Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,017)

Search Parameters:
Keywords = gene mRNA expression levels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2424 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 (registering DOI) - 1 Aug 2025
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
17 pages, 2205 KiB  
Review
The Mystery Actor in the Neuroendocrine Theater: Who Really Knows Obestatin? Central Focus on Hypothalamic–Pituitary Axes
by Michał Szlis, Anna Wójcik-Gładysz, Alina Gajewska and Bartosz Jaroslaw Przybyl
Int. J. Mol. Sci. 2025, 26(15), 7395; https://doi.org/10.3390/ijms26157395 (registering DOI) - 31 Jul 2025
Viewed by 67
Abstract
The available literature data indicate that obestatin, a peptide derived from the preproghrelin precursor, may modulate neuroendocrine function, particularly in appetite regulation and somatotrophic/gonadotrophic pathways. This review synthesizes animal studies assessing the influence of obestatin on central neuroendocrine systems. Obestatin has been shown [...] Read more.
The available literature data indicate that obestatin, a peptide derived from the preproghrelin precursor, may modulate neuroendocrine function, particularly in appetite regulation and somatotrophic/gonadotrophic pathways. This review synthesizes animal studies assessing the influence of obestatin on central neuroendocrine systems. Obestatin has been shown to affect the hypothalamic appetite-regulating center through neuropeptides such as neuropeptide Y and agouti-related peptide, yet findings remain inconsistent between species. In rodents, its effects on food intake and energy balance are inconclusive, whereas sheep models demonstrate significant alterations in orexigenic gene expression and peptide immunoreactivity. Regarding the somatotrophic axis, obestatin showed no significant effect on growth hormone (GH) secretion in rodents; however, in sheep, it modulated growth hormone-releasing hormone and somatostatin mRNA expression, elevated pituitary GH synthesis, and increased circulating GH levels. Studies involving the gonadotrophic axis demonstrated the presence of obestatin in Leydig and pituitary cells, with in vitro evidence suggesting its ability to modulate intracellular pathways implicated in gonadoliberin, luteinizing hormone, and follicle-stimulating hormone release. The collective findings discussed in this article indicate that obestatin interacts with multiple hypothalamic–pituitary axes, though its effects vary depending on species and experimental conditions. This review highlights the complexity of obestatin’s central actions and the need for further research to elucidate its functional relevance in neuroendocrine regulation. Full article
(This article belongs to the Special Issue New Insights and Research on Nutrition and Obesity)
Show Figures

Figure 1

18 pages, 5970 KiB  
Article
Isotonic Protein Solution Supplementation Enhances Growth Performance, Intestinal Immunity, and Beneficial Microbiota in Suckling Piglets
by Changliang Gong, Zhuohang Hao, Xinyi Liao, Robert J. Collier, Yao Xiao, Yongju Zhao and Xiaochuan Chen
Vet. Sci. 2025, 12(8), 715; https://doi.org/10.3390/vetsci12080715 - 30 Jul 2025
Viewed by 188
Abstract
Suckling is crucial for piglet intestinal development and gut health, as it improves resilience during the challenging weaning phase and promotes subsequent growth. IPS, comprising Na+/K+ ions, whey protein, and glucose, has been shown to have positive effects on animal [...] Read more.
Suckling is crucial for piglet intestinal development and gut health, as it improves resilience during the challenging weaning phase and promotes subsequent growth. IPS, comprising Na+/K+ ions, whey protein, and glucose, has been shown to have positive effects on animal growth and intestinal health. The objectives of this study were to assess the impact of IPS consumption on the growth performance, immunity, intestinal growth and development, and microbiota structure of suckling piglets. A total of 160 newborn piglets were randomly divided into control and IPS groups, with IPS supplementation starting from 2 to 8 days after birth and continuing until 3 days before weaning. The findings revealed that IPS boosted the body weight at 24 days by 3.6% (p < 0.05) and improved the body weight gain from 16 to 24 days by 15.7% (p < 0.05). Additionally, the jejunal villus height and villus height to crypt depth ratio in the IPS group were notably increased to 1.08 and 1.31 times (p < 0.05), respectively, compared to the control group. Furthermore, IPS elevated the plasma levels of IgA and IgM, reduced the plasma levels of blood urea nitrogen (BUN), and enhanced the content of secretory immunoglobulin A (SIgA) in the jejunal mucosa of suckling piglets. Furthermore, IPS upregulated the mRNA expression of tight junction proteins GLP-2, ZO-1, and Claudin-1 in jejunal tissue, while downregulating the regulatory genes in the Toll-like pathway, including MyD88 and TLR-4 (p < 0.05). The analysis of gut microbiota indicated that IPS altered the relative abundance of gut microbes, with an increase in beneficial bacteria like Alloprevotella and Bacteroides. In conclusion, this study demonstrates that IPS supplementation enhances weaning weight, growth performance, immune function, and intestinal development in piglets, supporting the integration of IPS supplementation in the management of pre-weaning piglets. Full article
Show Figures

