forces restrict the shape of these [...] Read more.
To characterize a phenomenological model of a mechanical oscillator, it is important to know the properties of the envelope of the three main physical motion variables: deviation from equilibrium, velocity, and acceleration. Experimental data show that friction forces restrict the shape of these functions. A linear, exponential, or more abrupt decay can be observed depending on the different physical systems and conditions. This paper aimed to contribute to clarifying the role that some types of friction forces play in these shapes. Three types of friction—constant sliding friction, pressure drag proportional to the square of velocity, and friction drag proportional to velocity—were considered to characterize the line connecting the maxima and minima of displacement for a generic mechanical harmonic oscillator. The ordinary differential equation (ODE), describing the harmonic oscillator simultaneously containing the three types of dissipative forces (constant, viscous, and quadratic), was numerically solved to obtain energy dissipation, and the extrema of both displacement and velocity. The differential equation ruling the behavior of the amplitude, as a function of the friction force coefficients, was obtained from energy considerations. Solving this equation, we obtained analytical functions, parametrized by the force coefficients that describe the oscillator tail. A comparison between these functions and the predicted oscillator ODE extrema was made, and the results were in agreement for all the situations tested. Information from the velocity extrema and nulls was enough to obtain a second function that rules completely the ODE solution. The correlations obtained allow for the reverse operation: from the identified extremum data, it was possible to identify univocally the three friction coefficients fitting used in the model. Motion equations were solved, and some physical properties, namely energy conservation and work of friction forces, were revisited. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

19 pages, 2227 KiB  
Article
A Comparative Study of Fission Yield Libraries Between ORIGEN2 and ENDF/B-VIII.0 for Molten Salt Reactor Burnup Calculation
by Yunfei Zhang, Guifeng Zhu, Yang Zou, Jian Guo, Bo Zhou, Rui Yan and Ao Zhang
Energies 2025, 18(13), 3562; https://doi.org/10.3390/en18133562 - 6 Jul 2025
Viewed by 338
Abstract
As a promising nuclear technology, molten salt reactors (MSRs) have a bright future in the energy sector due to their unique advantages such as high efficiency, safety, and fuel flexibility. However, the accurate analysis of fission products in MSRs requires reliable fission yield [...] Read more.
As a promising nuclear technology, molten salt reactors (MSRs) have a bright future in the energy sector due to their unique advantages such as high efficiency, safety, and fuel flexibility. However, the accurate analysis of fission products in MSRs requires reliable fission yield data. Current reactor burnup analysis often uses the ORIGEN2 code, whose fission yield libraries mainly originate from the outdated 1970s ENDF/B-VI nuclear database, thus risking data obsolescence. This study evaluates ORIGEN2’s fission yield libraries (THERMAL, PWRU, PWRU50) against the modern ENDF/B-VIII.0 library. Through a comprehensive comparative analysis of Oak Ridge National Laboratory’s Molten Salt Reactor Experiment (MSRE) model, numerical simulations reveal library-dependent differences in MSR burnup characteristics. The PWRU library best matches ENDF/B-VIII.0 for U-235-fueled cases in keff results, while the PWRU50 library has minimal keff deviation in U-233-fueled setups. Moreover, in both fuel cases, the fission yield library was found to significantly affect the activity of key radionuclides, including Kr-85, Kr-85m, I-133m, Cs-136, Sn-123, Sn-125, Sn-127, Sb-124, Sb-125, Cd-115m, Te-125m, Te-129m, etc. Additionally, the fission gas decay heat power calculated via the ORIGEN2 library is over 20% lower than that from the ENDF/B-VIII.0 library tens of days after shutdown, mainly due to differences in long-lived Kr-85 production. These findings highlight the need to update traditional fission yield libraries in burnup codes. For next-generation MSR designs, this is crucial to ensure accurate safety assessments and the effective development of this promising energy technology. Full article
(This article belongs to the Special Issue Molten Salt Reactors: Innovations and Challenges in Nuclear Energy)
Show Figures

