Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = general compact polarimetric SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6489 KB  
Article
Improving SAR Ship Detection Accuracy by Optimizing Polarization Modes: A Study of Generalized Compact Polarimetry (GCP) Performance
by Guo Song, Yunkai Deng, Heng Zhang, Xiuqing Liu and Sheng Chang
Remote Sens. 2025, 17(11), 1951; https://doi.org/10.3390/rs17111951 - 5 Jun 2025
Cited by 2 | Viewed by 2114
Abstract
The debate surrounding the optimal polarimetric modes—compact polarimetry (CP) versus dual polarization (DP)—for PolSAR ship detection persists. This study pioneers a systematic investigation into Generalized Compact Polarimetry (GCP) for this application. By synthesizing and evaluating 143 distinct GCP configurations from fully polarimetric data, [...] Read more.
The debate surrounding the optimal polarimetric modes—compact polarimetry (CP) versus dual polarization (DP)—for PolSAR ship detection persists. This study pioneers a systematic investigation into Generalized Compact Polarimetry (GCP) for this application. By synthesizing and evaluating 143 distinct GCP configurations from fully polarimetric data, this study presents the first comprehensive comparison of their ship detection performance against conventional modes using Target-to-Clutter Ratio (TCR) and deep learning-based accuracy (AP50). Experiments on the FPSD dataset reveal that an optimized GCP mode (e.g., ellipse/orientation: [−10, −5]) consistently outperforms traditional CP and DP modes, yielding TCR gains of 0.2–2.7 dB. This translates to AP50 improvements of 0.5–4.7% (Faster R-CNN) and 0.1–5.5% (RetinaNet) over five common baseline modes. Crucially, this enhancement arises from optimizing the interaction between the polarization mode and target/clutter scattering characteristics rather than algorithmic improvements, supporting the proposed “optimization from the information source” strategy. These findings offer significant implications for future PolSAR system design and operational mode selection. Full article
Show Figures

Figure 1

15 pages, 6296 KB  
Technical Note
Region-Based Sea Ice Mapping Using Compact Polarimetric Synthetic Aperture Radar Imagery with Learned Features and Contextual Information
by Saeid Taleghanidoozdoozan, Linlin Xu and David A. Clausi
Remote Sens. 2023, 15(12), 3199; https://doi.org/10.3390/rs15123199 - 20 Jun 2023
Cited by 1 | Viewed by 2449
Abstract
Operational sea ice maps are usually generated manually using dual-polarization (DP) synthetic aperture radar (SAR) satellite imagery, but there is strong interest in automating this process. Recently launched satellites offer compact polarimetry (CP) imagery that provides more comprehensive polarimetric information compared to DP, [...] Read more.
Operational sea ice maps are usually generated manually using dual-polarization (DP) synthetic aperture radar (SAR) satellite imagery, but there is strong interest in automating this process. Recently launched satellites offer compact polarimetry (CP) imagery that provides more comprehensive polarimetric information compared to DP, which compels the use of CP for automated classification of SAR sea ice imagery. Existing sea ice scene classification algorithms using CP imagery rely on handcrafted features, while neural networks offer the potential of features that are more discriminating. We have developed a new and effective sea ice classification algorithm that leverages the nature of CP data. First, a residual-based convolutional neural network (ResCNN) is implemented to classify each pixel. In parallel, an unsupervised segmentation is performed to generate regions based on CP statistical properties. Regions are assigned a single class label by majority voting using the ResCNN output. For testing, quad-polarimetric (QP) SAR sea ice scenes from the RADARSAT Constellation Mission (RCM) are used, and QP, DP, CP, and reconstructed QP modes are compared for classification accuracy, while also comparing them to other classification approaches. Using CP achieves an overall accuracy of 96.86%, which is comparable to QP (97.16%), and higher than reconstructed QP and DP data by about 2% and 10%, respectively. The implemented algorithm using CP imagery provides an improved option for automated sea ice mapping. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