Figure 1

27 pages, 4786 KiB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 311
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Graphical abstract

15 pages, 4068 KiB  
Article
Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator
by Xin Shu, Jiying Liu, Bingjie Xu, Hui Wang, Li Liu, Xiaotong Zheng and Jianfei Chen
Animals 2025, 15(15), 2230; https://doi.org/10.3390/ani15152230 - 29 Jul 2025
Viewed by 116
Abstract
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize [...] Read more.
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize MOTS-c coding sequences across major poultry species through bioinformatics analysis and experimental validation. The alignment results showed high sequence similarity in the MOTS-c coding regions between avian and mammalian species. However, a single nucleotide deletion was identified in avian sequences at the position corresponding to the fourth amino acid residue of mammalian homologs, resulting in divergent downstream amino acid sequences. Despite this deletion, several residues were conserved across species. Phylogenetic analysis of mRNA sequences grouped pigeons with mammals, while protein sequence analysis revealed that poultry and mammals form separate branches, highlighting the divergence between avian and mammalian MOTS-c sequences. Tissue expression profiling demonstrated widespread distribution of chicken MOTS-c across multiple tissues, with the highest expression levels in the heart. Fasting significantly reduced heart MOTS-c expression, suggesting potential metabolic regulatory functions. Functional analysis of MOTS-c in primary hepatocytes revealed significant enrichment of the ribosome, oxidative phosphorylation, and key signaling pathways (PI3K-AKT and JAK-STAT) following 24 hours of treatment. Western blot validation confirmed MOTS-c-mediated activation of the AKT signaling pathway. This study represents the first comprehensive characterization of avian MOTS-c, providing critical insights into its evolutionary conservation and its potential functional roles in gene expression and cellular metabolism. Our findings establish a foundation for further investigation into the functions of mitochondrial-encoded peptides in avian species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 13401 KiB  
Article
ShenQiGan Extract Repairs Intestinal Barrier in Weaning-Stressed Piglets by Modulating Inflammatory Factors, Immunoglobulins, and Short-Chain Fatty Acids
by Rongxia Guo, Chenghui Jiang, Yanlong Niu, Chun Niu, Baoxia Chen, Ziwen Yuan, Yongli Hua and Yanming Wei
Animals 2025, 15(15), 2218; https://doi.org/10.3390/ani15152218 - 28 Jul 2025
Viewed by 187
Abstract
Weaning stress damages the intestines and disrupts the intestinal barrier in piglets, which significantly impacts the pig farming industry’s economy. We aimed to examine the effects of ShenQiGan extract (CAG) on intestinal barrier function and explore the underlying molecular mechanisms in stress-challenged weaned [...] Read more.
Weaning stress damages the intestines and disrupts the intestinal barrier in piglets, which significantly impacts the pig farming industry’s economy. We aimed to examine the effects of ShenQiGan extract (CAG) on intestinal barrier function and explore the underlying molecular mechanisms in stress-challenged weaned piglets. The experimental design involved 80 weaned piglets aged 28 days (with an average body weight of 7.78 ± 0.074 kg) that were randomly allocated into four groups: Control, LCAG (0.1% CAG), MCAG (0.5% CAG), and HCAG (1.0% CAG). After a 28-day trial period, the growth performance and incidence of diarrhea in piglets were evaluated. CAG increased the average daily gain of weaned piglets, reduced the feed-to-gain ratio, and decreased the incidence of diarrhea. It significantly lowered serum inflammatory cytokine levels while elevating immunoglobulin levels. The supplement notably enhanced concentrations of acetic acid, propionic acid, butyric acid, and isobutyric acid. Furthermore, CAG demonstrated intestinal morphology restoration and upregulation of tight junction proteins and MUC2 protein expression in jejunum. At the mRNA level, it significantly upregulated the expression of Occludin, Claudin1, and MUC2 genes. CAG improves growth performance and mitigates diarrhea in weaned piglets by enhancing intestinal barrier integrity, modulating systemic inflammatory responses, elevating immunoglobulin levels, and promoting short-chain fatty acids (SCFAs) production in the cecum. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 3919 KiB  
