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Abstract: When severe flooding occurs in Canada, the Emergency Geomatics Service (EGS) is tasked
with creating and disseminating maps that depict flood extents in near real time. EGS flood mapping
methods were created with efficiency and robustness in mind, to allow maps to be published quickly,
and therefore have the potential to generate high-repeat water products that can enhance frequent
wetland monitoring. The predominant imagery currently used is synthetic aperture radar (SAR) from
RADARSAT-2 (R2). With the commissioning phase of the RADARSAT Constellation Mission (RCM)
complete, the EGS is adapting its methods for use with this new source of SAR data. The introduction
of RCM’s circular-transmit linear-receive (CTLR) beam mode provides the option to exploit compact
polarimetric (CP) information not previously available with R2. The aim of this study was to determine
the most effective CP parameters for use in mapping open water and flooded vegetation, using
current EGS methodologies, and compare these products to those created by using R2 data. Nineteen
quad-polarization R2 scenes selected from three regions containing wetlands prone to springtime
flooding were used to create reference flood maps, using existing EGS tools. These scenes were then
used to simulate 22 RCM CP parameters at different noise floors and spatial resolutions representative
of the three RCM beam modes. Using multiple criteria, CP parameters were ranked in order of
importance and entered into a stepwise classification procedure, for evaluation against reference R2
products. The top four CP parameters —m-chi-volume or m-delta-volume, RR intensity, Shannon
Entropy intensity (SEi), and RV intensity—achieved a maximum agreement with baseline R2 products
of upward of 98% across all 19 scenes and three beam modes. Separability analyses between flooded
vegetation and other land-cover classes identified four candidate CP parameters—RH intensity, RR
intensity, SEi, and the first Stokes parameter (SV0)—suitable for flooded-vegetation-region growing.
Flooded-vegetation-region-growing CP thresholds were found to be dependent on incidence angle for
each of these four parameters. After region growing using each of the four candidate CP parameters,
RH intensity was deemed best to map flooded vegetation, based on our evaluations. The results
of the study suggest a set of suitable CP parameters to generate flood maps from RCM data, using
current EGS methodologies that must be validated further as real RCM data become available.

Keywords: RADARSAT constellation mission; flood mapping; open water; flooded vegetation

1. Introduction

Wetlands supply clean water and support food production for human populations worldwide,
in addition to the intrinsic value they provide by sustaining wildlife. Wetlands are increasingly
threatened by climate change and land use, including agriculture and urban development [1], which
can compromise their ecosystem function and the services they deliver. Wetlands are characterized by
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periodic saturation of soils [2] and therefore inundation monitoring can inform changes in wetland
function due to progressive wetting or drying, and it can also assist in detecting the presence of
wetlands where inventories are lacking. Thus, surface-water mapping with high repeat frequency can
help locate wetlands and monitor their changes due to land use and climate.

The Emergency Geomatics Service (EGS) of Natural Resources Canada (NRCan) maps flooding in
Canada and internationally and disseminates generated flood extents in near real time. EGS flood
maps must be highly accurate, to ensure that information used in emergency management is correct,
and they must be generated quickly and efficiently, to minimize the latency between image acquisition
and product availability to end-users to four hours or less. The open-water and flooded-vegetation
mapping methods developed by EGS for this purpose have also been applied to historical satellite
imagery in [3,4], to generate products depicting surface water dynamics, and as such can also serve to
map wetland dynamics with high repeat frequency. The primary data that the EGS currently acquires
and analyzes for this purpose are dual-polarization synthetic aperture radar (SAR) imagery from
Canada’s C-band RADARSAT-2 satellite (R2). While R2 continues to operate well past its planned
mission length, the end of its lifecycle inevitably approaches. Following the recent launch of the
RADARSAT Constellation Mission (RCM) in the summer of 2019, the EGS is adapting its tools and
methods for implementation with new data from RCM, to ensure that operations transition seamlessly
once RCM begins acquiring imagery.

The use of SAR is favored over optical satellite data to examine water dynamics for a number
of reasons. In order to properly map water dynamics, the full range of water extents should be
represented. Water extents achieve their maximum during flooding, which often occurs due to heavy
rainfall, and radar microwaves are able to transmit unobstructed through cloud cover and precipitation.
In addition, due to the active nature of SAR sensors, they are able to capture data during both day and
night [5–8]. A SAR sensor functions by transmitting microwaves that interact with the Earth’s surface
and then measures the magnitude of the returning scattered waves. In the case of fully polarimetric
SAR systems, differences in relative phase between the transmitted and received waves are also
measured [8]. The manner in which these waves interact with features on the surface of the Earth is
influenced by a variety of factors, ranging from the incident angle and wavelength of the transmitted
waves, to the physical geometry and dielectric properties of surface features [6,7]. The characteristics
of the transmitted waves are always known, as they are determined by the SAR system itself. Any
observed changes of the characteristics of the received waves are predominantly caused by interactions
with the surface and can therefore be used to characterize and classify its features.

Whether a surface is considered smooth or rough is relative to the wavelength and incidence angle
of the transmitted microwaves interacting with it. Depending on incidence angle, if surface-height
variations are small compared to the wavelength of the incident waves, the surface can be considered
smooth [9]. Flat, smooth surfaces cause specular reflection, which reflects microwaves away from the
sensor. These single-bounce interactions produce dark features in SAR imagery that indicate very
little return signal. For this reason, smooth open water appears dark in SAR imagery. Conversely,
flooded vegetation often appears bright due to double-bounce interactions. The interface between
the horizontal surface of the water and the vertical vegetation stems creates natural corner reflectors,
which cause incident waves to double-bounce, leading to a high signal return in the direction of the
sensor [7,10]. However, single- and double-bounce radar interactions with open water and flooded
vegetation are not unique to these cover types, and this can lead to confusion when performing a
classification. For example, roads and airport runways are also flat and smooth, so they often appear
dark in SAR imagery, due to single-bounce interactions. Urban areas typically appear very bright
due to double-bounce, as the ground and buildings produce numerous corner reflectors. Wind can
create waves on a body of water that increase the water’s surface roughness, causing the water to
appear brighter than on a calm day. Slopes adjacent to bodies of water can also appear bright, as waves
reflecting off hillsides perpendicular to the incident beam cause a high return due to foreshortening and
double-bounce. These are just some of the factors that can lead to confusion when distinguishing open



Remote Sens. 2020, 12, 1476 3 of 29

water and flooded vegetation from other land-cover types in SAR imagery that must be accounted for
when the EGS derives flood-extent products by using this type of data.

The majority of R2 imagery currently used during EGS operations is dual-polarization.
Dual-polarization and quad-polarization beam modes transmit and receive microwaves in both
horizontal and vertical polarizations. Dual-polarization transmits only one of the two polarizations
and receives both, resulting in two channels: one co-polarization channel (HH or VV) and one
cross-polarization channel (HV or VH). Quad-polarization transmits and receives both polarizations,
resulting in four channels: two co-polarization channels (HH and VV) and two cross-polarization
channels (HV and VH). Only one polarization is transmitted at a time, so when acquiring a scene
in the quad-polarization beam mode, the SAR must switch back and forth between horizontal and
vertical polarizations while emitting signals. This results in a swath width essentially half that
of a scene acquired by using the dual-polarization beam mode, which is not required to switch
polarizations during transmission [11]. EGS’s preference for dual-polarization data is largely due
to this increased swath size in comparison to quad-polarization data. In the context of open-water
mapping, cross-polarization channels are less sensitive to water-surface roughness and will typically
show higher contrast between land and water when weather conditions are unfavorable. However,
the HH channel performs better than either cross-polarization channel under calm conditions [12–14].
Co-polarization channels often show high contrast between flooded vegetation and other land-cover
types, including open water, with HH being particularly effective, making these polarizations useful
for mapping flooded vegetation [7,10,12,15,16].

Sending and receiving in both orthogonal polarizations means that the quad-polarization beam
mode is fully polarimetric. This makes it possible to measure changes in relative phase between
transmitted and received signals, allowing for the calculation of more complex characteristics of
the received waves [8,11]. While using the fully polarimetric quad-polarization beam mode allows
for the exploitation of polarimetric information, including derived parameters and decompositions,
the trade-off in swath size in comparison to dual-polarization data is undesirable when analyzing
large-scale flood events. Dual-polarization data have proved to be sufficient to create accurate flood
maps, while still being able to cover relatively large study areas. Although not as comprehensive
as fully polarimetric quad-polarization data, the advent of RCM and its hybrid dual-polarization
compact polarimetric mode will provide the EGS with the option to exploit polarimetric information
without compromising swath width. This compact polarimetric mode transmits microwaves in a
circular polarization and receives return signals in both horizontal and vertical linear polarizations,
resulting in two channels: CH and CV. These beam modes may sometimes be labeled more specifically,
to indicate the rotational direction of the circular transmission. In the case of RCM, which sends
outgoing compact polarimetric signals in a right-hand rotation, CH and CV are alternately referred to
as RH and RV. Transmitting in a circular polarization allows both horizontal and vertical components
to be present in the transmitted signals, while also eliminating the need to switch between polarizations
during transmission. Relative phase information can be retained in the received backscatter, while
still maintaining a larger swath width, enabling derivation of compact polarimetric (CP) parameters
and decompositions representing information that would otherwise be limited to quad-polarization
beam modes [11,17]. While increasing the amount of data that can be extracted and analyzed from a
scene does not necessarily lead to an increase in relevant, useable information, certain CP parameters
may prove to be more effective in classifying open-water and flooded vegetation than the orthogonal
polarization channels currently used.