Figure 1

16 pages, 297 KiB  
Article
Global Existence, General Decay, and Blow up of Solution for a p-Biharmonic Equation of Hyperbolic Type with Delay and Acoustic Boundary Conditions
by Billel Gheraibia, Safa M. Mirgani, Nouri Boumaza, Khaled Zennir and Sultan S. Alodhaibi
Mathematics 2025, 13(13), 2104; https://doi.org/10.3390/math13132104 - 26 Jun 2025
Viewed by 285
Abstract
The objective of this work is to investigate the global existence, general decay and blow-up results for a class of p-Biharmonic-type hyperbolic equations with delay and acoustic boundary conditions. The global existence of solutions has been obtained by potential well theory and [...] Read more.
The objective of this work is to investigate the global existence, general decay and blow-up results for a class of p-Biharmonic-type hyperbolic equations with delay and acoustic boundary conditions. The global existence of solutions has been obtained by potential well theory and the general decay result of energy has been established, in which the exponential decay and polynomial decay are only special cases, by using the multiplier techniques combined with a nonlinear integral inequality given by Komornik. Finally, the blow-up of solutions is established with positive initial energy. To our knowledge, the global existence, general decay, and blow-up result of solutions to p-Biharmonic-type hyperbolic equations with delay and acoustic boundary conditions has not been studied. Full article
15 pages, 3748 KiB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Viewed by 465
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

12 pages, 2965 KiB  
Article
Tailoring Luminescence and Scintillation Properties of Tb3+-Doped LuYAGG Single Crystals for High-Performance Radiation Detection
by Prapon Lertloypanyachai, Prom Kantuptim, Eakapon Kaewnuam, Toshiaki Kunikata, Yusuke Endo, Weerapong Chewpraditkul, Takumi Kato, Daisuke Nakauchi, Noriaki Kawaguchi, Kenichi Watanabe and Takayuki Yanagida
Appl. Sci. 2025, 15(12), 6888; https://doi.org/10.3390/app15126888 - 18 Jun 2025
Viewed by 417
Abstract
In this study, Lu2.5Y0.5(Al2.5Ga2.5)O12 (LuYAGG) single-crystal scintillators doped with terbium ions (Tb3+) at concentrations of 0.5, 1, 5, and 10 mol% were successfully synthesized using the floating zone method. The structural, optical, [...] Read more.
In this study, Lu2.5Y0.5(Al2.5Ga2.5)O12 (LuYAGG) single-crystal scintillators doped with terbium ions (Tb3+) at concentrations of 0.5, 1, 5, and 10 mol% were successfully synthesized using the floating zone method. The structural, optical, photoluminescence (PL), and scintillation properties of the Tb3+-doped crystals were systematically investigated with a focus on their potential for high-performance scintillator applications. X-ray diffraction (XRD) confirmed the formation of a pure garnet phase without any secondary phases, indicating the successful incorporation of Tb3+ into the LuYAGG lattice. Optical transmittance spectra revealed high transparency in the visible range. Photoluminescence measurements showed characteristic Tb3+ emission peaks, with the strongest green emission observed from the 5D47F5 transition, particularly for the 5 mol% sample. The PL decay curves further confirmed that this concentration offers a favorable balance between radiative efficiency and minimal non-radiative losses. Under γ-ray excitation, the 5 mol% Tb3+-doped crystal exhibited the highest light yield, surpassing the performance of other concentrations and even outperforming Bi4Ge3O12 (BGO) in relative comparison, with an estimated yield of approximately 60,000 photons/MeV. Scintillation decay time analysis revealed that the 5 mol% sample also possessed the fastest decay component, indicating its superior capability for radiation detection. Although 10 mol% Tb3+ still showed good performance, slight quenching effects were observed, while lower concentrations (0.5 and 1 mol%) suffered from longer decay and lower emission efficiency due to limited activator density. These findings clearly identify with 5 mol% Tb3+ as the optimal dopant level in LuYAGG single crystals, offering a synergistic combination of high light yield and excellent optical transparency. This work highlights the strong potential of LuYAGG:Tb3+ as a promising candidate for the next-generation scintillator materials used in medical imaging, security scanning, and high-energy physics applications. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