Article
Autophagy and PXR Crosstalk in the Regulation of Cancer Drug Metabolism and Resistance According to Gene Mutational Status in Colorectal Cancer
by Evangelos Koustas, Panagiotis Sarantis, Eleni-Myrto Trifylli, Eleftheria Dikoglou-Tzanetatou, Evangelia Ioakeimidou, Ioanna A. Anastasiou, Michalis V. Karamouzis and Stamatios Theocharis
Genes 2025, 16(8), 892; https://doi.org/10.3390/genes16080892 - 28 Jul 2025
Viewed by 234
Abstract
Background and Objectives: Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies worldwide. Although chemotherapy is an effective treatment for colorectal cancer (CRC), its effectiveness is frequently hindered by the emergence of resistant cancer cells. Studies have demonstrated a linkage between [...] Read more.
Background and Objectives: Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies worldwide. Although chemotherapy is an effective treatment for colorectal cancer (CRC), its effectiveness is frequently hindered by the emergence of resistant cancer cells. Studies have demonstrated a linkage between drug resistance and the pregnane X receptor (PXR), which influences the metabolism and the transport of chemotherapeutic agents. Likewise, autophagy is also a well-established mechanism that contributes to chemotherapy resistance, and it is closely tied to tumor progression. This pre-clinical study aims to investigate the role of mtKRAS-dependent autophagy with PXR expression after treatment with Irinotecan in colorectal cancer. Methods: CRC lines were treated with specific inhibitors, such as 3-methyladeninee, hydroxychloroquine PI-103, and irinotecan hydrochloride, and subjected to various assays, including MTT for cell viability, Western blot for protein expression, siRNA-mediated PXR knock-out, and confocal microscopy for autophagic vacuole visualization. Protein quantification, gene knockdown, and subcellular localization studies were performed under standardized conditions to investigate treatment effects on autophagy and apoptosis pathways. Conclusions: Our experiments showed that PXR knockdown does not alter autophagy levels following Irinotecan treatment, but it promotes apoptotic cell death despite elevated autophagy. Moreover, late-stage autophagy inhibition reduces PXR expression, whereas induction through PI3K/AKT/mTOR inhibition leads to increased expression of PXR. Our experiments uncover a mechanism by which autophagy facilitates the nuclear translocation of the PXR, thereby promoting resistance to Irinotecan across multiple cell lines. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 4965 KiB  
Article
The Rapid Activation of MYDGF Is Critical for Cell Survival in the Acute Phase of Retinal Regeneration in Fish
by Kayo Sugitani, Yuya Omori, Takumi Mokuya, Serika Hosoi, Haruto Kobayashi, Koki Miyata, Yuhei Araiso and Yoshiki Koriyama
Int. J. Mol. Sci. 2025, 26(15), 7251; https://doi.org/10.3390/ijms26157251 - 27 Jul 2025
Viewed by 154
Abstract
Myeloid-derived growth factor (MYDGF), named in reference to its secretion from myeloid cells in bone marrow, is a novel protein with anti-apoptotic and tissue-repairing properties. MYDGF is found in various human tissues affected by different diseases. To date, however, MYDGF expression has yet [...] Read more.
Myeloid-derived growth factor (MYDGF), named in reference to its secretion from myeloid cells in bone marrow, is a novel protein with anti-apoptotic and tissue-repairing properties. MYDGF is found in various human tissues affected by different diseases. To date, however, MYDGF expression has yet to be reported in the nervous system. Herein, we demonstrate for the first time that MYDGF mRNA levels increased in the zebrafish retina 1 h after optic nerve injury (ONI). MYDGF-producing cells were located in the photoreceptors and infiltrating leukocytic cells. We prepared the retina for MYDGF gene knockdown by performing intraocular injections using either MYDGF-specific morpholino or the CRISPR/Cas9 system. Under these MYDGF-knockdown retinal conditions, anti-apoptotic Bcl-2 mRNA was suppressed; in comparison, apoptotic caspase-3 and inflammatory TNFα mRNA were significantly upregulated in the zebrafish retina after ONI compared to the control. Furthermore, heat shock factor 1 (HSF1) was evidently suppressed under these conditions, leading to a significant number of apoptotic neurons. These findings indicate that MYDGF is a key molecule in the stimulation of neuronal regeneration in the central nervous system. Full article
Show Figures