21 pages, 5854 KB  
Article
Framework for Reconstruction of Pseudo Quad Polarimetric Imagery from General Compact Polarimetry
by Junjun Yin and Jian Yang
Remote Sens. 2021, 13(3), 530; https://doi.org/10.3390/rs13030530 - 2 Feb 2021
Cited by 8 | Viewed by 3936
Abstract
Pseudo quad polarimetric (quad-pol) image reconstruction from the hybrid dual-pol (or compact polarimetric (CP)) synthetic aperture radar (SAR) imagery is a category of important techniques for radar polarimetric applications. There are three key aspects concerned in the literature for the reconstruction methods, i.e., [...] Read more.
Pseudo quad polarimetric (quad-pol) image reconstruction from the hybrid dual-pol (or compact polarimetric (CP)) synthetic aperture radar (SAR) imagery is a category of important techniques for radar polarimetric applications. There are three key aspects concerned in the literature for the reconstruction methods, i.e., the scattering symmetric assumption, the reconstruction model, and the solving approach of the unknowns. Since CP measurements depend on the CP mode configurations, different reconstruction procedures were designed when the transmit wave varies, which means the reconstruction procedures were not unified. In this study, we propose a unified reconstruction framework for the general CP mode, which is applicable to the mode with an arbitrary transmitted ellipse wave. The unified reconstruction procedure is based on the formalized CP descriptors. The general CP symmetric scattering model-based three-component decomposition method is also employed to fit the reconstruction model parameter. Finally, a least squares (LS) estimation method, which was proposed for the linear π/4 CP data, is extended for the arbitrary CP mode to estimate the solution of the system of non-linear equations. Validation is carried out based on polarimetric data sets from both RADARSAT-2 (C-band) and ALOS-2/PALSAR (L-band), to compare the performances of reconstruction models, methods, and CP modes. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

19 pages, 10961 KB  
Article
Investigation of C-Band SAR Polarimetry for Mapping a High-Tidal Coastal Environment in Northern Canada
by Khalid Omari, René Chenier, Ridha Touzi and Mesha Sagram
Remote Sens. 2020, 12(12), 1941; https://doi.org/10.3390/rs12121941 - 16 Jun 2020
Cited by 12 | Viewed by 3455
Abstract
Synthetic Aperture Radar (SAR) has been used in characterizing intertidal zones along northern Canadian coastlines. RADARSAT-2, with its full polarimetric information, has been considered for monitoring these vulnerable ecosystems and helping enhance the navigational safety of these waters. The RADARSAT Constellation Mission (RCM) [...] Read more.
Synthetic Aperture Radar (SAR) has been used in characterizing intertidal zones along northern Canadian coastlines. RADARSAT-2, with its full polarimetric information, has been considered for monitoring these vulnerable ecosystems and helping enhance the navigational safety of these waters. The RADARSAT Constellation Mission (RCM) will ensure data continuity with three identical SAR satellites orbiting together, providing superior revisit capabilities. The three satellites are equipped with multiple configurations, including single-polarization (HH, HV, VV), conventional (HH-HV, VV-VH, and HH-VV), hybrid (i.e., compact) dual polarization, and fully polarimetric (FP) modes. This study investigates the potential of the compact polarimetric (CP) mode for mapping an intertidal zone located at Tasiujaq village on the southwest shore of Ungava Bay, Quebec. Simulated RCM data were generated using FP RADARSAT-2 images collected over the study site in 2016. Commonly used tools for CP analysis include Raney m-delta classification and the hybrid dual polarizations RH-RV (where the transmitter is right-circular and the receivers are horizontal and vertical linear polarizations) and RR-RL (where the transmitter is right circular and the receivers are right-circular and left-circular polarizations). The potential of CP is compared with single, conventional dual-pol, and FP. The Freeman–Durden and Touzi discriminators are used for FP analysis. The random forest classifier is used as a classification approach due to its well-documented performance compared to other classifiers. The results suggest that the hybrid compact (RR-RL and RH-RV) dual polarizations provide encouraging separability capacities with overall accuracies of 61% and 60.7%, respectively, although they do not perform as well as conventional dual-pol HH-HV (64.4%). On the other hand, the CP polarimetric m-delta decomposition generated slightly less accurate classification results with an overall accuracy of approximately 62% compared to the FP Freeman–Durden (67.08%) and Touzi discriminators (71.1%). Full article
Show Figures

