Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = gas-based battery thermal management system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 - 31 Jul 2025
Viewed by 185
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

27 pages, 7623 KiB  
Article
A Ladder-Type Carbon Trading-Based Low-Carbon Economic Dispatch Model for Integrated Energy Systems with Flexible Load and Hybrid Energy Storage Optimization
by Liping Huang, Fanxin Zhong, Chun Sing Lai, Bang Zhong, Qijun Xiao and Weitai Hsu
Energies 2025, 18(14), 3679; https://doi.org/10.3390/en18143679 - 11 Jul 2025
Viewed by 283
Abstract
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the [...] Read more.
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the carbon trading cost increases progressively with emission levels, thereby providing stronger incentives for emission reduction. Second, flexible loads are categorized and modeled as shiftable, transferable, and reducible types, each with distinct operational constraints and compensation mechanisms. Third, both battery and thermal energy storage systems are considered to improve system flexibility by storing excess energy and supplying it when needed. Finally, a unified optimization framework is developed to coordinate the dispatch of renewable generation, gas turbines, waste heat recovery units, and multi-energy storage devices while integrating flexible load flexibility. The objective is to minimize the total system cost, which includes energy procurement, carbon trading expenditures, and demand response compensation. Three comparative case studies are conducted to evaluate system performance under different operational configurations: the proposed comprehensive model, a carbon trading-only approach, and a conventional baseline scenario. Results demonstrate that the proposed framework effectively balances economic and environmental objectives through coordinated demand-side management, hybrid storage utilization, and the ladder-type carbon trading market mechanism. It reshapes the system load profile via peak shaving and valley filling, improves renewable energy integration, and enhances overall system efficiency. Full article
(This article belongs to the Special Issue Hybrid Battery Energy Storage System)
Show Figures

Figure 1

28 pages, 5473 KiB  
Review
Advances in the Battery Thermal Management Systems of Electric Vehicles for Thermal Runaway Prevention and Suppression
by Le Duc Tai and Moo-Yeon Lee
Batteries 2025, 11(6), 216; https://doi.org/10.3390/batteries11060216 - 1 Jun 2025
Viewed by 2206
Abstract
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive [...] Read more.
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive to temperature fluctuations, significantly affecting their performance, lifespan, and safety. One of the most critical threats to the safe operation of LIBs is thermal runaway (TR), an uncontrollable exothermic process that can lead to catastrophic failure under abusive conditions. Moreover, thermal runaway propagation (TRP) can rapidly spread failures across battery cells, intensifying safety threats. To address these challenges, developing advanced battery thermal management systems (BTMS) is essential to ensure optimal temperature control and suppress TR and TRP within LIB modules. This review systematically evaluates advanced cooling strategies, including indirect liquid cooling, water mist cooling, immersion cooling, phase change material (PCM) cooling, and hybrid cooling based on the latest studies published between 2020 and 2025. The review highlights their mechanisms, effectiveness, and practical considerations for preventing TR initiation and suppressing TRP in battery modules. Finally, key findings and future directions for designing next-generation BTMS are proposed, contributing valuable insights for enhancing the safety and reliability of LIB applications. Full article
Show Figures

Figure 1

16 pages, 9758 KiB  
Article
Multistage Early Warning of Sodium-Ion Battery Thermal Runaway Using Multidimensional Signal Analysis and Redundancy Optimization
by Jinzhong Li, Yuguang Xie, Bin Xu, Jiarui Zhang, Xinyu Wang and Lei Mao
Batteries 2025, 11(3), 108; https://doi.org/10.3390/batteries11030108 - 13 Mar 2025
Viewed by 935
Abstract
This paper proposes an early warning method for thermal runaway in sodium-ion batteries (SIBs) based on multidimensional signal analysis and redundancy optimization. By analyzing signals such as voltage, temperature, strain, and gas concentrations, Principal Component Analysis (PCA) is employed to evaluate the contribution [...] Read more.
This paper proposes an early warning method for thermal runaway in sodium-ion batteries (SIBs) based on multidimensional signal analysis and redundancy optimization. By analyzing signals such as voltage, temperature, strain, and gas concentrations, Principal Component Analysis (PCA) is employed to evaluate the contribution of each signal and reduce data redundancy, while correlation analysis further refines the signal set by eliminating overlapping information. The optimized signals enable a stage-specific warning framework, which identifies distinct phases of thermal runaway progression with high precision. Experimental results validate the effectiveness of the proposed method, showcasing its potential for real-time monitoring and enhanced safety management of sodium-ion battery systems in critical applications. Full article
(This article belongs to the Special Issue Batteries Aging Mechanisms and Diagnosis)
Show Figures