23 pages, 6234 KiB  
Article
Characterizing Breast Tumor Heterogeneity Through IVIM-DWI Parameters and Signal Decay Analysis
by Si-Wa Chan, Chun-An Lin, Yen-Chieh Ouyang, Guan-Yuan Chen, Chein-I Chang, Chin-Yao Lin, Chih-Chiang Hung, Chih-Yean Lum, Kuo-Chung Wang and Ming-Cheng Liu
Diagnostics 2025, 15(12), 1499; https://doi.org/10.3390/diagnostics15121499 - 12 Jun 2025
Viewed by 1680
Abstract
Background/Objectives: This research presents a novel analytical method for breast tumor characterization and tissue classification by leveraging intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) combined with hyperspectral imaging techniques and deep learning. Traditionally, dynamic contrast-enhanced MRI (DCE-MRI) is employed for breast tumor diagnosis, but [...] Read more.
Background/Objectives: This research presents a novel analytical method for breast tumor characterization and tissue classification by leveraging intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) combined with hyperspectral imaging techniques and deep learning. Traditionally, dynamic contrast-enhanced MRI (DCE-MRI) is employed for breast tumor diagnosis, but it involves gadolinium-based contrast agents, which carry potential health risks. IVIM imaging extends conventional diffusion-weighted imaging (DWI) by explicitly separating the signal decay into components representing true molecular diffusion (D) and microcirculation of capillary blood (pseudo-diffusion or D*). This separation allows for a more comprehensive, non-invasive assessment of tissue characteristics without the need for contrast agents, thereby offering a safer alternative for breast cancer diagnosis. The primary purpose of this study was to evaluate different methods for breast tumor characterization using IVIM-DWI data treated as hyperspectral image stacks. Dice similarity coefficients and Jaccard indices were specifically used to evaluate the spatial segmentation accuracy of tumor boundaries, confirmed by experienced physicians on dynamic contrast-enhanced MRI (DCE-MRI), emphasizing detailed tumor characterization rather than binary diagnosis of cancer. Methods: The data source for this study consisted of breast MRI scans obtained from 22 patients diagnosed with mass-type breast cancer, resulting in 22 distinct mass tumor cases analyzed. MR images were acquired using a 3T MRI system (Discovery MR750 3.0 Tesla, GE Healthcare, Chicago, IL, USA) with axial IVIM sequences and a bipolar pulsed gradient spin echo sequence. Multiple b-values ranging from 0 to 2500 s/mm2 were utilized, specifically thirteen original b-values (0, 15, 30, 45, 60, 100, 200, 400, 600, 1000, 1500, 2000, and 2500 s/mm2), with the last four b-value images replicated once for a total of 17 bands used in the analysis. The methodology involved several steps: acquisition of multi-b-value IVIM-DWI images, image pre-processing, including correction for motion and intensity inhomogeneity, treating the multi-b-value data as hyperspectral image stacks, applying hyperspectral techniques like band expansion, and evaluating three tumor detection methods: kernel-based constrained energy minimization (KCEM), iterative KCEM (I-KCEM), and deep neural networks (DNNs). The comparisons were assessed by evaluating the similarity of the detection results from each method to ground truth tumor areas, which were manually drawn on DCE-MRI images and confirmed by experienced physicians. Similarity was quantitatively measured using the Dice similarity coefficient and the Jaccard index. Additionally, the performance of the detectors was evaluated using 3D-ROC analysis and its derived criteria (AUCOD, AUCTD, AUCBS, AUCTDBS, AUCODP, AUCSNPR). Results: The findings objectively demonstrated that the DNN method achieved superior performance in breast tumor detection compared to KCEM and I-KCEM. Specifically, the DNN yielded a Dice similarity coefficient of 86.56% and a Jaccard index of 76.30%, whereas KCEM achieved 78.49% (Dice) and 64.60% (Jaccard), and I-KCEM achieved 78.55% (Dice) and 61.37% (Jaccard). Evaluation using 3D-ROC analysis also indicated that the DNN was the best detector based on metrics like target detection rate and overall effectiveness. The DNN model further exhibited the capability to identify tumor heterogeneity, differentiating high- and low-cellularity regions. Quantitative parameters, including apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (PF), were calculated and analyzed, providing insights into the diffusion characteristics of different breast tissues. Analysis of signal intensity decay curves generated from these parameters further illustrated distinct diffusion patterns and confirmed that high cellularity tumor regions showed greater water molecule confinement compared to low cellularity regions. Conclusions: This study highlights the potential of combining IVIM-DWI, hyperspectral imaging techniques, and deep learning as a robust, safe, and effective non-invasive diagnostic tool for breast cancer, offering a valuable alternative to contrast-enhanced methods by providing detailed information about tissue microstructure and heterogeneity without the need for contrast agents. Full article
(This article belongs to the Special Issue Recent Advances in Breast Cancer Imaging)
Show Figures