Figure 1

13 pages, 1842 KiB  
Article
Pro-Inflammatory and Lipid Metabolism Dysregulating Effects of ANGPTL3 in THP-1 Macrophages
by Ilenia Milani, Ilaria Rossi, Giorgia Marodin, Maria Giovanna Lupo, Maria Pia Adorni, Francesca Zimetti and Nicola Ferri
Lipidology 2025, 2(3), 14; https://doi.org/10.3390/lipidology2030014 - 26 Jul 2025
Viewed by 233
Abstract
Background and aim: ANGPTL3 is a hepatokine acting as a negative regulator of lipoprotein lipase (LPL) through its N-terminal domain. Besides this activity, the C-terminal domain of ANGPTL3 interacts with integrin αVβ3. Since integrins are involved in inflammation and in the initiation of [...] Read more.
Background and aim: ANGPTL3 is a hepatokine acting as a negative regulator of lipoprotein lipase (LPL) through its N-terminal domain. Besides this activity, the C-terminal domain of ANGPTL3 interacts with integrin αVβ3. Since integrins are involved in inflammation and in the initiation of atherosclerotic plaque, the aim of our study was to evaluate the potential direct pro-inflammatory action of ANGPTL3 through the interaction of the fibrinogen-like domain and integrin αVβ3. Methods: We utilized cultured THP-1 human-derived macrophages and evaluated their pro-inflammatory phenotype in response to treatment with human recombinant ANGPTL3 (hANGPTL3). By Western blot, RT-qPCR, biochemical analysis, and ELISA assays, we determined the expression of genes and proteins involved in lipid metabolism and inflammatory response as well as intracellular cholesterol and triglyceride levels. In addition, we evaluated the effect of hANGPTL3 on the cellular cholesterol efflux process. Results: Incubation of THP-1-derived macrophages with 100 ng/mL of hANGPTL3 increased the mRNA expression of the pro-inflammatory cytokines IL-1β, IL-6, and TNFα (respectively, 1.87 ± 0.08-fold, 1.35 ± 0.11-fold, and 2.49 ± 0.43-fold vs. control). The secretion of TNFα, determined by an ELISA assay, was also induced by hANGPTL3 (1.98 ± 0.4-fold vs. control). The pro-inflammatory effect of hANGPTL3 was partially counteracted by co-treatment with the integrin αVβ3 inhibitor RGD peptide, reducing the mRNA levels of IL-1β (3.35 ± 0.35-fold vs. 2.54 ± 0.25-fold for hANGPTL3 vs. hANGPTL3 + RGD, respectively). Moreover, hANGPTL3 reduced cholesterol efflux to apoA-I, with a parallel increase in the intracellular triglyceride and cholesterol contents by 31.2 ± 2.8% and 20.0 ± 4.1%, respectively, compared to the control. Conclusions: ANGPTL3 is an important liver-derived regulator of plasma lipoprotein metabolism, and overall, our results add a new important pro-inflammatory activity of this circulating protein. This new function of ANGPTL3 could also be related to triglyceride and cholesterol accumulation into macrophages. Full article
(This article belongs to the Special Issue Lipid Metabolism and Inflammation-Related Diseases)
Show Figures