By assessing the performance of simulated CP parameter RCM data, potential increases in
efficiency, accuracy, and speed while generating emergency flood mapping products may be uncovered.
Determining which of these derived parameters are the most useful to map open-water and flooded
vegetation is a valuable insight for when flood-extent products are created from genuine RCM data.
The aim of this study was to identify the most promising CP parameters for mapping open-water and
flooded vegetation, using the EGS’s current methodologies. These were determined by simulating RCM



Remote Sens. 2020, 12, 1476 4 of 29

data over three flood-prone areas in Canada and evaluating input parameters by using a combination
of model variable importance, separability and correlation analyses, and the consultation of the recent
scientific literature. A secondary objective is to assess the quality of products created with simulated
RCM data, using current EGS flood products from R2 data as a reference. The ultimate goal of this work
is to produce RCM-derived surface water products that are comparable with R2 products, to ensure
continuity from one sensor to the next.

The current EGS flood mapping methodology using R2 data relies on historical inundation
frequency maps and a machine-learning classification algorithm to first generate open-water extents,
followed by region growing, using a backscatter intensity threshold to map adjacent flooded vegetation.
While the most important source of input satellite data for EGS flood mapping is currently R2,
the methodology has also been successfully applied to data from a range of other radar and optical
sensors received through the International Charter on Space and Major Disasters during large-scale
flood events in Eastern Canada, in both 2017 and 2019 [18]. The methodology has proven to be largely
sensor-independent, and the robustness of the approach suggests that high-quality results should
be achievable with RCM data; however, the evaluations performed in this work and the resulting
optimizations and recommendations are necessary to attain the best results possible.

2. Materials and Methods

2.1. Study Areas

The study was conducted across three broad regions surrounding the Saint John, Richelieu, and
Ottawa Rivers in the southeastern-temperate mixed broadleaved forests of Canada (Figure 1). All three
regions contain wetlands that have flooded in recent years. Specific details of each of the three study
regions are as follows.

2.1.1. Saint John

The lower Saint John River traverses cropland, cities, and towns, as well as large floodplains
consisting mostly of large herb and broadleaved-shrub-covered marshes with pockets of trees [19].
Severe flooding has occurred every 10 years, on average, during the past century, as a result of surface
runoff from rain and snowmelt that can be exacerbated by ice jams, with recent flooding occurring in
2008 and again in 2018.

2.1.2. Richelieu

The Richelieu River traverses agriculture and towns flowing northward from Lake Champlain,
in the US, to where it empties into Canada’s Saint Lawrence River. The study area consists of two
separate regions along the river that are prone to flooding, namely a northern region at Lac Saint-Pierre
and a southern region at the northern tip of Lake Champlain. Wetlands are sporadic along the river’s
edge and consist mainly of smaller swamps and some marshes [19]. Recent severe flooding occurred
in 2011 and 2019.

2.1.3. Ottawa

The Ottawa River flows eastward through hardwood forests, until roughly 100 km west of
Ottawa, where land use becomes mostly agriculture. The river flows between cities of Ottawa and
Gatineau, eventually emptying into the Saint Lawrence River, approximately 150 km downstream.
Wetlands occur along floodplains and consist mostly of large broadleaved shrub and treed marshes
and swamps [19]. Severe flooding occurred in 2017 and again in 2019.
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2.2. Overview of Flood Extraction Process

Baseline open-water classifications were generated from R2 data, using current EGS flood tools
developed in R statistics [20], to serve as reference for products generated from simulated RCM
data. While no independent ground-truth data were available to assess map accuracies, due to the
dynamic nature of flooding, the current methodology has previously been validated on products
generated from historical Landsat data over the Saint John River [3] and from R2 data during 2017
flood-response operations in Eastern Canada [21]. In [3], predicted springtime flood extents were
significantly correlated with same-day hydrometric flood-depth measurements, while predicted
summertime water-extent products showed an overall accuracy of 97.38% when compared to reference
orthophoto data. Resulting products from [21] were assessed against visually interpreted oblique air
photos, producing an overall accuracy of 86.2% in the flood margin. Limiting the number of RCM CP
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parameters required to attain an accurate product is desired, as the time required to generate products,
including deriving CP parameters and decompositions for classification, increases with the number of
predictors used. An optimal set of input CP parameters to map open water and flooded vegetation
should represent the smallest possible number of parameters that both maximizes agreement with
baseline R2 products and minimizes processing time.

In order to evaluate the simulated RCM CP parameters for open-water classification, a forward
stepwise procedure was implemented by adding one parameter at a time to the classification algorithm
and assessing the resulting product agreement with baseline R2 products at each step. The order in
which CP parameters were added was determined by using a point ranking system established by
assessing correlation between parameters, land-cover-class separability for each parameter, and the
attribute usage of each parameter from baseline classification trials, where all CP parameters were used
as predictors. Open-water-classification quality was assessed by calculating omission, commission,
and overall agreement of RCM classifications compared to baseline products created by using the
source R2 imagery.

Following open-water classification, flooded vegetation was mapped by region growing from
open water into adjacent areas of high-signal-return characteristic of double-bounce interactions.
Since flooded vegetation is mapped by assessing backscatter intensities adjacent to open water, an ideal
candidate to classify flooded vegetation should show high separability between flooded vegetation
and other land-cover types. Using the results of separability analyses, we tested the four RCM CP
parameters showing the highest separability between flooded vegetation and other land-cover classes.
In order to compare the effectiveness of the four parameters to map flooded vegetation, omission was
calculated for maps generated from each parameter, using user-defined polygons covering known areas
of flooded vegetation. A form of commission was also calculated for each parameter by determining the
amount of flooded vegetation predicted on slopes where water is unable to pool and therefore where
flooding cannot occur. The ideal combinations of CP parameters for use in the full EGS flood-map
production are those that show both high accuracy in open-water classification and high separability
between flooded vegetation and other land-cover classes (Figure 2).
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2.3. RADARSAT-2 Sample Scenes

Nineteen quad-polarization R2 scenes acquired over the three study areas were selected for
analysis. Suitable sample scenes needed to be quad-polarization data in order to simulate CP data,
cover one of the three study areas, and be captured between the months of April and November,
to avoid ice coverage. Attempts were also made to include scenes with flooded vegetation. Sample
scenes were acquired through the Earth Observation Data Management System (EODMS), and selection
was ultimately limited by the number of scenes that met the above criteria. Of the 19 sample scenes,
five were from the Ottawa River region centered over the National Capital Region. Ten additional
scenes were from the Richelieu River region covering portions of Lac Saint Pierre and Northern
Lake Champlain. The final four scenes were from the Saint John River region from Keswick Ridge
to Oromocto.

All scenes from the Ottawa–Gatineau region were acquired between April and May 2017, while
scenes from the Richelieu region covered dates from April to May 2011. The Saint John region scenes
were acquired from April to July, between 2008 and 2010. Further details of the sample R2 scenes are
summarized in Table 1, while a map of the study regions covered by the 19 sample scenes is shown in
Figure 1.

Table 1. RADARSAT-2 sample scene information.

Region Acquisition
Date

Acquisition
Start Time Beam Mode

Pixel
Resolution
(m) [Rng ×

Az]

Average
Incidence
Angle (◦)

Swath
Width

(km) [Rng
× Az]

Flooded
Vegetation

Present

Ottawa 02 April 2017 11:26:02 Fine Quad Wide—FQ1W 4.73 × 4.83 19.40 50 × 25 No
Ottawa 26 April 2017 11:26:01 Fine Quad Wide—FQ1W 4.73 × 4.83 19.41 50 × 25 Yes
Ottawa 30 April 2017 11:09:23 Fine Quad Wide—FQ20W 4.73 × 5.07 39.99 50 × 25 Yes
Ottawa 20 May 2017 11:26:00 Fine Quad Wide—FQ1W 4.73 × 4.83 19.40 50 × 25 Yes
Ottawa 24 May 2017 11:09:22 Fine Quad Wide—FQ20W 4.73 × 5.07 39.99 50 × 25 No

Richelieu 11 April 2011 10:57:34 Fine Quad—FQ22 4.73 × 5.49 41.79 25 × 25 Yes
Richelieu 11 April 2011 10:57:37 Fine Quad—FQ22 4.73 × 5.49 41.80 25 × 25 Yes
Richelieu 18April 2011 10:53:24 Fine Quad—FQ27 4.73 × 4.86 45.90 25 × 25 Yes
Richelieu 18 April 2011 10:53:28 Fine Quad—FQ27 4.73 × 4.86 45.90 25 × 25 Yes
Richelieu 05 May 2011 10:57:14 Standard Quad—SQ21 11.83 × 5.13 40.92 25 × 25 Yes
Richelieu 05 May 2011 10:57:17 Standard Quad—SQ21 11.83 × 5.13 40.92 25 × 25 Yes
Richelieu 08 May 2011 22:30:30 Standard Quad—SQ2 7.98 × 4.87 20.85 25 × 25 Yes
Richelieu 08 May 2011 22:30:33 Standard Quad—SQ2 7.98 × 4.87 20.85 25 × 25 Yes
Richelieu 22 May 2011 11:01:32 Fine Quad—FQ17 4.73 × 5.47 37.23 25 × 25 Yes
Richelieu 22 May 2011 11:01:44 Fine Quad—FQ17 4.73 × 5.47 37.23 25 × 25 Yes

Saint John 04 July 2008 10:44:03 Fine Quad—FQ8 4.73 × 4.78 27.85 25 × 25 Yes
Saint John 19 May 2009 10:40:13 Fine Quad—FQ11 4.73 × 5.59 31.14 25 × 25 Yes
Saint John 27 April 2010 10:36:15 Fine Quad—FQ16 4.73 × 5.16 36.27 25 × 25 Yes
Saint John 21 May 2010 10:36:14 Fine Quad—FQ16 4.73 × 5.16 36.27 25 × 25 No

2.4. RCM Simulation and Preprocessing

The 19 quad-polarization R2 sample scenes were used to create simulated RCM data by using the
RCM CP simulator developed at the Canada Centre for Mapping and Earth Observation (CCMEO) [11].
Data were simulated for three different RCM beam modes, each with a different pixel resolution and
noise floor (noise-equivalent sigma zero (NESZ) value). Details regarding the expected characteristics
of the RCM beam modes simulated in this study are summarized in Table 2. The specific beam modes
selected were those predicted to be the most viable for flood-product creation, given current EGS
product standards.
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Table 2. Assumed specifications of selected RADARSAT Constellation Mission beam modes.