Figure 1

17 pages, 1780 KiB  
Article
Development and Performance Analysis of a Novel Wave Energy Converter Based on Roll Movement: A Case Study in the BiMEP
by Egoitz Urtaran-Lavin, David Boullosa-Falces, Urko Izquierdo and Miguel Angel Gomez-Solaetxe
J. Mar. Sci. Eng. 2025, 13(6), 1097; https://doi.org/10.3390/jmse13061097 - 30 May 2025
Viewed by 295
Abstract
With the growing concern for environmental issues, progress has been made recently in the promotion of new technologies in the field of renewable energies. This article studies a new wave energy converter that uses the heel generated by the mechanical energy of the [...] Read more.
With the growing concern for environmental issues, progress has been made recently in the promotion of new technologies in the field of renewable energies. This article studies a new wave energy converter that uses the heel generated by the mechanical energy of the waves to transform it into electrical energy by means of a mobile mass, coupled to an electrical generator, which moves from port to starboard and vice versa. The advantage of this converter is that it is capable of incorporating the energy conversion unit inside the converter, as well as allowing the placement of a set of several devices within the same collector, and of modifying the roll period to adapt it to the wave conditions of the installation area. To do this, on one side, two models of wave energy converters were compared by varying the beam to check whether it is better to have a smaller or larger beam by carrying out roll decay tests and simulations for different waves. Moreover, the maximum power available in the moving mass of the power take-off was calculated theoretically for two situations of different transverse metacentric height to check which is more efficient, reaching 2 MW for some waves. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 3974 KiB  
Article
Surface Oxygen Vacancy Modulation of Nanostructured Li-Rich Mn-Based Oxides for Lithium-Ion Batteries
by Jinxia Nong, Xiayan Zhao, Fangan Liang, Shengkun Jia and Zhengguang Zou
Materials 2025, 18(11), 2537; https://doi.org/10.3390/ma18112537 - 28 May 2025
Viewed by 550
Abstract
Li-rich Mn-based cathode materials are considered potential cathode materials for next-generation lithium-ion batteries due to their outstanding theoretical capacity and energy density. Nonetheless, challenges like oxygen loss, transition metal migration, and structural changes during cycling have limited their potential for commercialization. The work [...] Read more.
Li-rich Mn-based cathode materials are considered potential cathode materials for next-generation lithium-ion batteries due to their outstanding theoretical capacity and energy density. Nonetheless, challenges like oxygen loss, transition metal migration, and structural changes during cycling have limited their potential for commercialization. The work in this study employed a straightforward heat treatment to generate oxygen vacancies. This process led to the development of a spinel phase on the surface, which improved Li+ diffusion and boosted the electrochemical performance of Li-rich Mn-based oxides. The results demonstrate that the treated Li1.2Mn0.54Ni0.13Co0.13O2 exhibits an initial specific capacity of 247 mAh·g−1 at 0.2C, as well as a reversible capacity of 224 mAh·g−1 after 100 cycles, with a capacity retention of 90.7%. The voltage decay is 1.221 mV per cycle under 1C long-term cycling conditions, indicating excellent cycling stability and minimal voltage drop. Therefore, this strategy of engineering through nanoscale oxygen vacancies provides a new idea for the development of high-stability layered oxide anodes and provides a reference for the development and application of new energy materials. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