Figure 1

21 pages, 5034 KiB  
Article
The Activation of the Microglial NLRP3 Inflammasome Is Involved in Tuberous Sclerosis Complex-Related Neuroinflammation
by Ran Ding, Shengxuan Zhang, Linxue Meng, Lingman Wang, Ziyao Han, Jianxiong Gui, Jiaxin Yang, Li Cheng, Lingling Xie and Li Jiang
Int. J. Mol. Sci. 2025, 26(15), 7244; https://doi.org/10.3390/ijms26157244 - 26 Jul 2025
Viewed by 310
Abstract
Tuberous sclerosis complex (TSC) is a systemic disease caused by mutations in either the TSC1 (encoding hamartin) or TSC2 (encoding tuberin) gene, with mutations in the TSC2 gene potentially leading to more severe clinical symptoms. Neurological symptoms are a common clinical manifestation of [...] Read more.
Tuberous sclerosis complex (TSC) is a systemic disease caused by mutations in either the TSC1 (encoding hamartin) or TSC2 (encoding tuberin) gene, with mutations in the TSC2 gene potentially leading to more severe clinical symptoms. Neurological symptoms are a common clinical manifestation of TSC, and neuroinflammation is thought to play an important role. Glial cells are a major source of neuroinflammation, but whether microglia are involved in the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and the expression of interleukin-1β (IL-1β) in TSC patients remains unclear. We used a transcriptome sequencing dataset for bioinformatics analysis to explore the differences in the expression of microglial inflammasome-associated hub genes. TSC2 knockdown (TSC2 KD) microglia (HMC3 cell line) were generated by lentivirus, and the expression of inflammasome-associated hub genes, microglial activation, and NLRP3 inflammasome activation were verified. In addition, experiments were performed to explore the regulatory effects of rapamycin. Bioinformatics analysis identified a total of eight inflammasome-associated hub genes. By detecting GFP fluorescence, TSC2 mRNA, TSC2 protein expression, and the phosphorylation of the mammalian target of rapamycin (p-mTOR)/mTOR, we confirmed that the TSC2 KD microglia model was successfully established. Compared with the control group, the TSC2 KD group presented higher mRNA levels and fluorescence intensities of microglia AIF1 and CD68, as well as greater reactive oxygen species (ROS) production. Eight inflammasome-associated hub gene mRNA assays revealed that the expression of the NLRP3 and IL1B genes was increased. Compared with the control group, the TSC2 KD group presented increased levels of NLRP3 and Pro-IL-1β proteins in cells and Cleaved-Caspase 1 and Cleaved-IL-1β proteins in the supernatant, suggesting NLRP3 inflammasome activation. Rapamycin intervention alleviated these changes, demonstrating that the TSC2 gene regulation of microglial activation and NLRP3 inflammasome activation are correlated with mTOR phosphorylation. In conclusion, microglia are activated in TSC patients and participate in the NLRP3 inflammasome-associated neuroinflammatory response, and rapamycin treatment can alleviate these changes. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