Beam Mode Resolution
(m)

Noise Floor/Nominal
NESZ (dB)

Swath Width
(km)

Looks
(Rng × Az)

5 m High Resolution 5 −19 30 1 × 1
16 m Medium Resolution 16 −25 30 1 × 4
30 m Medium Resolution 30 −24 125 2 × 2

The RCM Compact Polarimetry v3.1 simulator was used to generate simulated RCM CP parameters
for the 19 sample scenes. For each R2 sample scene, CP parameters were generated for three different
noise floors, namely −19, −25, and −24 dB, using the native R2 resolution read from the input scene.
These noise floors represent the expected noise floors of the 5 m High Resolution, 16 m Medium
Resolution, and 30 m Medium Resolution RCM beam modes, respectively [22]. During simulation,
CP parameters were filtered twice with a Refined Lee filter, using a window size of 5 × 5 pixels for
each pass. The RCM CP simulator initially generates 12 CP products, five of which include multiple
channels. The channels of each multichannel parameter were exported to separate files, resulting in a
total of 22 parameters per beam mode for each input R2 scene (Table 3).

Table 3. Simulated compact polarimetric parameters, corresponding equations, and identifying variable
names used in this study.

Compact Polarimetric Parameter Variable Name(s) Equation

Alpha S angle alphaS αs =
1
2 arctan


√

S2
1+S2

2

S3


Circular polarization ratio circ µc =

(
S0−S3
S0+S3

)
Conformity coefficient conformity µ =

2 Im
〈
SRHS∗RV

〉〈
SRHS∗RH

〉
+

〈
SRVS∗RV

〉
Relative phase between RV and RH delta δ = arctan

(
S3
S2

)
Degree of polarization m m =

√
S2

1+S2
2+S2

3

S2
0

m-chi decomposition
� Even-bounce
� Volume
� Odd-bounce

mchiEven
mchiVolume
mchiOdd

 PE
PV
PO

 = S0
2

 (m− µ
2(1−m)
(m + µ)


m-delta decomposition
� Even-bounce
� Volume
� Odd-bounce

mdeltaEven
mdeltaVolume
mdeltaOdd

 PE
PV
PO

 =


1
2 S0m(1− sin(δ))

S0(1−m)
1
2 S0m(1 + sin(δ))


Correlation coefficient of RV and RH rho/rhoAdjust ρ =

√∣∣∣∣〈SRHS∗RV

〉∣∣∣∣√〈
SRHS∗RH

〉
+

〈
SRVS∗RV

〉
Intensity channels
� 4 channels

RH
RV
RR
RL

σ0
RH σ

0
RVσ

0
RVσ

0
RV

Shannon entropy
� Intensity
� Polarimetric

SEi
SEp SEI = 2 log

(
πeTr(T2)

2

)
SEP = log

(
4 |T2 |

Tr(T2)
2

)

Stokes vector
� 4 elements

SV0
SV1
SV2
SV3


S0
S1
S2
S3

 =

〈|ERH |

2 + |ERV |
2
〉

〈|ERH |
2
− |ERV |

2
〉

2×Re
〈
ERH × E∗RV

〉
2× Im

〈
ERH × E∗RV

〉


To prepare for analysis, all simulated CP-parameter images were orthorectified by using bilinear
interpolation to the NAD83 Canada Atlas Lambert projection (EPSG: 3978), using PCI Geomatica 2015.
The digital elevation models (DEMs) used in the corrections were assembled for each study region,
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from Canadian Digital Surface Model (CDSM) tiles. While each CP-parameter image was simulated at
the same resolution as its corresponding input R2 scene, the images were resampled to the pixel spacing
of the specified target RCM beam mode during orthorectification. All simulated parameters generated
with a noise floor of −19 dB were orthorectified to 5 m × 5 m, as the corresponding RCM beam mode
with a noise floor of −19 dB is the 5 m High Resolution beam mode. By extension, all CP-parameter
images simulated at noise floors of−25 and of−24 dB were orthorectified to corresponding 16 m × 16 m
and 30 m × 30 m resolutions, respectively.

2.5. Open-Water Analysis

2.5.1. Baseline RADARSAT-2 Product Generation

The original 19 R2 scenes used to generate the simulated RCM data were processed by using
current EGS open-water extraction methods [18]. The R2 scenes were first orthorectified to the same
NAD83 Canada Atlas Lambert projection (EPSG: 3978) used for the simulated RCM data and resampled
by using bilinear interpolation to a pixel resolution of 5 m × 5 m. Each scene was filtered twice, using an
Enhanced Lee filter with a filter window size of 5 × 5 pixels for each pass, and classified to open water
and land, using the C5.0 classification algorithm [23,24] trained on scene-specific samples obtained
beneath masks generated from a global water-occurrence map [25]. Water occurrence, also referred to
as inundation frequency, maps the percentage that a location is inundated, where 0% frequency depicts
permanent land where standing water has never been observed and 100% inundation represents
permanent water. The training occurrence layer was clipped to the same extent as each input sample
scene and then reclassified so that all areas with a water occurrence of 80% or higher were considered
permanent water, and all areas with a water occurrence of 0% were land. Locations between 0% and
80% occurrence represent areas of ephemeral water, where water may or may not be present during
scene acquisition, depending on water extents. The resulting binary land/water occurrence mask was
then used to generate training samples for each scene that were input into the C5.0 algorithm, with all
four R2 polarization channels as predictors. Urban areas were removed in the resulting classification,
using the urban class in the 2010 Land Cover of Canada product created by [26], to remove urban
shadow falsely detected as open water. Following this, a 3x3 pixel mode filter was applied to remove
speckle from the classification output.

2.5.2. Baseline RCM Classification

The same process used to create the baseline R2 open-water products was used to create baseline
simulated RCM open-water products. For each sample scene and for each of the three simulated
RCM beam modes, open water and land were classified by using the C5.0 classification algorithm and
water-occurrence masks described above. In this case, all 22 CP parameters were used as predictors,
as opposed to the four polarization channels used previously to generate R2 baseline products.
Each time the C5.0 algorithm completed a classification, a summary was generated, showing the
classification tree, as well as the attribute usage, which represents the variable importance of each
of the 22 CP parameters input as predictors for that classification. For each scene and beam mode,
the C5.0 classification was run 20 times, generating 20 separate classification trees. In addition to the
text summary, the classification was output as a raster image for half of these trials. Operationally,
these output open-water maps are the input for the subsequent processing step to generate flooded
vegetation by using region growing. In this case, they were also used to assess the quality of each
open-water classification. As with the baseline R2 products, each classification had water in urban
areas removed, using a land cover mask, as well as a 3x3 pixel mode filter applied to reduce speckle.

2.5.3. Parameter Selection Process for Stepwise Classification

The intent of the open-water analysis was to determine the minimum number of parameters and
which parameters to use in the C5.0 classification algorithm to classify open water, while meeting
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requirements of high accuracy, processing speed, and efficiency. A forward stepwise procedure was
implemented to select the final set of CP parameters. The classification was first run with a single
parameter that was assessed to be the most useful, and then it was rerun after adding one parameter
at a time and assessing against baseline R2 classifications at each step, until an optimal selection
and number of parameters were found. In order to determine which CP parameters to test in the
classification and in what order, a ranking system was implemented by using the results of analyses
that evaluated variables based on three criteria: attribute usage, separability, and correlation.

Attribute usage: The attribute usage or variable importance of a predictor indicates how much
each predictor’s training data was used in a classification tree and is represented as a percent value.
In the case of baseline RCM products, the predictors used were all 22 CP parameters. Parameters
that split the classification tree near the top have a high attribute usage, since they contribute to the
classification of a large percentage of data, while further down the tree, parameters that split the lower
branches have lower importance, since they are used to classify a smaller percentage of the data. As a
summary measure, attribute usage indicates both the parameters that are highest in the tree and the
number of times they are used to split training data to predict different classes. To ensure robustness
and consistency in the attribute rankings, 20 trials were run for each scene and each beam mode, using
all 22 CP parameters as predictors each time. By consulting the resulting classification summaries,
overall attribute usage for each parameter was calculated for each scene and beam mode, by averaging
each parameter’s usage over the 20 classification trials. Using the mean parameter usage per scene, we
calculated the average usage of each parameter per beam mode for each of the three study regions.
This provided the average importance of each CP parameter by study region for each of the three
simulated beam modes.

Separability: Nonparametric two-sample Kolmogorov–Smirnov tests (K–S tests) [27] were
conducted to calculate separability between open water, flooded vegetation, and the various upland
land-cover types present in each study region, with 9 different classes in the Ottawa and Saint John
regions, and 10 classes in the Richelieu region. In a two-sample K–S test, separability indicates the
probability that two sample distributions are statistically different from one another. Parameters
showing high separability between open water, flooded vegetation, and other land-cover classes
should indicate ideal candidates for classifying both open water and flooded vegetation, since this
suggests that these classes are more easily distinguishable in those parameters. Tests were performed
on each simulated RCM scene and beam mode for all 22 CP parameters, to determine which parameters
showed the highest separability. The results of each K–S test provide a distance measure ranging from
0 to 1, with a value closer to 1 indicating a higher degree of separability between classes. Separability
thresholds of <0.50 for poor separability, 0.50−0.70 for some separability, 0.70−0.85 for good separability,
and >0.85 for excellent separability were chosen to maintain consistency with thresholds used in
recent studies performing similar analyses [28,29]. Upland classes and open water were defined by
using the Landsat-based 2010 Land Cover of Canada [26]. For flooded vegetation, polygons were
created manually by visually assessing source R2 imagery to identify areas of high-backscatter response
typical of flooded vegetation. Areas of flooded vegetation were verified through consultation of
optical imagery from Google Earth to verify the presence of tall vegetation on a floodplain, as well as
hydrometric water level data to confirm flooding [30]. Hydrometric data supported the absence of
flooded vegetation in three sample scenes identified in Table 1. The two Ottawa scenes that did not
appear to contain flooded vegetation also had the lowest daily water levels of the five Ottawa scenes.
The same was true of the single Saint John scene that did not contain flooded vegetation, which had
the lowest daily water level of the four scenes in that study region.

