Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,606)

Search Parameters:
Keywords = gas channeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4450 KiB  
Article
Photothermally Responsive Biomimetic Composite Scaffolds Based on Polydopamine-Functionalized Nanoparticles/Polyurethane for Bone Repair
by Ruqing Bai, Jiaqi Chen, Ting Zhang, Tao Chen, Xiaoying Liu, Weihu Yang, Tuck-Whye Wong, Jianwei Zhang and Li Wang
J. Funct. Biomater. 2025, 16(8), 294; https://doi.org/10.3390/jfb16080294 - 15 Aug 2025
Viewed by 30
Abstract
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the [...] Read more.
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the native bone extracellular matrix. By incorporating polydopamine (PDA)-modified amorphous calcium phosphate (CA) into poly(propylene glycol) (PPG)- and poly(ԑ-caprolactone) (PCL)-based polyurethane (PU). The obtained scaffolds achieved osteoinductive potential for bone tissue engineering. The surface PDA modification of CA enabled efficient photothermal shape conversion under near-infrared (NIR) irradiation, facilitating non-invasive remote control of localized hyperthermia. The optimized scaffolds exhibited interconnected porosity (approximately 70%) with osteoconductive pore channels (200–500 μm), resulting in good osteoinduction in cell culture, and precise shape-memory recovery at physiological temperatures (~40 °C) under NIR for minimally invasive delivery. The synergistic effect of osteogenesis promotion and photothermal transition demonstrated this programmable scaffold as a promising solution for integrated minimally invasive bone repair and defect reconstruction. Full article
Show Figures

Figure 1

16 pages, 1417 KiB  
Article
A Novel Effective Arsenic Removal Technique for High-Arsenic Copper Minerals: Two-Stage Filtration Technology Based on Fe-25Al Porous Material
by Xiaowei Tang and Yuehui He
Appl. Sci. 2025, 15(16), 8899; https://doi.org/10.3390/app15168899 - 12 Aug 2025
Viewed by 248
Abstract
Effective arsenic removal is a challenge when smelting high-arsenic copper minerals (HACMs, As > 3.0 wt%). Current arsenic-removal methods for HACM smelting cannot effectively remove arsenic and do not satisfy environmental requirements. This study argues that two-stage filtration based on Fe-25Al porous material [...] Read more.
Effective arsenic removal is a challenge when smelting high-arsenic copper minerals (HACMs, As > 3.0 wt%). Current arsenic-removal methods for HACM smelting cannot effectively remove arsenic and do not satisfy environmental requirements. This study argues that two-stage filtration based on Fe-25Al porous material and oxygen-controlled roasting is an effective technique for HACM arsenic removal (As = 11.8 wt%). The use of two-stage filtration facilitated double interception: particles larger than 10 μm were mechanically intercepted by the pore channels, and submicron particles (0.1–10 μm) were intercepted by the filter cake. Specifically, in the second stage, the flue gas underwent gradient rapid cooling, and the arsenic in the flue gas rapidly condensed, resulting in efficient arsenic removal. The purity of the condensed product, As2O3, was greater than 99%. Moreover, adding sand to the roasted mineral increased the specific surface area from 0.484 m2/g to 0.590 m2/g, reducing the “bottleneck effect” of pores; the addition of carbon further increased the surface area to 2.457 m2/g, inhibiting the formation of arsenate. When the mineral feed rate increased from 50 kg/h to 80 kg/h, the oxygen partial pressure decreased; this effectively inhibited the formation of iron arsenate, and the arsenic removal efficiency increased from 70.20% to 95.61%. The optimized process achieved ≥94% arsenic removal efficiency and ≥76% sulfur-fixation efficiency, with low energy cost. Material balance analysis showed that after arsenic removal, the Cu/Si to Fe/Si ratio of the copper mineral reached 1.5, which is appropriate for immediate subsequent smelting. This study provides a new technological strategy for HACM arsenic removal. Full article
Show Figures