Graphical abstract

29 pages, 6640 KB  
Article
Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water and Flooded-Vegetation Wetland Mapping
by Ian Olthof and Thomas Rainville
Remote Sens. 2020, 12(9), 1476; https://doi.org/10.3390/rs12091476 - 6 May 2020
Cited by 20 | Viewed by 4924
Abstract
When severe flooding occurs in Canada, the Emergency Geomatics Service (EGS) is tasked with creating and disseminating maps that depict flood extents in near real time. EGS flood mapping methods were created with efficiency and robustness in mind, to allow maps to be [...] Read more.
When severe flooding occurs in Canada, the Emergency Geomatics Service (EGS) is tasked with creating and disseminating maps that depict flood extents in near real time. EGS flood mapping methods were created with efficiency and robustness in mind, to allow maps to be published quickly, and therefore have the potential to generate high-repeat water products that can enhance frequent wetland monitoring. The predominant imagery currently used is synthetic aperture radar (SAR) from RADARSAT-2 (R2). With the commissioning phase of the RADARSAT Constellation Mission (RCM) complete, the EGS is adapting its methods for use with this new source of SAR data. The introduction of RCM’s circular-transmit linear-receive (CTLR) beam mode provides the option to exploit compact polarimetric (CP) information not previously available with R2. The aim of this study was to determine the most effective CP parameters for use in mapping open water and flooded vegetation, using current EGS methodologies, and compare these products to those created by using R2 data. Nineteen quad-polarization R2 scenes selected from three regions containing wetlands prone to springtime flooding were used to create reference flood maps, using existing EGS tools. These scenes were then used to simulate 22 RCM CP parameters at different noise floors and spatial resolutions representative of the three RCM beam modes. Using multiple criteria, CP parameters were ranked in order of importance and entered into a stepwise classification procedure, for evaluation against reference R2 products. The top four CP parameters —m-chi-volume or m-delta-volume, RR intensity, Shannon Entropy intensity (SEi), and RV intensity—achieved a maximum agreement with baseline R2 products of upward of 98% across all 19 scenes and three beam modes. Separability analyses between flooded vegetation and other land-cover classes identified four candidate CP parameters—RH intensity, RR intensity, SEi, and the first Stokes parameter (SV0)—suitable for flooded-vegetation-region growing. Flooded-vegetation-region-growing CP thresholds were found to be dependent on incidence angle for each of these four parameters. After region growing using each of the four candidate CP parameters, RH intensity was deemed best to map flooded vegetation, based on our evaluations. The results of the study suggest a set of suitable CP parameters to generate flood maps from RCM data, using current EGS methodologies that must be validated further as real RCM data become available. Full article
(This article belongs to the Special Issue Wetland Landscape Change Mapping Using Remote Sensing)
Show Figures

Graphical abstract

14 pages, 4863 KB  
Letter
Azimuth Ambiguity Suppression for Hybrid Polarimetric Synthetic Aperture Radar via Waveform Diversity
by Pengfei Zhao, Yunkai Deng, Wei Wang, Dacheng Liu and Robert Wang
Remote Sens. 2020, 12(7), 1226; https://doi.org/10.3390/rs12071226 - 10 Apr 2020
Cited by 6 | Viewed by 3767
Abstract
Hybrid quadrature polarimetric (hybrid quad-pol) synthetic aperture radar (SAR) is proposed as a potential candidate for the full-polarimetric SAR mode. It allows balanced range ambiguity performance and simplified system structure. System based on hybrid-pol SAR mode can also implement the conventional quad-pol mode [...] Read more.
Hybrid quadrature polarimetric (hybrid quad-pol) synthetic aperture radar (SAR) is proposed as a potential candidate for the full-polarimetric SAR mode. It allows balanced range ambiguity performance and simplified system structure. System based on hybrid-pol SAR mode can also implement the conventional quad-pol mode and the compact-pol mode via few adjustments. However, the azimuth ambiguity performance in cross-pol channels is proved deteriorated in hybrid quad-pol mode due to the lopsided energy distribution of ambiguities. As are generally called “ghost” targets, azimuth ambiguities usually influence the recognition of the targets in SAR imaging. This letter describes how to remove the false targets that arise from azimuth ambiguities by means of waveform diversity and dual-focus post-processing (DFPP) technique. The proposed method exploits the feature of azimuth ambiguity and yields improved image quality in cross-pol channels with strong co-pol azimuth ambiguities removed in hybrid quad-pol SAR at a low system cost. Furthermore, it offers remarkable benefits for target detecting and recognition with strong false targets removed. Full article
(This article belongs to the Section Remote Sensing Perspective)
Show Figures