18 pages, 15087 KiB  
Article
Dynamical Systems with Fractional Derivatives: Focus on Phase Portraits and Plasma Wave Propagation Using Lakshmanan–Porsezian–Daniel Model
by Abdul Ghaffar Khan, Muhammad Muddassar, Sultan Shoaib, Zia Ur Rehman and Muhammad Zahid
Axioms 2025, 14(6), 405; https://doi.org/10.3390/axioms14060405 - 27 May 2025
Viewed by 370
Abstract
In this research, we investigate the phenomenon of multistability and complex dynamic behaviors in plasma waves by utilizing advanced mathematical techniques. We examine how fractional-order derivatives influence plasma wave stability by applying the fractional diffusion–reaction model, the framework of nonlinear dynamical systems, and [...] Read more.
In this research, we investigate the phenomenon of multistability and complex dynamic behaviors in plasma waves by utilizing advanced mathematical techniques. We examine how fractional-order derivatives influence plasma wave stability by applying the fractional diffusion–reaction model, the framework of nonlinear dynamical systems, and the (GG2) method. The principal direction of our work is associated with different forms of oscillations in the plasma wave: non-linear periodic, solitons, and kink waves. This leads to the study of small amplitude pulses and solitary waves, which are significant in plasma activities. Using bifurcation analysis, we discuss how these waves appear and develop under different conditions, as well as determine which conditions generate the chaotic behavior or highly complex patterns of waves. We study the details of transitions between waves and their chaotic behavior to characterize the laws that govern their plasma environment. Moreover, we have used non-linear modeling and numerical simulations to understand in detail the complex patterns and the factors of stability underlying the phenomena of plasma waves. In addition, our study also investigates the correspondence between non-linearity, multi-stability, and the birth of complex structures such as solitons and kink waves. The solutions of the dynamical system produced by the proposed nonlinear model generate different patterns of response based on system parameter variation. These patterns include oscillations and decay behaviors. Research results about system stability and solution convergence under various parameter settings provide an extended performance evaluation of the proposed method through a better understanding of system dynamics. They increase our understanding of chaotic behavior in plasma systems and pave the way for applications in plasma physics and energy systems, as well as advanced technologies. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

13 pages, 4829 KiB  
Article
Synergistic Cationic–Anionic Regulation in Ni-Doped FeSe@C Anodes with Se Vacancies for High-Efficiency Sodium Storage
by Liang Wang, Shutong Cai, Dingwen Wang, Xiangyi Wang and Yang Cheng
Batteries 2025, 11(6), 205; https://doi.org/10.3390/batteries11060205 - 23 May 2025
Viewed by 1095
Abstract
Sodium-ion batteries present an economical energy storage solution, yet their anode kinetics remain slow, impeding rate performance and cyclability. Layered FeSe anodes, characterized by metallic conductivity, hold potential, but structural decay and insufficient active sites during cycling continue to pose challenges. Herein, these [...] Read more.
Sodium-ion batteries present an economical energy storage solution, yet their anode kinetics remain slow, impeding rate performance and cyclability. Layered FeSe anodes, characterized by metallic conductivity, hold potential, but structural decay and insufficient active sites during cycling continue to pose challenges. Herein, these challenges are addressed through the implementation of dual Ni doping and Se vacancy engineering in FeSe@C to synergistically regulate cationic/anionic configurations. The ionic substitution of larger Fe2+ ions (0.78 Å ionic radius) with smaller Ni2+ ions (0.69 Å) induces lattice distortion and generates abundant Se vacancies, enhancing electron transport, active site accessibility, and Na+ adsorption. These synergistic modifications effectively boost Na+ diffusion kinetics and electrolyte compatibility, creating a favorable electrochemical environment for fast sodium storage. Consequently, the optimized 2%Ni-FeSe@C electrode retains an exceptional discharge specific capacity of 307.67mAh g−1 after 1000 cycles at an ultrahigh current density of 5 Ag−1, showcasing superior rate capability and long-term cycling stability, paving the way for practical high-power SIBs. Full article
Show Figures