Figure 1

15 pages, 3772 KiB  
Article
The Recycling of Lithium from LiFePO4 Batteries into Li2CO3 and Its Use as a CO2 Absorber in Hydrogen Purification
by Zoltán Köntös and Ádám Gyöngyössy
Clean Technol. 2024, 6(4), 1504-1518; https://doi.org/10.3390/cleantechnol6040072 - 4 Nov 2024
Cited by 2 | Viewed by 3265
Abstract
The growing adoption of lithium iron phosphate (LiFePO4) batteries in electric vehicles (EVs) and renewable energy systems has intensified the need for sustainable management at the end of their life cycle. This study introduces an innovative method for recycling lithium from [...] Read more.
The growing adoption of lithium iron phosphate (LiFePO4) batteries in electric vehicles (EVs) and renewable energy systems has intensified the need for sustainable management at the end of their life cycle. This study introduces an innovative method for recycling lithium from spent LiFePO4 batteries and repurposing the recovered lithium carbonate (Li2CO3) as a carbon dioxide (CO2) absorber. The recycling process involves dismantling battery packs, separating active materials, and chemically treating the cathode to extract lithium ions, which produces Li2CO3. The efficiency of lithium recovery is influenced by factors such as leaching temperature, acid concentration, and reaction time. Once recovered, Li2CO3 can be utilized for CO2 capture in hydrogen purification processes, reacting with CO2 to form lithium bicarbonate (LiHCO3). This reaction, which is highly effective in aqueous solutions, can be applied in industrial settings to mitigate greenhouse gas emissions. The LiHCO3 can then be thermally decomposed to regenerate Li2CO3, creating a cyclic and sustainable use of the material. This dual-purpose process not only addresses the environmental impact of LiFePO4 battery disposal but also contributes to CO2 reduction, aligning with global climate goals. Utilizing recycled Li2CO3 decreases the demand for virgin lithium extraction, supporting a circular economy. Furthermore, integrating Li2CO3-based CO2 capture systems into existing industrial infrastructure provides a scalable and cost-effective solution for lowering carbon footprints while securing a continuous supply of lithium for future battery production. Future research should focus on optimizing lithium recovery methods, improving the efficiency of CO2 capture, and exploring synergies with other waste management and carbon capture technologies. This comprehensive strategy underscores the potential of lithium recycling to address both resource conservation and environmental protection challenges. Full article
Show Figures

Figure 1

34 pages, 5117 KiB  
Article
Optimizing Renewable Energy Integration for Sustainable Fuel Production: A Techno-Economic Assessment of Dimethyl Ether Synthesis via a Hybrid Microgrid-Hydrogen System
by Mohammed M. Alotaibi and Abdulaziz A. Alturki
Fuels 2024, 5(2), 176-209; https://doi.org/10.3390/fuels5020011 - 16 May 2024
Cited by 5 | Viewed by 3105
Abstract
This study offers an in-depth analysis and optimization of a microgrid system powered by renewable sources, designed for the efficient production of hydrogen and dimethyl ether—key elements in the transition toward sustainable fuel alternatives. The system architecture incorporates solar photovoltaic modules, advanced battery [...] Read more.
This study offers an in-depth analysis and optimization of a microgrid system powered by renewable sources, designed for the efficient production of hydrogen and dimethyl ether—key elements in the transition toward sustainable fuel alternatives. The system architecture incorporates solar photovoltaic modules, advanced battery storage solutions, and electrolytic hydrogen production units, with a targeted reduction in greenhouse gas emissions and the enhancement of overall energy efficiency. A rigorous economic analysis was conducted utilizing the HYSYS V12 software platform and encompassing capital and operational expenditures alongside profit projections to evaluate the system’s economic viability. Furthermore, thermal optimization was achieved through heat integration strategies, employing a cascade analysis methodology and optimization via the General Algebraic Modeling System (GAMS), yielding an 83% decrease in annual utility expenditures. Comparative analysis revealed that the energy requirement of the optimized system was over 50% lower than that of traditional fossil fuel-based reforming processes. A comprehensive assessment of CO2 emissions demonstrated a significant reduction, with the integration of thermal management solutions facilitating a 99.24% decrease in emissions. The outcomes of this study provide critical insights into the engineering of sustainable, low-carbon energy systems, emphasizing the role of renewable energy technologies in advancing fuel science. Full article
Show Figures