Graphical abstract

16 pages, 7641 KB  
Article
Oil Spill Discrimination by Using General Compact Polarimetric SAR Features
by Junjun Yin, Jian Yang, Liangjiang Zhou and Liying Xu
Remote Sens. 2020, 12(3), 479; https://doi.org/10.3390/rs12030479 - 3 Feb 2020
Cited by 9 | Viewed by 4249
Abstract
Ocean surveillance is one of the important applications of synthetic aperture radar (SAR). Polarimetric SAR provides multi-channel information and shows great potential for monitoring ocean dynamic environments. Oil spills are a form of pollution that can seriously affect the marine ecosystem. Dual-polarimetric SAR [...] Read more.
Ocean surveillance is one of the important applications of synthetic aperture radar (SAR). Polarimetric SAR provides multi-channel information and shows great potential for monitoring ocean dynamic environments. Oil spills are a form of pollution that can seriously affect the marine ecosystem. Dual-polarimetric SAR systems are usually used for routine ocean surface monitoring. The hybrid dual-pol SAR imaging mode, known as compact polarimetry, can provide more information than the conventional dual-pol imaging modes. However, backscatter measurements of the hybrid dual-pol mode depend on the transmit wave polarization, which results in lacking consistent interpretation for various compact polarimetric (CP) images. In this study, we will explore the capability of different CP modes for oil spill detection and discrimination. Firstly, we introduce the general CP formalism method to formulate an arbitrary CP backscattered wave, such that the target scattering vector is characterized in the same framework for all CP modes. Then, a recently proposed CP decomposition method is investigated to reveal the backscattering properties of oil spills and their look-alikes. Both intensity and polarimetric features are studied to analyze the optimal CP mode for oil spill observation. Spaceborne polarimetric SAR data sets collected over natural oil slicks and experimental biogenic slicks are used to demonstrate the capability of the general CP mode for ocean surface surveillance. Full article
(This article belongs to the Special Issue Remote Sensing of the Oceans: Blue Economy and Marine Pollution)
Show Figures

Graphical abstract

15 pages, 11432 KB  
Letter
Ship Detection Using a Fully Convolutional Network with Compact Polarimetric SAR Images
by Qiancong Fan, Feng Chen, Ming Cheng, Shenlong Lou, Rulin Xiao, Biao Zhang, Cheng Wang and Jonathan Li
Remote Sens. 2019, 11(18), 2171; https://doi.org/10.3390/rs11182171 - 18 Sep 2019
Cited by 58 | Viewed by 6198
Abstract
Compact polarimetric synthetic aperture radar (CP SAR), as a new technique or observation system, has attracted much attention in recent years. Compared with quad-polarization SAR (QP SAR), CP SAR provides an observation with a wider swath, while, compared with linear dual-polarization SAR, retains [...] Read more.
Compact polarimetric synthetic aperture radar (CP SAR), as a new technique or observation system, has attracted much attention in recent years. Compared with quad-polarization SAR (QP SAR), CP SAR provides an observation with a wider swath, while, compared with linear dual-polarization SAR, retains more polarization information in observations. These characteristics make CP SAR a useful tool in marine environmental applications. Previous studies showed the potential of CP SAR images for ship detection. However, false alarms, caused by ocean clutter and the lack of detailed information about ships, largely hinder traditional methods from feature selection for ship discrimination. In this paper, a segmentation method designed specifically for ship detection from CP SAR images is proposed. The pixel-wise detection is based on a fully convolutional network (i.e., U-Net). In particular, three classes (ship, land, and sea) were considered in the classification scheme. To extract features, a series of down-samplings with several convolutions were employed. Then, to generate classifications, deep semantic and shallow high-resolution features were used in up-sampling. Experiments on several CP SAR images simulated from Gaofen-3 QP SAR images demonstrate the effectiveness of the proposed method. Compared with Faster RCNN (region-based convolutional neural network), which is considered a popular and effective deep learning network for object detection, the newly proposed method, with precision and recall greater than 90% and a F1 score of 0.912, performs better at ship detection. Additionally, findings verify the advantages of the CP configuration compared with single polarization and linear dual-polarization. Full article
(This article belongs to the Special Issue Compact Polarimetric SAR)
Show Figures