Correlation: For each sample scene and beam mode, pairwise Pearson correlation analyses were
conducted between all CP parameters, to reduce the dimensionality of the full set of 22 parameters
by removing highly correlated, redundant features. Correlation coefficients range from −1 to 1,
with positive or negative values further away from 0 indicating higher correlation between two
parameters. A high correlation indicates a linear relation between two parameters that likely share
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redundant information. Matrices showing the correlation coefficients between all 22 CP parameters
were constructed for each scene and each beam mode. If a pair of parameters was highly correlated,
the parameter with the highest mean absolute correlation with all other parameters was removed from
the matrix. The process was repeated until only a selection of uncorrelated parameters remained in
the matrix. An absolute correlation value greater than 0.7 was used as the threshold to indicate high
correlation. The total number of scenes in a region for which a parameter remained in the matrix after
removing the highly correlated parameters was recorded, and used as an indicator of parameters that
likely contained unique information.

2.5.4. Determining Optimal Classification Parameters

Upon the completion of the three analyses described above, CP parameters were ranked, using
points from the results of these analyses. Rankings were determined by assigning points to each
parameter, based on average attribute usage in the initial 22 CP parameter baseline classifications,
separability between open water and other land-cover types for each parameter, and how often
a parameter remained after highly correlated parameters were removed to reduce dimensionality.
Rankings were first calculated for each of the three resolutions in each of the three study regions,
resulting in nine rankings. An overall ranking was determined for each of the study regions and
resolution pairings by summing parameter rankings from the attribute usage, separability, and
correlation analyses.

To determine points for attribute usage, each resolution in each study area had the attribute
usages for all scenes in that region averaged. Based on this average, each parameter was ranked from 1
to 22, with 22 being the highest average usage and 1 being the lowest. For separability, ranks were
first established for each individual resolution and region, with points assigned to each parameter
depending on how many of the upland land-cover classes present in the scene showed some, good,
or excellent separability with open water, using the K–S thresholds defined earlier. One point was
assigned if a parameter showed some separability with an upland land-cover class, two points were
assigned for good separability, and three points were assigned for excellent separability. For correlation,
parameters were assessed first based on each of the nine resolution and region pairings. Points were
assigned depending on the number of scenes in a resolution and region where a parameter remained
after all other highly correlated parameters were removed. The points for each parameter were totaled
and ranked from highest to lowest.

To establish a final parameter ranking, the points accumulated by each parameter across the three
analyses needed to be totaled. Because raw point totals would have disproportionately weighted the
results toward one of the three analyses, due to the nature of how points were awarded differently
amongst them, point totals for each analysis were normalized from 0 to 1, prior to final summation,
by dividing each parameter’s score by the maximum score for each of the three analyses. By totaling
the normalized points each parameter had accumulated from all three analyses, a master ranking was
established, with the parameter with the most points assumed to be most important for open-water
classification. It was this order in which the CP parameters were added stepwise to the classification
algorithm, to test their effectiveness for open-water classification.

2.5.5. Stepwise Open-Water Classification

With the final CP-parameter rankings established, the top five parameters were selected for testing
in the stepwise procedure, assuming that higher-ranking parameters would be most promising for
open-water classification. The parameters were tested by adding them to the classification algorithm
one at a time, in a stepwise fashion. Beginning with only the top parameter, each sample scene had the
open-water classification run 10 times, following the same processing workflow used to create the
baseline RCM and RS2 products, with the resulting classification image output each time. This process
was repeated for each of the three test resolutions of each scene. Following the completion of all trials,
using only the highest-ranking parameter, the second highest-ranking parameter was added to the
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algorithm, and the process was repeated for each sample scene and resolution, again performing
10 trials for each. The stepwise process was continued, adding the third, then fourth, and finally fifth
highest-ranking CP parameters to the classification algorithm, with 10 trials being performed for each
scene and resolution at each stage and all open-water classifications being output.

2.5.6. Open-Water Classification Assessment

Establishing a reliable ground-truth measurement when examining hydrographic features can be
difficult due to the ephemeral nature of water. This is made more difficult when assessing flood events
for which limited coincident ground-truth data exist. In this study, agreement with corresponding
baseline R2 products of each scene was chosen as a measure of quality, as opposed to a comparison
to some other static dataset, such as the National Hydrographic Network (NHN) [31]. Methods
used to create baseline R2 products have been validated elsewhere [3,18], and baseline products
represent identical surface-water conditions as RCM products, since both are generated from the
same source satellite data. In theory, quad-polarization R2 data should produce the best possible
result, and therefore, high agreement between baseline R2 and RCM products suggests accurate RCM
flood maps, with good continuity between products generated from consecutive sensors. Following
the addition of each parameter into the stepwise classification procedure, the resulting open-water
products were compared with the matching baseline R2 products for that scene. The baseline R2
products were resampled to match the pixel size of each RCM beam mode being tested, and confusion
matrices were constructed to calculate omission, commission, and overall agreement for each scene
and beam mode. The expected trend is toward increasing agreement with the baseline R2 product
with the addition of parameters to the classification, if those parameters are important predictors of
open water. The final selection and number of CP parameters for use in open-water classification
should be the minimal set where no further increase in agreement with baseline products occurs with
the addition of parameters, or when the number of parameters required as input to the classification
algorithm becomes unacceptably high due to processing time.

Water omission, commission, and overall agreement were calculated by using traditional
accuracy-assessment statistics calculated from contingency tables [32] between baseline R2
open-water classifications and corresponding simulated RCM classifications created by using the five
highest-ranking CP parameters. Mean omission, commission, and overall agreement were the averages
of the results of the 10 classification trial outputs for each scene. These averages were calculated for
each scene and all three beam modes for all five runs, where the number of input CP parameters
ranged from 1 to 5, depending on the stage in the stepwise procedure.

2.5.7. Assessing Processing Time

While classification accuracy is important, limiting processing time is also crucial to EGS operations,
to ensure latency between image acquisition and product dissemination is less than 4 h. Small
improvements in classification accuracy with more input parameters may not always be worth a
marked increase in processing time. Processing time tends to increase as the pixel resolution of input
scenes increases due to a greater volume of data, so the addition of more parameters to the classification
algorithm should have a greater impact on processing speed when using higher-resolution beam modes,
as compared to lower ones. In order to assess differences in processing time, open-water classifications
were created by using one-to-five input parameters for each of the three simulated RCM beam modes,
and the processing time required to complete each trial on a high-end 64-bit Windows workstation with
dual XEON processors and 56 cores, running at 2 GHz, with 256 Gb of RAM, was recorded. Results
from this analysis were used to better inform the decision on how many CP parameters to select for
open-water classification, particularly in the context of an operational setting, if minor improvements
in accuracy are outweighed by a substantial increase in processing time.
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2.6. Flooded-Vegetation Analysis

2.6.1. Region Growing Using Thresholding

Using classifications from the open-water analysis, a selection of parameters was required in
order to test the region growing process for flooded-vegetation mapping. Ideal parameters for
flooded-vegetation extraction were those that showed high separability between flooded vegetation
and other land-cover classes in the previous separability analyses. Parameters were ranked in the same
fashion as in the open-water separability analysis, with points assigned to each parameter based on
how many land-cover types showed some, good, or excellent separability with flooded vegetation.
Parameters that had already shown usefulness in the open-water classification analysis were also more
desirable, in order to reduce the processing time required to generate separate CP parameters for
flooded-vegetation mapping.

Unlike the open-water classification, only one parameter is used in the flooded-vegetation-region
growing. A constant threshold is typically used for R2, or is manually selected by having a trained
user assign a scene-specific threshold value between open water, flooded vegetation, and upland areas,
when using data from other sensors. The region growing algorithm evaluates pixels adjacent to the
previously mapped open water and assesses the pixel values compared to the user-defined thresholds.
If the adjacent pixel’s value is greater than the threshold value, then the pixel is classified as flooded
vegetation, and the process is repeated until no additional pixels meet the threshold criterion.

Each scene’s open-water classification that showed the highest overall agreement with its
corresponding R2 baseline product was used as the starting point for flooded vegetation-region
growing. While all three beam modes were tested in the prior analyses in this study, following the
open-water analysis, the 16 m pixel resolution beam mode was deemed the most suitable and was
chosen as the sole beam mode for testing in the flooded-vegetation analysis.

Since different CP parameters are measured in different units, thresholds needed to be identified
for each of the top four CP parameters that showed the highest separability between flooded vegetation
and other land-cover classes. Using the previously delineated flooded-vegetation polygons created
for the separability analysis, the average pixel values of the areas covered by these polygons was
calculated for each scene and each of the top four parameters. In addition to visual checking of
flooded-vegetation areas, average pixel values were used to aid in establishing suitable thresholds
to use for each parameter in the region growing algorithm. The average values were also compared
with the average incidence angle of each scene, to assess if flooded-vegetation threshold values were
dependent on viewing geometry. Following the identification of appropriate threshold values for each
parameter and incidence angle, flooded-vegetation-region growing was performed on the selected
open-water classifications, resulting in one final flood-extent image for each sample scene. These
images represent all inundated areas in the sample scene, including both open water and flooded
vegetation, in addition to permanent water.