17 pages, 3682 KiB  
Article
Comparative Analysis of Testicular Transcriptional and Translational Landscapes in Yak and Cattle–Yak: Implications for Hybrid Male Sterility
by Mengli Cao, Shaoke Guo, Ziqiang Ding, Liyan Hu, Lin Xiong, Qianyun Ge, Jie Pei and Xian Guo
Biomolecules 2025, 15(8), 1080; https://doi.org/10.3390/biom15081080 - 25 Jul 2025
Viewed by 270
Abstract
Cattle–yak, a hybrid of yak and cattle, exhibits significant heterosis but male infertility, hindering heterosis fixation. Although extensive research has been conducted on transcriptional mechanisms in the testes of cattle–yak, the understanding of their translational landscape remains limited. In this study, we characterized [...] Read more.
Cattle–yak, a hybrid of yak and cattle, exhibits significant heterosis but male infertility, hindering heterosis fixation. Although extensive research has been conducted on transcriptional mechanisms in the testes of cattle–yak, the understanding of their translational landscape remains limited. In this study, we characterized the translational landscape of yak and cattle–yak based on Ribo-seq technology integrated with RNA-seq data. The results revealed that gene expression was not fully concordant between transcriptional and translational levels, whereas cattle–yak testes exhibited a stronger correlation across these two regulatory layers. Notably, genes that were differentially expressed at the translational level only (MEIOB, MEI1, and SMC1B) were mainly involved in meiosis. A total of 4,236 genes with different translation efficiencies (TEs) were identified, and the TEs of most of the genes gradually decreased as the mRNA expression level increased. Further research revealed that genes with higher TE had a shorter coding sequence (CDS) length, lower GC content, and higher normalized minimum free energy in the testes of yaks, but this characteristic was not found in cattle–yaks. We also identified upstream open reading frames (uORFs) in yak and cattle–yak testes, and the sequence characteristics of translated uORFs and untranslated uORFs were markedly different. In addition, we identified several short polypeptides that may play potential roles in spermatogenesis. In summary, our study uncovers distinct translational dysregulations in cattle–yak testes, particularly affecting meiosis, which provides novel insights into the mechanisms of spermatogenesis and male infertility in hybrids. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 5001 KiB  
Article
Prognostic Potential of Apoptosis-Related Biomarker Expression in Triple-Negative Breast Cancers
by Miklós Török, Ágnes Nagy, Gábor Cserni, Zsófia Karancsi, Barbara Gregus, Dóra Hanna Nagy, Péter Árkosy, Ilona Kovács, Gabor Méhes and Tibor Krenács
Int. J. Mol. Sci. 2025, 26(15), 7227; https://doi.org/10.3390/ijms26157227 - 25 Jul 2025
Viewed by 204
Abstract
Of breast cancers, the triple-negative subtype (TNBC) is characterized by aggressive behavior, poor prognosis and limited treatment options due to its high molecular heterogeneity. Since insufficient programmed cell death response is a major hallmark of cancer, here we searched for apoptosis-related biomarkers of [...] Read more.
Of breast cancers, the triple-negative subtype (TNBC) is characterized by aggressive behavior, poor prognosis and limited treatment options due to its high molecular heterogeneity. Since insufficient programmed cell death response is a major hallmark of cancer, here we searched for apoptosis-related biomarkers of prognostic potential in TNBC. The expression of the pro-apoptotic caspase 8, cytochrome c, caspase 3, the anti-apoptotic BCL2 and the caspase-independent mediator, apoptosis-inducing factor-1 (AIF1; gene AIFM1) was tested in TNBC both in silico at transcript and protein level using KM-Plotter, and in situ in our clinical TNBC cohort of 103 cases using immunohistochemistry. Expression data were correlated with overall survival (OS), recurrence-free survival (RFS) and distant metastasis-free survival (DMFS). We found that elevated expression of the executioner apoptotic factors AIF1 and caspase 3, and of BCL2, grants significant OS advantage within TNBC, both at the mRNA and protein level, particularly for chemotherapy-treated vs untreated patients. The dominantly cytoplasmic localization of AIF1 and cleaved-caspase 3 proteins in primary TNBC suggests that chemotherapy may recruit them from the cytoplasmic/mitochondrial stocks to contribute to improved patient survival in proportion to their expression. Our results suggest that testing for the expression of AIF1, caspase 3 and BCL2 may identify partly overlapping TNBC subgroups with favorable prognosis, warranting further research into the potential relevance of apoptosis-targeting treatment strategies. Full article
(This article belongs to the Special Issue Molecular Research in Triple-Negative Breast Cancer: 2nd Edition)
Show Figures