Graphical abstract

16 pages, 4346 KiB  
Article
First-Principles Calculations of Plasmon-Induced Hot Carrier Properties of μ-Ag3Al
by Zihan Zhao, Hai Ren, Yucheng Wang, Xiangchao Ma, Jiali Jiang, Linfang Wei and Delian Liu
Nanomaterials 2025, 15(10), 761; https://doi.org/10.3390/nano15100761 - 19 May 2025
Viewed by 419
Abstract
Non-radiative decay of surface plasmon (SP) offers a novel paradigm for efficient conversion of photons into carriers. However, the narrow bandwidth of SP has been a significant obstacle to the widespread applications. Previously, research and applications mainly focused on noble metals such as [...] Read more.
Non-radiative decay of surface plasmon (SP) offers a novel paradigm for efficient conversion of photons into carriers. However, the narrow bandwidth of SP has been a significant obstacle to the widespread applications. Previously, research and applications mainly focused on noble metals such as Au, Ag, and Cu. In this article, we report an Ag-Al alloy material, μ-Ag3Al, in which the surface plasmon operating bandwidth is 1.7 times that of Ag and hot carrier transport properties are comparable with those of AuAl. The results show that μ-Ag3Al allows efficient direct interband electronic transitions from ultraviolet (UV) to near infrared range. Spherical nanoparticles of μ-Ag3Al exhibit the localized surface plasmon resonance (LSPR) effect in the ultraviolet region. Its surface plasmon polariton (SPP) shows strong non-radiative decay at 3.36 eV, which is favorable for the generation of high-energy hot carriers. In addition, the penetration depth of SPP in μ-Ag3Al remains high across the UV to the near-infrared range. Moreover, the transport properties of hot carriers in μ-Ag3Al are comparable with those in Al, borophene and Au-Al intermetallic compounds. These properties can provide guidance for the design of plasmon-based photodetectors, solar cells, and photocatalytic reactors. Full article
Show Figures

Figure 1

20 pages, 3615 KiB  
Article
Long-Term and Interannual Changes in the Land Area of a Barrier Using Multiple Satellite Images
by Hsien-Kuo Chang, Wei-Wei Chen and Jin-Cheng Liou
Geosciences 2025, 15(5), 171; https://doi.org/10.3390/geosciences15050171 - 12 May 2025
Viewed by 315
Abstract
The Waisanding Barrier (WSDB) in Taiwan faces problems with regard to beach erosion and land area (LA) reduction. Due to the small amount of data generated and insufficient time periods used, the results of previous studies are only local rather than long term [...] Read more.
The Waisanding Barrier (WSDB) in Taiwan faces problems with regard to beach erosion and land area (LA) reduction. Due to the small amount of data generated and insufficient time periods used, the results of previous studies are only local rather than long term in nature. This study used 207 satellite images over 20 years to explore long-term and interannual changes in the LA of the WSDB. We developed both a surface fitting method (SFM) and a two-step interpolation method (TSIM) to reliably determine the LA of each image. When the tidal level of WSDB at the image acquisition is within ±0.25 m of the zero-meter shoreline, the LA obtained via the TSIM is similar to that of the SFM, while the other ones are quite different. The long-term decaying rate of the WSDB’s LA determined via both methods is about −0.40 × 106 m2/year. The consistent differences in LA obtained from LiDAR and image data and the interannual variation in excess area (EA) are discussed, and the causes of these differences are land subsidence (LS) in the WSDB and excess wave energy (AEWE). Full article
Show Figures