Figure 1

21 pages, 17766 KiB  
Article
Contrastive Analysis of Deep-Water Sedimentary Architectures in Central West African Passive Margin Basins During Late-Stage Continental Drift
by Futao Qu, Xianzhi Gao, Lei Gong and Jinyin Yin
J. Mar. Sci. Eng. 2025, 13(8), 1533; https://doi.org/10.3390/jmse13081533 - 10 Aug 2025
Viewed by 217
Abstract
The Lower Congo Basin (LCB) and the Niger Delta Basin (NDB), two end-member deep-water systems along the West African passive margin, exhibit contrasting sedimentary architectures despite shared geodynamic settings. The research comprehensively utilizes seismic reflection structure, root mean square amplitude slices, drilling lithology, [...] Read more.
The Lower Congo Basin (LCB) and the Niger Delta Basin (NDB), two end-member deep-water systems along the West African passive margin, exhibit contrasting sedimentary architectures despite shared geodynamic settings. The research comprehensively utilizes seismic reflection structure, root mean square amplitude slices, drilling lithology, changes in logging curves, and previous research achievements to elucidate the controlling mechanisms behind these differences. Key findings include: (1) Stark depositional contrast: Since the Eocene, the LCB developed retrogradational narrow-shelf systems dominated by erosional channels and terminal lobes, whereas the NDB formed progradational broad-shelf complexes with fan lobes and delta-fed turbidites. (2) Primary controls: Diapir-driven topographic features and basement uplift govern architectural variability, whereas shelf-slope break configuration and oceanic relief constitute subordinate controls. (3) Novel mechanism: First quantification of how diapir-induced seafloor relief redirects sediment pathways and amplifies facies heterogeneity. These insights establish a tectono-sedimentary framework for predicting deep-water reservoirs in diapir-affected passive margins, refine the conventional “source-to-sink” model by emphasizing salt-geomorphic features coupling as the primary driver. By analyzing the differences in lithofacies assemblages and sedimentary configurations among the above-mentioned different basins, this study can provide beneficial insights for the research on related deep-water turbidity current systems and also offer guidance for deep-water oil and gas exploration and development in the West African region and other similar areas. Full article
Show Figures

Figure 1

18 pages, 8314 KiB  
Article
Effects of Perforation Location in Gas Diffusion Layers on Electrochemical Characteristics of Proton Exchange Membrane Fuel Cells
by Dong Kun Song, Geon Hyeop Kim, Jonghyun Son, Seoung Jai Bai and Gu Young Cho
Appl. Sci. 2025, 15(16), 8804; https://doi.org/10.3390/app15168804 - 9 Aug 2025
Viewed by 277
Abstract
Water management is a critical issue for improving both the performance and durability of proton exchange membrane fuel cells (PEMFCs). A gas diffusion layer (GDL), as a porous medium, plays a key role in liquid water removal, reactant supply, and ensuring uniform distribution [...] Read more.
Water management is a critical issue for improving both the performance and durability of proton exchange membrane fuel cells (PEMFCs). A gas diffusion layer (GDL), as a porous medium, plays a key role in liquid water removal, reactant supply, and ensuring uniform distribution within the cell. Local perforations in the GDL are known to enhance water management capability. To further improve mass transfer, the effects of the perforation location in the GDL on PEMFC performance were investigated under different flow rates. The performance was compared and analyzed for three cases with GDL on the cathode side: a conventional GDL, a GDL perforated only under the channel, and a GDL with the perforations offset toward the rib by half the channel width. As a result, the offset of the perforations led to improved performance and enhanced uniformity, and the effect of the offset became more significant at higher flow rates. The under-channel and offset cases showed slight performance increases of 3.02% and 3.11% under the cathode stoichiometric ratio (SRc) of 1.2, but more significant improvements of 4.72% and 5.29% were observed under the SRc of 3.0. These results suggest the necessity of considering the flow field when designing a perforated GDL. Full article
(This article belongs to the Special Issue Advances in New Sources of Energy and Fuels)
Show Figures