Figure 1

14 pages, 3921 KiB  
Article
Heat Integration of Liquid Hydrogen-Fueled Hybrid Electric Ship Propulsion System
by Wongwan Jung, Jinkwang Lee and Daejun Chang
J. Mar. Sci. Eng. 2023, 11(11), 2157; https://doi.org/10.3390/jmse11112157 - 13 Nov 2023
Cited by 2 | Viewed by 2581 | Correction
Abstract
This study introduced the methodology for integrating ethylene glycol/water mixture (GW) systems which supply heat energy to the liquid hydrogen (LH2) fuel gas supply system (FGSS), and manage the temperature conditions of the battery system. All systems were designed and simulated [...] Read more.
This study introduced the methodology for integrating ethylene glycol/water mixture (GW) systems which supply heat energy to the liquid hydrogen (LH2) fuel gas supply system (FGSS), and manage the temperature conditions of the battery system. All systems were designed and simulated based on the power demand of a 2 MW class platform supply vessel assumed as the target ship. The LH2 FGSS model is based on Aspen HYSYS V11 and the cell model that makes up the battery system is implemented based on a Thevenin model with four parameters. Through three different simulation cases, the integrated GW system significantly reduced electric power consumption for the GW heater during ship operations, achieving reductions of 1.38% (Case 1), 16.29% (Case 2), and 27.52% (Case 3). The energy-saving ratio showed decreases of 1.86% (Case 1), 21.01% (Case 2), and 33.80% (Case 3) in overall energy usage within the GW system. Furthermore, an examination of the battery system’s thermal management in the integrated GW system demonstrated stable cell temperature control within ±3 K of the target temperature, making this integration a viable solution for maintaining normal operating temperatures, despite relatively higher fluctuations compared to an independent GW system. Full article
(This article belongs to the Special Issue New Advances on Energy and Propulsion Systems for Ship)
Show Figures

Figure 1

17 pages, 3976 KiB  
Article
Optimal Configuration of Power/Thermal Energy Storage for a Park-Integrated Energy System Considering Flexible Load
by Zhi Zhu, Miaomiao Wang, Zuoxia Xing, Yang Liu and Shihong Chen
Energies 2023, 16(18), 6424; https://doi.org/10.3390/en16186424 - 5 Sep 2023
Cited by 8 | Viewed by 1851
Abstract
The park-integrated energy system can achieve the optimal allocation, dispatch, and management of energy by integrating various energy resources and intelligent control and monitoring. Flexible load participation in scheduling can reduce peak and valley load, optimize load curves, further improve energy utilization efficiency, [...] Read more.
The park-integrated energy system can achieve the optimal allocation, dispatch, and management of energy by integrating various energy resources and intelligent control and monitoring. Flexible load participation in scheduling can reduce peak and valley load, optimize load curves, further improve energy utilization efficiency, and reduce system costs. Based on this, firstly, a flexible power-load model is established considering the translatable load, transferable load, and reducible load; and a thermal flexible load model is established based on the fuzziness of user perception of temperature in this study; then, the mixed integer linear programming method is adopted, and the sum of the carbon transaction cost, operation and maintenance cost, compensation cost, power purchase cost, gas purchase cost, wind and light abandonment penalty cost and investment cost of the system is minimized as the objective function, and the configuration of the integrated energy system is optimized, and the optimal capacity of each equipment and the output of each period are obtained. Finally, taking an industrial park in Liaoning Province of China as an example, the analysis is carried out. The example results show that by scheduling the flexible electrical load and flexibly adjusting the indoor temperature, renewable energy consumption can be promoted, and electricity load and heat-load curves can be optimized to increase the installed capacity of wind turbines, reduce the capacity of gas turbines, batteries, and heat-storage tanks, improve system economy, and improve the penetration rate of renewable energy. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 2366 KiB  
Article
Improvements of Micro-CHP SOFC System Operation by Efficient Dynamic Simulation Methods
by Laura Nousch, Mathias Hartmann and Alexander Michaelis
Processes 2021, 9(7), 1113; https://doi.org/10.3390/pr9071113 - 26 Jun 2021
Cited by 4 | Viewed by 4244
Abstract
Solid Oxide Fuel Cell (SOFC) technology is of high interest for stationary decentralized generation of electricity and heat in combined heat and power systems (CHP) for the residential sector. Application scenarios for SOFC systems in an electricity-regulated mode play an important role, especially [...] Read more.
Solid Oxide Fuel Cell (SOFC) technology is of high interest for stationary decentralized generation of electricity and heat in combined heat and power systems (CHP) for the residential sector. Application scenarios for SOFC systems in an electricity-regulated mode play an important role, especially in places where an electrical grid connection is not available or rather unstable. The advantages of SOFC systems are the high fuel flexibility and the high efficiencies also under partial load operation compared to other decentralized power generation technologies. Due to the long, energy-consuming system heat-up and the limited partial load capability, SOFC systems do not reach the performance of conventional power generation technologies. Furthermore, stack thermal cycling is associated with power degradation and should be minimized. In this paper, the improvement of these drawbacks are investigated for hotbox-based SOFC systems in the 1 kWel-class for residential applications. Since experimental investigations of the high-temperature systems are limited, modeling tools are established, enabling the visualization of internal system characteristics and providing the opportunity to simulate system operation in critical regions. To achieve this, a methodology for dynamic SOFC system modeling in a process engineering manner is developed based on the modeling language Modelica. A suitable approach is particularly important for modeling and simulation of the strong thermal interaction between the hot system components within the hotbox. The parametrized and validated models are used for the investigation of different dynamic effects, such as the system heat-up and the operation in low partial load points. A second reduced thermal system model aims for annual simulations of the SOFC system together with a battery to investigate the number of thermal cycles and the advantage of a hot standby operation. As a result, it is found that an adequate control of the power input at the start-up device and the cathode air flow has a high improvement potential to increase the stack heating rate and accelerate the heat-up in an energy-saving way. The hotbox-internal thermal management is identified as a crucial issue to reach low partial load points. To avoid the risk of stack cooling, lower heat losses and/or additional heat sources are of importance. Furthermore, the robustness of the tail gas oxidizer is found to be crucial for a higher load flexibility during partial load and the end of life stack operation. The annual simulation results indicate that operating the battery hybrid system with a hot standby mode requires much lower battery capacity for a high grid independence and a complete avoidance of system shutdown and associated power degradation. Full article
(This article belongs to the Special Issue Hydrogen Energy Systems: Optimization Models, Control and Simulation)
Show Figures