Figure 1

16 pages, 4317 KiB  
Article
Characteristics of Wind Profiles for Airborne Wind Energy Systems
by Hao He, Xiaojing Niu, Xiaoyu Li, Yanfeng Cai, Leming Li, Xinwei Ye and Junhao Wang
Energies 2025, 18(9), 2373; https://doi.org/10.3390/en18092373 - 6 May 2025
Viewed by 477
Abstract
An airborne wind energy system (AWES) harvests wind at a higher altitude above conventional wind turbines using tethered flying devices. For the design and development of an AWES, we need to know the representative wind speed profile, and its temporal variation is also [...] Read more.
An airborne wind energy system (AWES) harvests wind at a higher altitude above conventional wind turbines using tethered flying devices. For the design and development of an AWES, we need to know the representative wind speed profile, and its temporal variation is also quite important for the optimization of operation control. This study investigates wind speed profiles up to 3000 m, utilizing ERA5 data spanning from 2000 to 2022 and measured data from a laser wind radar. The long-term averaged wind profile is statistically analyzed, as well as wind profiles with different cumulative probabilities, which are generally consistent with the logarithmic law. Statistical results show that the frequency of negative shear is more than 85% in instantaneous wind profiles, with a greater likelihood at altitudes between 500 m and 1500 m. Fluctuations in wind speed and direction based on 10 min averaged wind speed data have also been provided, which are described by a normal distribution. The wind speed fluctuations primarily concentrate within 2 m/s, with a standard deviation of approximately 0.45 m/s. The wind direction fluctuations are severe at the ground layer and show a rapid decay trend with increasing altitude and averaged wind speed. These results can support the design and control optimization of the AWES. Full article
Show Figures

Figure 1

21 pages, 2703 KiB  
Article
Efficiency and Energy Consumption of Partial Carbonation Process for CO2 Capture from Natural Gas Combustion
by Rubens Coutinho Toledo, Caio Leandro de Moraes, Vinoth Thangarasu, João Andrade de Carvalho and Ivonete Avila
Energies 2025, 18(9), 2285; https://doi.org/10.3390/en18092285 - 29 Apr 2025
Cited by 1 | Viewed by 610
Abstract
Brazil has set a goal to reduce greenhouse gas (GHG) emissions, which is a significant opportunity to leverage calcium looping (CaL) technology for energy generation in natural gas power plants. CaL is a promising technology, due to sorbent low cost and availability, but [...] Read more.
Brazil has set a goal to reduce greenhouse gas (GHG) emissions, which is a significant opportunity to leverage calcium looping (CaL) technology for energy generation in natural gas power plants. CaL is a promising technology, due to sorbent low cost and availability, but its industrial implementation performance decay is a major challenge to face. While evaluating carbon-capture technologies, net emissions perspective is essential, and optimizing CaL capture through a partial carbonation cycle is a promising approach, both to reduce net emissions and improve the number of cycles before deactivation. In this context, a Brazilian dolomite was characterized and evaluated, to be used as sorbent in a CaL process employed in natural gas power plants. For such a purpose, a novel methodology has been proposed to evaluate the mass ratio of CO2 captured, to assess the energy consumed in the process. A rotatable central composite design (RCCD) model was used to identify the optimal temperature and residence time conditions in the carbonation stage of the CaL process, focusing on achieving energy efficiency. The five most promising conditions were then tested across 10 calcination–carbonation cycles, to examine the impact of partial carbonation in capture efficiency over extended cycles. The results indicate that temperature plays a critical role in the process, particularly in terms of capture efficiency, while residence time significantly affects energy consumption. The conditions that demonstrated optimal performance for both the single and the multi-cycle tests were 580 °C for 7.5 min and 550 °C for 10 min, given that index of capture efficiency (IEC10,c) values of 1.34 and 1.20 were found, respectively—up to 40% higher than at 475 °C. There was lower energy expenditure at 580 °C (Esp) (33.48 kJ), 550 °C (Esp = 37.97 kJ), CO2 mass captured (CO2cap = 9.80 mg), and the samples exhibited a more preserved surface, thus making it the most suitable option for scale-up applications. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

Back to TopTop