Figure 1

23 pages, 7028 KB  
Article
Analysis of Ship Detection Performance with Full-, Compact- and Dual-Polarimetric SAR
by Chenghui Cao, Jie Zhang, Junmin Meng, Xi Zhang and Xingpeng Mao
Remote Sens. 2019, 11(18), 2160; https://doi.org/10.3390/rs11182160 - 17 Sep 2019
Cited by 21 | Viewed by 3762
Abstract
Polarimetric synthetic aperture radar (SAR) is currently drawing more attention due to its advantage in Earth observations, especially in ship detection. In order to establish a reliable feature selection method for marine vessel monitoring purposes, forty features are extracted via polarimetric decomposition in [...] Read more.
Polarimetric synthetic aperture radar (SAR) is currently drawing more attention due to its advantage in Earth observations, especially in ship detection. In order to establish a reliable feature selection method for marine vessel monitoring purposes, forty features are extracted via polarimetric decomposition in the full-polarimetric (FP), compact-polarimetric (CP), and dual-polarimetric (DP) modes. These features were comprehensively quantified and evaluated using the Euclidean distance and mutual information, and the result indicated that the features in CP SAR are better than those of FP or DP SAR in general. The CP SAR features are thus further studied, and a new feature, named phase factor, in CP SAR mode is presented that can distinguish ships and the sea surface by the constant 0 without complex calculation. Furthermore, the phase factor is independent of the sea surface roughness, and hence it performs stably for ship detection even in high sea states. Experiments demonstrated that the ship detection performance of the phase factor detector is better than that of roundness, delta, HESA and CFAR detectors in low, medium and high sea states. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Coastal Areas)
Show Figures

Graphical abstract

29 pages, 20444 KB  
Article
Dual and Single Polarized SAR Image Classification Using Compact Convolutional Neural Networks
by Mete Ahishali, Serkan Kiranyaz, Turker Ince and Moncef Gabbouj
Remote Sens. 2019, 11(11), 1340; https://doi.org/10.3390/rs11111340 - 4 Jun 2019
Cited by 24 | Viewed by 5448
Abstract
Accurate land use/land cover classification of synthetic aperture radar (SAR) images plays an important role in environmental, economic, and nature related research areas and applications. When fully polarimetric SAR data is not available, single- or dual-polarization SAR data can also be used whilst [...] Read more.
Accurate land use/land cover classification of synthetic aperture radar (SAR) images plays an important role in environmental, economic, and nature related research areas and applications. When fully polarimetric SAR data is not available, single- or dual-polarization SAR data can also be used whilst posing certain difficulties. For instance, traditional Machine Learning (ML) methods generally focus on finding more discriminative features to overcome the lack of information due to single- or dual-polarimetry. Beside conventional ML approaches, studies proposing deep convolutional neural networks (CNNs) come with limitations and drawbacks such as requirements of massive amounts of data for training and special hardware for implementing complex deep networks. In this study, we propose a systematic approach based on sliding-window classification with compact and adaptive CNNs that can overcome such drawbacks whilst achieving state-of-the-art performance levels for land use/land cover classification. The proposed approach voids the need for feature extraction and selection processes entirely, and perform classification directly over SAR intensity data. Furthermore, unlike deep CNNs, the proposed approach requires neither a dedicated hardware nor a large amount of data with ground-truth labels. The proposed systematic approach is designed to achieve maximum classification accuracy on single and dual-polarized intensity data with minimum human interaction. Moreover, due to its compact configuration, the proposed approach can process such small patches which is not possible with deep learning solutions. This ability significantly improves the details in segmentation masks. An extensive set of experiments over two benchmark SAR datasets confirms the superior classification performance and efficient computational complexity of the proposed approach compared to the competing methods. Full article
Show Figures