2.6.2. Flooded-Vegetation-Region-Growing Assessment

Flooded-vegetation omission was calculated for each CP parameter by examining the amount of
flooded vegetation that was mapped in areas covered by the user-defined flooded-vegetation polygons.
While these polygons are not representative of all flooded vegetation present in each scene, they still
serve to compare the relative performance of each parameter, as they represent some of the most
prominent flooded vegetation in each region. In order to assess one form of commission, the amount
of flooded vegetation mapped in each scene outside of the polygon areas was calculated. Only areas
with slopes more than 4 degrees were included in the commission calculations, since flooding should
not occur on sloped terrain. The slope threshold of 4 degrees was chosen due to imperfect DEM data,
with slope maps created for each scene using the DEMs previously constructed for orthorectification.
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3. Results

3.1. Open-Water Analysis

3.1.1. Attribute Usage

The top five most important CP parameters for the Ottawa region, based on the average usage
across all scenes and beam modes, were mdeltaVolume, RR, SEi, RH, and SEp. The top five most
important CP parameters for the Richelieu region were mdeltaVolume, RH, RL, SEi, and RR. Finally,
the top five most important CP parameters for the Saint John region were RH, RR, RL, mdeltaVolume,
and SEi. The top five parameters in Ottawa all had average attribute usages over 70%, while the
top five parameters in Richelieu had usages over 80%. For the Saint John region, only the top four
parameters had average usages over 70%. Four CP parameters common to the top five parameters
across all three regions were mdeltaVolume, RR, SEi, and RH, while the RL parameter was found
in the top five parameters for the Richelieu and Saint John regions only. The remaining parameter
in Ottawa’s top five was the SEp parameter. The top five most important CP parameters, based on
summed ranks across all regions and beam modes, were mdeltaVolume, RH, RR, SEi, and RL (Table 4).

Table 4. Total attribute usage points for each compact polarimetric (CP) parameter, across regions and
beam modes.

Ottawa Richelieu Saint John Total
Parameter 5 m 16 m 30 m 5 m 16 m 30 m 5 m 16 m 30 m

mdeltaVolume 22 22 22 22 22 22 20 19 20 191
RH 18 19 20 21 21 21 22 22 21 185
RR 21 21 21 18 19 18 18 21 22 179
SEi 20 20 18 19 18 19 17 18 17 166
RL 17 14 15 20 20 20 21 20 19 166
SEp 19 18 19 15 16 17 15 13 15 147
SV0 16 17 16 17 12 14 19 16 16 143
RV 12 15 11 13 15 13 16 17 18 130
SV2 10 11 10 14 14 15 14 14 13 115
SV1 11 9 9 16 17 16 11 12 10 111

conformity 14 16 17 6 4 8 12 15 4 96
m 13 12 12 12 13 12 7 5 9 95

rhoAdjust 15 10 14 10 9 10 9 4 6 87
circ 9 8 13 2 5 6 13 10 14 80
SV3 7 13 8 11 8 9 6 2 5 69

mchiEven 8 7 7 8 11 11 2 8 3 65
mdeltaEven 4 5 4 7 7 7 8 7 7 56
mdeltaOdd 5 3 3 4 3 3 10 11 12 54

delta 3 6 6 5 6 5 3 9 8 51
mchiOdd 6 2 5 3 2 2 4 6 11 41

alphaS 2 4 2 9 10 4 5 3 2 41
mchiVolume 1 1 1 1 1 1 1 1 1 9

3.1.2. Separability

The total points accumulated by each CP parameter across all regions and beam modes, based on
the level of separability between open water and other land-cover classes, are summarized in Table 5.
The top six parameters where open water showed the highest separability with other land-cover classes
were mchiVolume, mdeltaVolume, RR, RH, SEi, and SV0. It should be noted that the parameters
mchiVolume and mdeltaVolume are calculated by using the same formula, and they therefore share
the same number of points. For this reason, the top six parameters are highlighted, as opposed to the
top five highlighted in attribute usage and correlation summaries. RR possessed the second highest
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number of points, while the remaining three parameters, RH, SEi, and SV0, all shared the same number
of points, tying for the third most-separable parameter between upland cover and open water (Table 5).

Table 5. Total open-water separability points for each CP parameter, across regions and beam modes.

Ottawa Richelieu Saint John
Parameter 5 m 16 m 30 m 5 m 16 m 30 m 5 m 16 m 30 m Total

mchiVolume 25 25 25 33 33 33 14 14 13 215
mdeltaVolume 25 25 25 33 33 33 14 14 13 215

RR 24 24 24 33 33 33 13 14 13 211
RH 12 12 12 26 26 26 14 14 14 156
SEi 12 12 12 26 26 26 14 14 14 156
SV0 12 12 12 26 26 26 14 14 14 156
RL 11 11 11 21 22 23 15 15 13 142
RV 9 10 9 22 23 23 13 15 13 137

mchiEven 12 14 14 19 22 23 1 1 1 107
mdeltaEven 9 11 11 15 20 19 0 0 0 85

mchiOdd 4 6 5 10 12 12 11 11 10 81
mdeltaOdd 0 1 1 5 9 9 10 10 10 55

SV1 3 3 3 12 12 12 1 1 1 48
circ 2 6 6 6 11 10 0 0 0 41

conformity 2 6 6 6 11 10 0 0 0 41
SV3 1 1 1 4 4 4 8 9 8 40

alphaS 1 3 3 5 8 8 0 0 0 28
SEp 2 6 4 0 2 1 0 0 0 15

rhoAdjust 1 2 3 0 3 2 0 0 0 11
delta 0 0 1 2 3 4 0 0 0 10

m 1 2 3 0 2 2 0 0 0 10
SV2 1 1 1 1 2 3 0 0 0 9

3.1.3. Correlation

In the Ottawa region, the five CP parameters that remained most frequently after removing all
other highly correlated parameters were delta, SV1, SV2, m, and mdeltaEven. For the Richelieu region,
the five CP parameters that remained most frequently were SV1, SV2, delta, m, and mdeltaEven. Finally,
for the Saint John region, the most frequent remaining five CP parameters were delta, mdeltaEven,
SEp, SV1, and SV2. All five top parameters in the Saint John region remained for every scene in all
three beam modes. The parameters SV1 and SV2 also remained in every scene for every beam mode in
the other two study regions. The same was true of the delta parameter, except for a single scene and
beam mode in the Richelieu region. Overall, across all regions and beam modes, the highest-ranking
parameters were SV1, SV2, delta, m, and mdeltaEven (Table 6).

Table 6. Total correlation points for each CP parameter, across regions and beam modes.

Ottawa (n = 5) Richelieu (n = 10) Saint John (n = 4)

Parameter 5 m 16 m 30 m 5 m 16 m 30 m 5 m 16 m 30 m Total
SV1 5 5 5 10 10 10 4 4 4 57
SV2 5 5 5 10 10 10 4 4 4 57
delta 5 5 5 10 9 10 4 4 4 56

m 3 5 5 9 9 9 3 3 3 49
mdeltaEven 4 4 4 6 8 8 4 4 4 46

SEp 2 2 2 7 7 7 4 4 4 39
RV 2 4 3 6 4 6 1 1 1 28

mdeltaVolume 4 3 3 5 1 1 2 2 2 23
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Table 6. Cont.

Ottawa (n = 5) Richelieu (n = 10) Saint John (n = 4)

Parameter 5 m 16 m 30 m 5 m 16 m 30 m 5 m 16 m 30 m Total
SV3 2 2 2 2 4 4 0 0 0 16
SEi 2 3 4 1 3 2 0 0 0 15

alphaS 2 1 1 1 2 2 2 2 2 15
mdeltaOdd 3 2 3 0 0 0 1 1 1 11
mchiOdd 0 0 0 1 3 2 0 0 0 6
rhoAdjust 1 0 0 0 0 0 1 1 1 4

mchiVolume 0 0 0 0 0 0 1 1 1 3
mchiEven 0 0 0 0 1 1 0 0 0 2

RL 0 0 0 0 1 1 0 0 0 2
circ 0 0 0 0 0 0 0 0 0 0

conformity 0 0 0 0 0 0 0 0 0 0
RH 0 0 0 0 0 0 0 0 0 0
RR 0 0 0 0 0 0 0 0 0 0
SV0 0 0 0 0 0 0 0 0 0 0

3.1.4. Final Parameter Rankings and Stepwise Open-Water Classification

Based on the sum of the normalized ranking of points accumulated over the attribute usage,
separability, and correlation analyses (Table 7), the top five highest-scoring parameters— mdeltaVolume,
RR, SEi, RV, and SV1—were entered, in this order, into the stepwise classification procedure.

Table 7. Normalized final point ranking of all compact polarimetric parameters.

Parameter Attribute Usage Separability Correlation Normalized Points
mdeltaVolume 1.00 1.00 0.40 2.40

RR 0.94 0.98 0.00 1.92
SEi 0.87 0.73 0.26 1.85
RV 0.68 0.64 0.49 1.81
SV1 0.58 0.22 1.00 1.80
RH 0.97 0.73 0.00 1.69
SV2 0.60 0.04 1.00 1.64
RL 0.87 0.66 0.04 1.56
SEp 0.77 0.07 0.68 1.52

mdeltaEven 0.29 0.40 0.81 1.50
SV0 0.75 0.73 0.00 1.47
m 0.50 0.05 0.86 1.40

delta 0.27 0.05 0.98 1.30
mchiVolume 0.05 1.00 0.05 1.10

mchiEven 0.34 0.50 0.04 0.87
SV3 0.36 0.19 0.28 0.83

mdeltaOdd 0.28 0.26 0.19 0.73
mchiOdd 0.21 0.38 0.11 0.70

conformity 0.50 0.19 0.00 0.69
circ 0.42 0.19 0.00 0.61

alphaS 0.21 0.13 0.26 0.61
rhoAdjust 0.46 0.05 0.07 0.58

3.1.5. Omission, Commission, and Overall Agreement

The number of scenes each set of input parameters showed minimum omission and commission,
and maximum overall agreement for each study region is summarized in Table 8. For example, out of
five sample scenes for the 5 m beam mode in the Ottawa region, two omitted the least amount of
water when using four input features, while two, three, and five input parameters all had the lowest
omission for a single scene each. No scenes showed their lowest omission when using only one input
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parameter. A row showing the percentage of all trial scenes in each region where omission, commission,
or agreement were at their best is also included in the table, with the best result for each region and
accuracy test highlighted. Again, using omission results from the Ottawa region as an example, across
all three resolutions, the number of input features that most frequently showed the least omission
was three input features, accounting for roughly 33% of the lowest omission scenes out of the 15 total
scenes tested.