Figure 1

14 pages, 2727 KiB  
Article
Investigation of the Applicability of Helium-Based Cooling System for Li-Ion Batteries
by Mohammad Alipour, Aliakbar Hassanpouryouzband and Riza Kizilel
Electrochem 2021, 2(1), 135-148; https://doi.org/10.3390/electrochem2010011 - 8 Mar 2021
Cited by 9 | Viewed by 4714
Abstract
This paper proposes a novel He-based cooling system for the Li-ion batteries (LIBs) used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The proposed system offers a novel alternative battery thermal management system with promising properties in terms of safety, simplicity, and [...] Read more.
This paper proposes a novel He-based cooling system for the Li-ion batteries (LIBs) used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The proposed system offers a novel alternative battery thermal management system with promising properties in terms of safety, simplicity, and efficiency. A 3D multilayer coupled electrochemical-thermal model is used to simulate the thermal behavior of the 20 Ah LiFePO4 (LFP) cells. Based on the results, He gas, compared to air, effectively diminishes the maximum temperature rise and temperature gradient on the cell surface and offers a viable option for the thermal management of Li-ion batteries. For instance, in comparison with air, He gas offers 1.18 and 2.29 °C better cooling at flow rates of 2.5 and 7.5 L/min, respectively. The cooling design is optimized in terms of the battery’s temperature uniformity and the battery’s maximum temperature. In this regard, the effects of various parameters such as inlet diameter, flow direction, and inlet flow rate are investigated. The inlet flow rate has a more evident influence on the cooling efficiency than inlet/outlet diameter and flow direction. The possibility of using helium as a cooling fluid is shown to open new doors in the subject matter of an effective battery thermal management system. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

30 pages, 4099 KiB  
Article
Advances in Integrated Vehicle Thermal Management and Numerical Simulation
by Yan Wang, Qing Gao, Tianshi Zhang, Guohua Wang, Zhipeng Jiang and Yunxia Li
Energies 2017, 10(10), 1636; https://doi.org/10.3390/en10101636 - 18 Oct 2017
Cited by 62 | Viewed by 22735
Abstract
With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system [...] Read more.
With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM) system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV), its integrated thermal management (ITM) mainly contains internal combustion engine (ICE) cooling, turbo-charged cooling, exhaust gas recirculation (EGR) cooling, lubrication cooling and air conditioning (AC) or heat pump (HP). As for electric vehicles (EVs), the ITM mainly includes battery cooling/preheating, electric machines (EM) cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM). Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D). Full article
(This article belongs to the Special Issue Advanced Thermal Simulation of Energy Systems)
Show Figures

Figure 1

Back to TopTop