Figure 1

19 pages, 2974 KiB  
Article
PI3K/Akt1 Pathway Suppression by Quercetin–Doxorubicin Combination in Osteosarcoma Cell Line (MG-63 Cells)
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Medicina 2025, 61(8), 1347; https://doi.org/10.3390/medicina61081347 - 25 Jul 2025
Viewed by 172
Abstract
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) [...] Read more.
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) generation, antioxidant defense, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt1) signaling pathway were evaluated. Material and Methods: MG-63 cells were cultured and treated with varying concentrations of Q and Dox, both individually and in combination (fixed 5:1 molar ratio), for 48 h. Cell viability was assessed using an MTT assay, and IC50 values were calculated. Synergistic effects were analyzed using the Chou–Talalay combination index (CI). Apoptosis was evaluated via Annexin V-FITC/PI staining and caspase-3/7 activity. ROS levels were quantified using DCFH-DA probe, and antioxidant enzymes (SOD, GPx) were measured spectrophotometrically. Gene expression (Runx2, PI3K, Akt1, caspase-3) was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: Q and Dox reduced cell viability in a dose-dependent manner, with IC50 values of 70.3 µM and 1.14 µM, respectively. The combination treatment exhibited synergistic cytotoxicity (CI < 1), especially in the Q50 + Dox5 group (CI = 0.23). Apoptosis was significantly enhanced in the combination group, evidenced by increased Annexin V positivity and caspase-3 activation. ROS levels were markedly elevated, while antioxidant enzyme activities declined. RT-qPCR revealed upregulation of caspase-3 and downregulation of Runx2, PI3K, and Akt1 mRNA levels. Conclusions: The combination of Q and Dox exerts synergistic anticancer effects in MG-63 OS cells by inducing apoptosis, elevating oxidative stress, suppressing antioxidant defense, and inhibiting the PI3K/Akt1 signaling pathway and Runx2 expression. These findings support the potential utility of Q as an adjuvant to enhance Dox efficacy in OS treatment. Full article
Show Figures

Figure 1

17 pages, 720 KiB  
Article
Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study
by Cynthia Pimpie, Anne Schninzler, Marc Pocard, Véronique Baud and Martine Perrot-Applanat
Biomedicines 2025, 13(8), 1815; https://doi.org/10.3390/biomedicines13081815 - 24 Jul 2025
Viewed by 304
Abstract
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and [...] Read more.
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and non-Asian cohorts. The intestinal-subtype GC has declined over the past 50 years. In contrast to the intestinal-subtype adenocarcinoma, the incidence of diffuse-subtype GC, often associated with poor overall survival, has constantly increased in the USA and Europe. The aim of this study was to analyze the expression and clinical significance of steroid hormone receptors, two membrane-bound receptors (ERRγ and GPER), and several genes involved in epigenetic alterations. The findings may contribute to revealing events driving tumorigenesis and may aid prognosis. Methods: Using mRNA from diffuse and intestinal GC tumor samples, the expression level of 11 genes, including those coding for sex hormone receptors (estrogen receptors ERα and ERβ), progesterone receptor (PR) and androgen receptor (AR), and the putative relevant ERRγ and GPER receptor were determined by RT-qPCR. Results: In diffuse GC, the expression of ERα, ERβ, PR and AR differed from their expression in the intestinal subtype. The expression of ERα and ERβ was strongly increased in the diffuse subtype compared to the intestinal subtype (×1.90, p = 0.001 and ×2.68, p = 0.002, respectively). Overexpression of ERα and ERβ was observed in diffuse GC (15 and 42%, respectively). The expression levels of PR and AR were strongly decreased in the intestinal subtype as compared to diffuse GC (×0.48, p = 0.005 and ×0.25, p = 0.003, respectively; 37.5% and 56% underexpression). ERα, ERβ, PR and AR showed notable differences for clinicopathological correlation in the diffuse and intestinal GC. A significant decrease of ERα, ERβ, PR and AR in intestinal GC correlated with the absence of lymphatic invasion and lower TNM (I-II). In diffuse GC, among the hormone receptors, increases of ERs and PR mainly correlated with expression of growth factors and receptors (IGF1, FGF7 and FGFR1), and with genes involved in epithelial-mesenchymal transition (VIM and ZEB2) or cell migration (MMP2). Our results also report the strong decreased expression of ERRγ and GPER (two receptors that bind estrogen or xenoestrogens) in diffuse and intestinal subtypes. Conclusions: Our study identified new target genes, namely hormone receptors and membrane receptors (ERRγ and GPER), whose expression is associated with an aggressive phenotype of diffuse GC, and revealed the importance of epigenetic factors (EZH2, HOTAIR, H19 and DNMT1) in gastric cancers. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