Graphical abstract

22 pages, 9357 KB  
Article
Inversion of Rice Biophysical Parameters Using Simulated Compact Polarimetric SAR C-Band Data
by Xianyu Guo, Kun Li, Yun Shao, Zhiyong Wang, Hongyu Li, Zhi Yang, Long Liu and Shuli Wang
Sensors 2018, 18(7), 2271; https://doi.org/10.3390/s18072271 - 13 Jul 2018
Cited by 19 | Viewed by 5868
Abstract
Timely and accurate estimation of rice parameters plays a significant role in rice monitoring and yield forecasting for ensuring food security. Compact-polarimetric (CP) synthetic aperture radar (SAR), a good compromise between the dual- and quad-polarized SARs, is an important part of the new [...] Read more.
Timely and accurate estimation of rice parameters plays a significant role in rice monitoring and yield forecasting for ensuring food security. Compact-polarimetric (CP) synthetic aperture radar (SAR), a good compromise between the dual- and quad-polarized SARs, is an important part of the new generation of Earth observation systems. In this paper, the ability of CP SAR data to retrieve rice biophysical parameters was explored using a modified water cloud model. The results showed that S1 was superior to other CP variables in rice height inversion with a coefficient of determination (R2) of 0.92 and a root-mean-square error (RMSE) of 5.81 cm. RL was the most suitable for inverting the volumetric water content of the rice canopy, with an R2 of 0.95 and a RMSE of 0.31 kg/m3. The m-χ decomposition produced the highest accuracies for the ear biomass: R2 was 0.89 and RMSE was 0.17 kg/m2. The highest accuracy of leaf area index (LAI) retrieval was obtained for RH (right circular transmit and horizontal linear receive) with an R2 of 0.79 and a RMSE of 0.33. This study illustrated the capability of CP SAR data with respect to retrieval of rice biophysical parameters, especially for height, volumetric water content of the rice canopy, and ear biomass, and this mode may offer the best option for rice-monitoring applications because of swath coverage. Full article
Show Figures

Figure 1

26 pages, 16807 KB  
Article
Multi-Feature Segmentation for High-Resolution Polarimetric SAR Data Based on Fractal Net Evolution Approach
by Qihao Chen, Linlin Li, Qiao Xu, Shuai Yang, Xuguo Shi and Xiuguo Liu
Remote Sens. 2017, 9(6), 570; https://doi.org/10.3390/rs9060570 - 6 Jun 2017
Cited by 22 | Viewed by 6166
Abstract
Segmentation techniques play an important role in understanding high-resolution polarimetric synthetic aperture radar (PolSAR) images. PolSAR image segmentation is widely used as a preprocessing step for subsequent classification, scene interpretation and extraction of surface parameters. However, speckle noise and rich spatial features of [...] Read more.
Segmentation techniques play an important role in understanding high-resolution polarimetric synthetic aperture radar (PolSAR) images. PolSAR image segmentation is widely used as a preprocessing step for subsequent classification, scene interpretation and extraction of surface parameters. However, speckle noise and rich spatial features of heterogeneous regions lead to blurred boundaries of high-resolution PolSAR image segmentation. A novel segmentation algorithm is proposed in this study in order to address the problem and to obtain accurate and precise segmentation results. This method integrates statistical features into a fractal net evolution algorithm (FNEA) framework, and incorporates polarimetric features into a simple linear iterative clustering (SLIC) superpixel generation algorithm. First, spectral heterogeneity in the traditional FNEA is substituted by the G0 distribution statistical heterogeneity in order to combine the shape and statistical features of PolSAR data. The statistical heterogeneity between two adjacent image objects is measured using a log likelihood function. Second, a modified SLIC algorithm is utilized to generate compact superpixels as the initial samples for the G0 statistical model, which substitutes the polarimetric distance of the Pauli RGB composition for the CIELAB color distance. The segmentation results were obtained by weighting the G0 statistical feature and the shape features, based on the FNEA framework. The validity and applicability of the proposed method was verified with extensive experiments on simulated data and three real-world high-resolution PolSAR images from airborne multi-look ESAR, spaceborne single-look RADARSAT-2, and multi-look TerraSAR-X data sets. The experimental results indicate that the proposed method obtains more accurate and precise segmentation results than the other methods for high-resolution PolSAR images. Full article
(This article belongs to the Special Issue Advances in SAR: Sensors, Methodologies, and Applications)
Show Figures

Graphical abstract

Back to TopTop