Table 8. Number of scenes showing lowest omission and commission and highest overall agreement of
open-water classifications, based on number of input parameters across study regions and beam modes.

Lowest Omission Lowest Commission Highest Overall Agreement
# Parameters

→

Beam Mode ↓
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Ottawa

5 m 0 1 1 2 1 0 0 3 1 1 0 0 2 2 1
16 m 1 1 3 0 0 0 1 0 3 1 0 0 1 2 2
30 m 1 2 1 1 0 1 1 0 2 1 0 0 1 1 3

% Scenes 13.33 26.67 33.33 20.00 6.67 6.67 13.33 20.00 40.00 20.00 0.00 0.00 28.57 35.71 35.71

Richelieu

5 m 5 1 1 3 0 0 2 1 1 6 0 0 1 4 5
16 m 6 2 2 0 0 1 2 0 2 5 1 1 3 3 2
30 m 5 3 0 1 1 1 2 0 2 5 2 1 0 3 4

% Scenes 53.33 20.00 10.00 13.33 3.33 6.67 20.00 3.33 16.67 53.33 10.00 6.67 13.33 33.33 36.67

Saint
John

5 m 3 0 0 1 0 0 0 1 0 3 0 0 0 3 1
16 m 1 2 0 1 0 0 0 3 0 1 1 1 0 2 1
30 m 3 1 0 0 0 0 0 1 2 1 0 1 0 2 1

% Scenes 58.33 25.00 0.00 16.67 0.00 0.00 0.00 41.67 16.67 41.67 7.69 15.38 0.00 53.85 23.08

The average omission, commission, and overall agreement percentages across beam modes for each
number of input parameters and region are shown in Table 9, with the best result for each region and
accuracy test being highlighted in green. This table also includes the average omission, commission,
and overall agreement of the baseline 22 CP parameter classification, with its corresponding R2
classification for each region. While the best results of the one-to-five input parameter trials are
highlighted in green, cases where the 22 CP parameter trial showed the best result are highlighted in
blue. For example, the lowest average omission in the Ottawa region was found by using five input
parameters, with an average omission of 10.42%, while the baseline 22 CP parameter trial showed
even lower omission, on average, than the other five cases (10.26%). While it may be expected that
the baseline classification using all 22 parameters should tend to show better results than when using
one-to-five parameters, this was not always the case.

Table 9. Average omission, commission, and overall agreement of open-water classifications, based
on number of input parameters across regions, compared to baseline 22 CP parameter classifications.
The best results of the one-to-five input parameter trials are highlighted in green, and cases where the
22 CP parameter trial was best are also highlighted in blue.

Number of Input Parameters
1 2 3 4 5 22

Omission
Ottawa 12.55 12.29 11.07 10.69 10.42 10.26

Richelieu 4.03 6.30 4.76 4.66 4.61 5.35
Saint John 17.67 20.45 26.47 20.03 20.74 20.70

Commission
Ottawa 11.21 11.19 9.53 9.30 9.39 9.37

Richelieu 5.19 4.14 4.06 3.98 3.93 3.92
Saint John 21.49 20.23 17.04 17.74 17.62 17.49

Overall
Agreement

Ottawa 98.90 98.92 99.07 99.09 99.10 99.11
Richelieu 98.78 98.76 98.85 98.86 98.90 98.89
Saint John 99.57 99.57 99.57 99.60 99.60 99.61
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3.1.6. Processing Time

Results of the time trials using a varying number of input parameters show that, as predicted, the
amount of time required to complete the open-water classification increases as the number of parameters
used in the classification algorithm increases. The effect, however, is much more pronounced when
using images at a higher pixel resolution, as can be seen in Figure 3. The 5 m resolution trials show a
substantial increase in processing time compared to the 16 and 30 m trials, even when using only one
input parameter. While the 16 m tests show a higher processing time than the 30 m, the differences are
significantly less when compared to the 5 m tests.
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3.2. Flooded-Vegetation Analysis

3.2.1. Separability

Parameters were ranked based on separability in the same fashion as in the open-water analysis,
with points assigned to each parameter based on how many land-cover types showed some, good,
or excellent separability with flooded vegetation. The top five parameters where flooded vegetation
showed the highest separability with other land-cover classes were RH, RR, SEi, SV0, and mchiEven
(Table 10). The second-, third-, and fourth-place parameters all scored extremely close, with RR being
only one point higher than SEi and SV0, which were tied. All parameters had fairly consistent point
rankings across the three resolutions and beam modes, except for mchiEven, which ranked lower in
the Saint John region than the other top four parameters in all three beam modes.

3.2.2. Region Growing Using Thresholding

Flooded-Vegetation Thresholds

Average values for the top four most-separable flooded-vegetation parameters beneath each
flooded-vegetation polygon show a dependence on incidence angle (Figure 4). Based on these graphs,
two separate groups separated at 30 degrees incidence angle can be seen for three of four parameters,
while the distinction is less clear for RR. Final threshold values are plotted as horizontal dotted lines on
the y-axis, with higher threshold values set for incidence angles below 30 degrees. These thresholds
were initially set below average polygon values to ensure that region growing captured the majority
of flooded vegetation that is brighter than threshold values. Final threshold values were determined
based on these graphs, by visually checking the original data, and through region growing trial and
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error. For certain parameters, for example SEi, the threshold value of 0.25 for incidence angles above
30 degrees was set higher than the average value of three polygons. While this created an omission
error for these three polygons, it was set at this value in order to reduce commission, since setting the
threshold lower resulted in region growing into bright targets other than flooded vegetation.

Table 10. Total flooded vegetation separability points for each CP parameter, across regions and
beam modes.

Ottawa Richelieu Saint John
Parameter 5 m 16 m 30 m 5 m 16 m 30 m 5 m 16 m 30 m Total

RH 20 20 20 17 17 18 20 21 20 173
RR 22 22 22 19 20 20 10 11 11 157
SEi 17 18 18 15 15 16 19 19 19 156
SV0 17 18 18 15 15 16 19 19 19 156

mchiEven 15 16 16 18 19 19 5 5 5 118
mdeltaEven 13 13 13 17 17 18 3 4 4 102

SV1 15 15 15 14 14 15 1 1 1 91
mchiVolume 10 12 12 8 10 11 8 8 7 86

mdeltaVolume 10 12 12 8 10 11 8 8 7 86
RL 8 9 10 5 5 6 11 11 10 75

alphaS 5 6 6 9 10 11 6 6 6 65
circ 2 2 2 7 9 10 9 9 9 59

conformity 2 2 2 7 9 10 9 9 9 59
RV 4 4 4 5 5 6 10 11 9 58
SV3 1 1 1 7 7 8 10 10 10 55
delta 1 1 2 7 7 8 0 0 0 26
SV2 4 4 4 2 2 2 0 0 0 18
SEp 2 2 2 0 2 1 2 2 2 15
m 1 0 1 0 0 1 10 0 0 13

mchiOdd 0 0 0 1 1 2 2 2 1 9
mdeltaOdd 0 0 0 0 0 1 1 1 1 4
rhoAdjust 1 0 1 0 0 1 0 0 0 3
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Accuracy Assessment

The omission error and commission error for the outputs of the flooded-vegetation-region-growing
analysis, using final threshold values, are shown for each of the four CP parameters analyzed on
each 16 m sample scene in Table 11. For each scene, the parameter showing the lowest percentage
error has been highlighted. While there is high variability in error between scenes depending on
the amount of flooded vegetation present, the RH parameter omitted the least amount of flooded
vegetation in delineated flooded-vegetation polygons. For commission error, there does not appear to
be a pronounced pattern among the other three parameters to indicate that one of them performed best.

Table 11. Flooded-vegetation omission and commission for all scenes for top four CP parameters found
most separable between flooded vegetation and other land-cover classes.