16 pages, 2379 KiB  
Article
Atractylodes lancea (Thunb.) DC. [Asteraceae] Rhizome-Derived Exosome-like Nanoparticles Suppress Lipopolysaccharide-Induced Inflammation by Reducing Toll-like Receptor 4 Expression in BV-2 Murine Microglial Cells
by Mizusa Hyodo, Kei Kawada, Tomoaki Ishida, Yuki Izawa-Ishizawa, Ryoko Matoba, Rina Okamoto, Kohei Jobu, Io Horikawa, Fuka Aizawa, Kenta Yagi, Takahiro Niimura, Yayoi Kawano, Shinji Abe, Yukihiro Hamada, Mitsuhiro Goda and Keisuke Ishizawa
Pharmaceuticals 2025, 18(8), 1099; https://doi.org/10.3390/ph18081099 - 24 Jul 2025
Viewed by 250
Abstract
Background/Objectives: Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR)-derived exosome-like nanoparticles (ALR-ELNs) exhibit anti-neuroinflammatory effects in microglial cells. However, the associated mechanisms and pathways are unknown. We aimed to characterize the effects of ALR-ELNs on inflammatory responses of BV-2 microglial cells to lipopolysaccharide (LPS) [...] Read more.
Background/Objectives: Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR)-derived exosome-like nanoparticles (ALR-ELNs) exhibit anti-neuroinflammatory effects in microglial cells. However, the associated mechanisms and pathways are unknown. We aimed to characterize the effects of ALR-ELNs on inflammatory responses of BV-2 microglial cells to lipopolysaccharide (LPS) using RNA sequencing. Methods: ALR-ELNs were fractionated from ALR. BV-2 microglial murine cells were stimulated with LPS after treatment with ALR-ELNs. RNA sequencing was performed to analyze variations in mRNA levels. Ingenuity pathway analysis (IPA) was performed to investigate the mechanism of action of ALR-ELNs. mRNA expression was assessed using real-time quantitative polymerase chain reaction (qPCR). Results: The expression of 651 genes was downregulated, whereas that of 1204 genes was upregulated in LPS-stimulated BV2 cells pretreated with ALR-ELNs. The IPA showed that the effects of ALR-ELNs on inflammation took place through pathogen-influenced signaling. Network analysis via IPA showed that the Toll-like receptor (TLR) is involved in the suppression of inflammation by ALR-ELNs. The qPCR analysis showed that pretreatment with ALR-ELNs significantly reduced TLR4 mRNA expression. Conclusions: ALR-ELNs suppress the release of inflammatory mediators by downregulating TLR4 expression, which is a novel mechanism by which ALR-ELNs act on microglia. Identifying active ingredients in ALR-ELNs that downregulate TLR4 expression can advance the development of therapeutic drugs for neuroinflammatory diseases. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

Back to TopTop