Omission Commission
Scene Dates RH RR SEi SV0 RH RR SEi SV0

Ottawa
26 April 2017—112601 25.64 67.39 27.00 32.24 2.02 1.02 3.07 2.43
30 April 2017—110923 17.79 18.44 32.41 33.40 3.25 2.36 2.13 2.04
20 May 2017—112600 68.49 100.00 72.25 98.57 0.77 0.51 1.04 0.81

Richelieu

11 April 2011—105734 12.67 14.14 33.43 35.63 14.59 8.80 9.10 8.45
11 April 2011—105737 16.29 17.89 37.49 40.63 15.98 12.06 11.12 10.88
18 April 2011—105324 17.83 16.73 39.53 42.31 5.44 4.75 3.53 3.56
18 April 2011—105328 16.52 16.09 39.94 47.66 6.75 5.70 4.63 4.53
05 May 2011—105714 9.84 11.90 26.44 28.04 16.48 12.47 13.10 12.79
05 May 2011—105717 5.61 6.42 17.33 18.84 11.89 8.36 7.74 7.70
08 May 2011—223030 10.85 60.18 12.80 20.64 4.17 3.63 5.48 4.31
08 May 2011—223033 11.69 41.08 13.97 24.32 2.42 2.00 3.88 3.15
22 May 2011—110132 6.30 9.63 19.18 21.09 16.49 13.10 13.72 13.55
22 May 2011—110144 35.00 45.38 71.50 73.38 2.15 1.40 1.23 1.21

Saint
John

04 July 2008—104403 100.00 100.00 35.94 98.68 0.88 0.80 1.28 1.03
19 May 2009—104013 12.39 38.69 51.40 52.59 4.52 2.25 2.28 2.11
27 April 2010—103615 16.72 52.24 85.82 86.05 0.31 0.23 0.16 0.16

Average 23.98 38.51 38.53 47.13 6.76 4.96 5.22 4.92
# Lowest Cases 13 2 1 0 0 7 3 7

4. Discussion

An examination of omission, commission, and agreement of the RCM products with R2-derived
open-water products should enable the selection of an optimal set of CP parameters to classify open
water. Based on the multicriteria ranking, the five highest CP parameters were mdeltaVolume, RR,
SEi, RV, and SV1. The parameters mdeltaVolume and mchiVolume are very similar and represent the
volume component of the m-chi and m-delta decompositions, respectively. These decompositions
are used to describe physical scattering mechanisms, with the other two components representing
even-bounce and odd-bounce [33]. Because mdeltaVolume and mchiVolume are nearly identical,
they are interchangeable when deciding on final mapping parameters. The volume component of
these decompositions indicates the amount of volume backscatter compared to even- or odd-bounce
scattering. Volume scattering occurs when a signal has bounced more than two times, often to the
point of random polarization. Due to the predominance of single-bounce interactions with the flat
surface of open water, very little of the transmitted signal becomes unpolarized; therefore, the amount
of volume scattering detected is low, particularly compared to upland cover. While one might assume
that single-bounce scattering would be a good indicator of open water, in this case, it appears that the
absence of volume scattering is more important.

The second and fourth highest-ranking parameters are two intensity channels: RR and RV. RV is
one of the two native CP channels available from RCM, representing right-hand circular transmit and
vertical receive, and shows high contrast between open water and other land-cover types. RR represents
right-hand circular transmit and right-hand circular receive and also shows high contrast, but requires
further processing to generate from received RCM data. As these channels depict backscatter intensity,
low received backscatter from open water due to specular reflection causes a high contrast with
surrounding features. The presence of surface roughness from wind may alter this effect depending on
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the channel. From a visual assessment of scenes with wind present, the RR channel appeared to be less
sensitive to the effects of water-surface roughness than the RV channel. It should be stressed that there
is a large caveat in the use of the native RV and RH channels themselves for classification. The outgoing
microwaves of RCM’s CP mode are transmitted in a circular polarization, containing both horizontal
and vertical components, while backscatter is received in either horizontal or vertical polarization,
depending on the channel. For this reason, backscatter received by the RH channel can be thought of as
a combination of HH and VH data, while that received by the RV channel would be a combination of
HV and VV data. In both cases, the contributions from each of the two comprising components cannot
be separated or quantified. For this reason, methodologies relying on these channels on their own are
discouraged. A more appropriate approach would be to use these channels to generate covariance
matrices, Stokes vectors, and other parameters that serve as input for classification [34]. However,
in the context of emergency flood mapping, the goal is to create the most accurate product possible in
a period of under four hours. This relies on the ability to exploit the relative contrast between open
water, flooded vegetation, and upland land cover, which is often based simply on intensity differences
or other measurable pixel values. In this case, the use of the RV and RH channels may be acceptable
or even desirable if they show high contrast between the three classes listed above, regardless of any
ambiguity present in the polarization components.

The third highest-ranking parameter was the intensity component of Shannon entropy. Shannon
entropy is a measure of disorder or randomness and comprises two contributions relating to intensity
and degree of polarization, with the intensity component depending on total backscattered power [35,36].
Again, as open water is typically dominated by specular reflection, backscatter intensity from these
areas can be expected to be much lower than other land-cover types which would include more
double-bounce and volume scattering. The fifth highest-ranking parameter is the second element of the
Stokes vector, SV1, which represents differences in the degree of horizontal and vertical polarization
measured in received backscatter. SV1 values that drift further positively or negatively from 0 indicate
a greater degree of horizontal or vertical polarization, respectively [8,29]. In this case, it was found that
values closer to 0 were determined to be a better predictor of open water, indicating less difference
between horizontal and vertical polarizations.

Table 9 showed that agreement between RCM and R2 open-water classifications was generally
not significantly worse, using between four to five CP parameters, compared to all 22 parameters,
for classification. Based on top rankings, the ideal parameters to use are mdeltaVolume, RR, SEi, and RV.
While mdeltaVolume ranked highest, mchiVolume may be substituted, as it is nearly identical and
therefore shows the same high separability between flooded vegetation and other land-cover classes.
This suggests that the m-chi decomposition may be more useful, since the mchiEven parameter was the
fifth highest-ranking parameter for flooded-vegetation-region growing. By substituting mchiVolume
for mdeltaVolume, the time needed to run the full flood mapping process may be reduced, as separate
parameters will not need to be processed to map open water and flooded vegetation if mchiEven is
used as the flooded-vegetation growing parameter.

Although there is high variability between individual scenes, there appears to be a general
trend of decreasing omission and commission and increasing overall agreement as the number of CP
parameters used in the classifications increases. This is more apparent when viewing the average
omission, commission, and agreement percentages in Table 9 as opposed to the percentages of best-case
scenes calculated in Table 8. Changes in omission, commission, and agreement are not always in the
same direction as the number of input parameters increases. For example, while a classification with
three parameters may have less omission than the two-parameter classification, omission may increase
again with the addition of a fourth parameter. By examining results across all scenes and beam modes,
there does not appear to be a consistent number of parameters where a marked improvement is seen.
For the majority of scenes and beam modes, omission, commission, and overall agreement with the
baseline 22 parameter classification appear to level off when using four parameters.
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An optimal set of input parameters for open-water classification appears to depend somewhat
on the region. Omission error reaches a minimum by using one input feature (mdeltaVolume) for
Richelieu and Saint John, while at least three input features are needed to minimize omission error over
Ottawa. Commission and overall agreement appear to be more consistent between regions, achieving
minimum and maximum values, respectively, at four to five input features. Omission is deemed to be
less important than commission, as the majority of these errors are removed in postprocessing, using
NHN data to infill permanent water, and automated methods, including filtering and morphological
operators, to infill flooded areas. Commission is currently the source of error that requires the most
time and effort to remove, since it is largely performed by using manual editing. Work is currently
underway to generate masks where flooding can occur, using Height Above Nearest Drainage (HAND)
terrain models [37] that will be used to largely automate removal of false positives.

Averaging the percentages of best-case scenes in Table 8 for number of input features across all
three regions and resolutions suggests the first four or five input features represent the optimal set that
minimizes omission and commission, while maximizing overall agreement with baseline R2 products.
Across all regions and beam modes, using four input features was ranked highest for 27% of scenes,
followed by five features at 24%, with one and three features tied at 17%. While it may be difficult
to determine a fixed number of features that consistently generates the best product, it appears that
the first four features should perform best in the majority of cases, with only a small quality penalty
compared to five features, in rare cases. While in this study the top-ranking parameters were tested by
adding them to the classification algorithm in a set order, it is possible that different combinations of
the top parameters could improve accuracy from the results seen here.

Of the three RCM beam modes simulated in this study, the 16 m Medium Resolution appears to
be the most suitable for EGS flood mapping operations. Examining the predicted characteristics of
each beam mode, we see the 16 m mode has the best balance of pixel resolution, noise floor, and swath
width. While the 30 m Medium Resolution has a large swath width at 125 km and a comparatively low
noise floor of −24 dB, a 30 m pixel resolution is likely too coarse for the majority of flood-mapping
operations. The 5 m High-Resolution and 16 m Medium-Resolution beam modes share the same swath
width at 30 km, and while the finer resolution of 5m would typically be more desirable, the −19 dB
noise floor of this beam mode is considerably worse than the 16 m beam mode at −25 dB and is likely
unacceptable for accurate mapping of surface water. While a 30 km swath width is narrower than
desired, the noise floor and pixel resolution of the 16 m Medium Resolution beam mode are adequate
and the best compromise among the three modes examined. As was shown in the analysis conducted
on processing time, a coarser resolution can be desirable due to decreased processing times, if sufficient
detail can still be maintained in the imagery, to create satisfactory map products. While the main
drawback of the 5 m High Resolution beam mode is the high noise floor, it should be noted that these
predicted NESZ values are the worst cases expected, so perhaps this beam mode will be better in
reality than currently assumed. Accuracy assessments of the open-water classifications also showed
that the 5 m High Resolution beam mode, on average, had higher omission and commission and lower
overall agreement than the other two beam modes, which only showed marginal differences in these
measurements between one another. For these reasons, the 16 m Medium Resolution beam mode was
the sole mode tested in the flooded-vegetation-region-growing analysis and will likely remain the
primary RCM beam mode of choice for future EGS flood mapping operations (Figure 5).
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Figure 5. Simulated 16 m RADARSAT Constellation Mission (RCM) Right-Horizontal (RH) channel
(top) from RS2 imagery acquired west of Ottawa, on 30 April 2017, showing bright areas characteristic
of double-bounce interactions with flooded vegetation. The derived open-water and flooded-vegetation
map (middle) and National Aerial Surveillance Program (NASP) oblique image acquired 15 May 2017,
confirming vegetation flooding. The red arrow indicates the look direction.

As expected, an increase in processing time is seen as the number of CP parameters used in the
classification algorithm increases; however, the pixel resolution of the input parameters has a much
greater effect on processing time than the number of parameters used. The effect of adding more
parameters to the classification algorithm is therefore much more costly as the pixel resolution of the
input data decreases. For example, viewing Figure 2, the difference in processing time required for a
one-parameter classification and a five-parameter classification using 30 m input data is roughly 3 min,
while the difference between the same two classifications using 5 m input data is roughly 13.5 min.
While the optimal number of parameters for open-water classification was found to be four or five
in most cases, due to the fact that the 16 m Medium Resolution beam mode is the most promising,
the number of input parameters will have less of an impact on processing time than if the 5 m High
Resolution beam mode was used.
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Separability analyses indicated that the top four candidates for flooded-vegetation-region growing
were RH, RR, SEi, and SV0. All four parameters are associated with measurements of backscatter
intensity: RH and RR are intensity channels, SV0 is the first element of the Stokes vector that represents
total backscatter power, and SEi indicates the intensity component of Shannon entropy. The fifth best
candidate was mchiEven, the component of the m-chi decomposition describing even- or double-bounce
physical scattering. M-chi has also been shown to exhibit reliable separability based on the Transformed
Divergence statistic between flooded vegetation and upland land cover in [14]. The more recent
literature [28] evaluated R2 and simulated RCM backscatter intensity, polarimetry, compact polarimetry,
and coherence to map flooded vegetation in the Peace Athabasca Delta. Similar to results obtained
here, [28] found the RH, mchiEven, and SEi parameters to be effective at separating flooded vegetation,
upland land-cover classes, and open water, although separability varied considerably, depending on
flooded-vegetation type. While they did not consider intensity channels RR and RL, they found the
RR/RL ratio showed poor separability between flooded vegetation and classes other than open water.
Different study regions support diverse flooded and upland vegetation types, which may account
for dissimilar separabilities across regions; however, results obtained here and in [28] are consistent
enough to suggest robustness across the four regions tested in these studies.

RH had the highest-ranking flooded-vegetation separability, and following the region growing
analysis, showed the lowest omission when compared to defined flooded-vegetation polygons.
The other top three parameters that ranked highest in separability with flooded vegetation were RR,
SEi, and SV0. RH has a slight advantage over these three in terms of processing requirements, as it is a
native RCM channel available by default when ordering CTLR products and therefore does not require
any extra processing to derive it. As mentioned earlier when addressing the use of the RV channel in
open-water classification, the use of the RH channel in this case for flooded-vegetation classification may
be considered acceptable regardless of the ambiguity between the horizontal and vertical components
of received backscatter. Flooded-vegetation-region growing uses pixel-value-based thresholding,
which only requires that the parameter used shows high separability between flooded vegetation and
any adjacent classes. While the other three parameters would require extra processing to generate, RR
and SEi are already in the top five highest candidates for open-water classification and may need to be
generated anyway. While SV0 may not be in the top five open-water classification parameters, the Stokes
parameters are often required to calculate further parameters and decompositions, including the m-chi
and m-delta decompositions [11,33]. If either of these decompositions needs to be generated, the four
Stokes parameters will be calculated in the process anyway, including SV1, the fifth highest-ranking
open-water classification parameter. While RH showed the lowest omission error of the top region
growing parameters, on average, the other three parameters appeared to show lower commission error
with less flooded vegetation predicted on slopes greater than four degrees. Examining the average
omission error of each parameter across all scenes, we see that RH had an average omission of roughly
14.53% less than the next best parameter, RR. In terms of commission, RH had an average only 1.84%
worse than the best parameter, SV0 (Table 11). It is for this reason that, although commission was
deemed a higher priority than omission when selecting parameters, in this case, RH is only marginally
worse than the other parameters in terms of commission, but substantially better in terms of omission.
Therefore, RH was selected as the optimal parameter for flooded-vegetation-region growing.

A trade-off between omission and commission is not uncommon, as it follows that, if a parameter
has increased rates of omission, meaning it has not predicted flooded vegetation where it occurs, then
it is likely that it will not have over-predicted flooded vegetation in other regions where there is none.
The method of calculating omission and commission for the flooded-vegetation analysis was also
unorthodox compared to a traditional assessment, but was necessary due to the ephemeral nature of
flooding and a lack of flooded-vegetation ground-truth coincident with each scene’s acquisition time.
The thresholds used in the region growing procedure are also a large variable affecting omission and
commission outcomes. While traditionally R2’s HH channel is used with known threshold values,
the EGS would like to continue to rely on automated identification of appropriate thresholds that can
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be applied to a variety of different parameters using different units of measurement. In this study, a link
between incidence angle and flooded-vegetation values was identified, and this link supports studies
that have shown that steeper incidence angles are better able to separate flooded from non-flooded
vegetation [15,38] with an incidence angle, in our case, of approximately 30 degrees marking a division
between two classes. While an approximate threshold value can be identified by using statistics
extracted from known flooded-vegetation areas, it is not perfect without the intervention of a user
to manually verify the thresholds and make adjustments based on individual scenes. Further study
on the relationship between incidence angle and flooded-vegetation values are required to solidify a
method for automated threshold calculations. In this study, the average incidence angle was calculated,
and the average flooded-vegetation backscatter values beneath the flooded-vegetation polygons were
identified, in order to create a relationship between the two. The mean value of flooded vegetation in
a scene will not be a valid threshold value, as the value should be the minimum flooded-vegetation
value that is also greater than the value of other land cover, to minimize commission error. The error
introduced by the threshold selection in this study may have slightly affected results, but the method
was applied in this manner to all four tested parameters and all scenes, for the sake of consistency.

The assumption that using all 22 CP parameters to create the baseline RCM products would yield
the most accurate products is not necessarily correct. The addition of so many parameters may lead to
classification overfitting and ultimately result in a more inaccurate product. This could also explain
slight variations in omission and commission results where a trial that used less parameters yielded
a better agreement with corresponding baseline R2 products. A similar correlation analysis to the
one performed in this study could have been used to immediately remove redundant parameters and
reduce the number of input features prior to the creation of the baseline products. One large example
was the inclusion of both mdeltaVolume and mchiVolume. While mdeltaVolume was ranked the most
promising parameter for open-water classification, mchiVolume was consistently ranked last in the
attribute usage, even though they are identical in their derivation. Another path of further study
could be testing different permutations and combinations of top parameters, as opposed to adding
them to the algorithm one at a time, in order. Due to the number of parameters and sheer quantity
of combinations possible, it was deemed outside of the scope of this project to test all of them, but
perhaps moving forward, different combinations of the top-ranking parameters could be assessed once
real RCM data are acquired. Another possible improvement would be testing different parameter
ratios or indices, such as RV/RH. Again, compounding parameters would introduce a quantity of
testing required that would exceed what was reasonable during the time available to conduct this
study; however, preliminary tests show that this path may prove to be promising.

This study adds to a growing body of literature on the use of compact polarimetry for surface-water
and wetland mapping. It presents a full set of CP parameters that produce the best open-water and
flooded-vegetation mapping results, using EGSs’ machine learning and region growing methods for
inundation mapping, which can also be applied to dense time-series for wetland identification and
monitoring. It identifies CP parameters that show promise for surface-water mapping, regardless of
the method used, and justifies them on statistical and physical bases, using a large number of scenes in
three separate regions of Canada (Figure 6). It also supports and confirms the choice of parameters
for flooded-vegetation mapping determined in other regions of Canada. We expect results to be
transferrable to other parts of the world with similar vegetation; the results are also largely applicable
to regions that are different, due to the universality of radar’s physical interactions with water.
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5. Conclusions

The Emergency Geomatics Services has spent considerable effort developing open-water and
flooded-vegetation mapping methods for near-real-time flood mapping that may also be useful to
consistently and efficiently monitor wetland dynamics. Simulated RADARSAT Constellation Mission
compact polarimetry has been shown to generate flood maps, including for open-water and flooded
vegetation, that are consistent with current maps produced by EGS from RADARSAT-2. Using a
stepwise classification procedure that entered CP parameters in order, based on a multi-criterion
ranking that included variable importance, separability, and correlation, to remove redundant features,
the top four parameters (mdelta/mchiVolume, RR, Sei, and RV) produced open-water maps consistent
with baseline RADARSAT-2 maps when evaluated using omission, commission, and overall agreement.
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Separability analysis identified four promising parameters (RH, RR, SEi, and SV0) for regions growing
flooded vegetation, based on intensity thresholds. An examination of intensity beneath known
flooded-vegetation targets revealed a dependence on incidence angle, with two separate groups
occurring at greater than and less than 30 degrees. By examining intensity values at each incidence
angle range and through trial and error, thresholds were determined and applied to regions growing
flooded vegetation, for each parameter and incidence angle. An assessment of flooded-vegetation maps
showed that the most separable parameter (RH) had the lowest omission evaluated against delineated
flooded-vegetation polygons, while differences were smaller between the four top parameters for
commission evaluated on upland slopes, where flooding cannot occur. The 16 m Medium Resolution
beam mode with a noise floor of −25 dB will likely be the requested beam mode for flood-response
operations, providing the best combination of pixel resolution, noise floor, processing time, and swath
width compared to the 5 m High Resolution and 30 m Medium Resolution beam modes. The final set
of CP parameters required to run the full operational flood-mapping procedure includes both native
parameters RH and RV, in addition to three derived parameters, mdelta/mchiVolume, RR and SEi.
While further development would be required to add CP parameter generation to current flood tools,
there are other projects currently underway at the CCMEO, with similar objectives. Toolboxes are being
developed to create value-added products from RCM data, including deriving CP parameters such as
the ones highlighted above. While these products would not be created in near real time, the underlying
processes could potentially aid in accelerating the EGS’s tool development. Regardless, work is still
needed to modify existing tools to ingest and process real RCM data’s file formats and directory
structure. Additional testing will also be necessary upon reception of real RCM data, to validate the
results obtained here.
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