Figure 1

19 pages, 17392 KiB  
Article
Reducing Gas Accumulation in Horizontal Diffusers Under Two-Phase Flow Using Upstream Cross-Flow Steps
by Michael Mansour, Nicola Zanini, Mena Shenouda, Michele Pinelli, Alessio Suman and Dominique Thévenin
Int. J. Turbomach. Propuls. Power 2025, 10(3), 20; https://doi.org/10.3390/ijtpp10030020 - 7 Aug 2025
Viewed by 162
Abstract
In gas–liquid two-phase flows, diverging channels such as diffusers often develop low-pressure separation zones where gas can accumulate, hindering pressure recovery and reducing system performance. This issue is particularly critical in centrifugal pumps, where it leads to efficiency losses. Unlike pumps, diffusers without [...] Read more.
In gas–liquid two-phase flows, diverging channels such as diffusers often develop low-pressure separation zones where gas can accumulate, hindering pressure recovery and reducing system performance. This issue is particularly critical in centrifugal pumps, where it leads to efficiency losses. Unlike pumps, diffusers without rotating components allow for more precise experimental studies. This research investigates a passive control method using upstream cross-flow steps to reduce gas accumulation in a horizontal diverging channel. Thin metallic sheets with toothed geometries of 2 mm, 5 mm, and 8 mm heights were installed upstream to interact with the flow. These features aim to enhance turbulence, break up larger gas pockets, and promote vertical bubble dispersion, all while minimizing additional flow separation. The diffuser was intentionally designed with an expanding angle to encourage flow separation and gas accumulation. The experiments covered various two-phase flow conditions (liquid Reynolds number 59,530–78,330; gas Reynolds number 3–9.25), and high-speed imaging captured detailed phase interactions. The results show that the steps significantly reduce gas accumulation, especially at higher water flow rates. These findings support the development of more accurate computational models and offer insights for optimizing centrifugal pump designs by minimizing gas buildup in separated flow regions. Full article
Show Figures

Figure 1

23 pages, 7302 KiB  
Article
Flow Velocity Distribution Downstream of Nanofibrous Filter in Minichannel Determined by Particle Image Velocimetry Method
by Andrzej Krupa, Izabela Wardach-Święcicka, Karol Ronewicz and Anatol Jaworek
Appl. Sci. 2025, 15(15), 8728; https://doi.org/10.3390/app15158728 - 7 Aug 2025
Viewed by 323
Abstract
The paper presents the results of investigations of flow velocity field distribution downstream of the nanofibrous filter in a minichannel determined by the particle image velocimetry (PIV) method. The nonwoven nanofibrous filter was produced by electrospinning technology from a PVDF polymer dissolved in [...] Read more.
The paper presents the results of investigations of flow velocity field distribution downstream of the nanofibrous filter in a minichannel determined by the particle image velocimetry (PIV) method. The nonwoven nanofibrous filter was produced by electrospinning technology from a PVDF polymer dissolved in DMAC and acetone mixture. The nanofibers were deposited onto a mesh scaffold made of stainless steel wires 0.2 mm in diameter and with a 2 mm pitch. The gas velocity in the channel with the inserted nanofibrous filter was below 1.2 m/s. The flow field distribution in the channel was investigated by the Dantec FlowMap System. It was shown that the turbulence can be generated downstream of the filter, even for low Reynolds numbers smaller than 1300. This turbulence was attributed to the inhomogeneity of the fibrous filter structure. Another cause of this phenomenon could be the large area of the boundary layer at the channel walls compared to the channel cross section. Full article
Show Figures

Figure 1

12 pages, 617 KiB  
Review
Developments in the Study of Inert Gas Biological Effects and the Underlying Molecular Mechanisms
by Mei-Ning Tong, Xia Li, Jie Cheng and Zheng-Lin Jiang
Int. J. Mol. Sci. 2025, 26(15), 7551; https://doi.org/10.3390/ijms26157551 - 5 Aug 2025
Viewed by 225
Abstract
It has long been accepted that breathing gases that are physiologically inert include helium (He), neon (Ne), nitrogen (N2), argon (Ar), krypton (Kr), xenon (Xe), and hydrogen (H2). The term “inert gas” has been used to describe them due [...] Read more.
It has long been accepted that breathing gases that are physiologically inert include helium (He), neon (Ne), nitrogen (N2), argon (Ar), krypton (Kr), xenon (Xe), and hydrogen (H2). The term “inert gas” has been used to describe them due to their unusually high chemical stability. However, as investigations have advanced, many have shown that inert gas can have specific biological impacts when exposed to high pressure or atmospheric pressure. Additionally, different inert gases have different effects on intracellular signal transduction, ion channels, and cell membrane receptors, which are linked to their anesthetic and cell protection effects in normal or pathological processes. Through a selective analysis of the representative literature, this study offers a concise overview of the state of research on the biological impacts of inert gas and their molecular mechanisms. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

23 pages, 4322 KiB  
Article
Fly-Ash-Based Microbial Self-Healing Cement: A Sustainable Solution for Oil Well Integrity
by Lixia Li, Yanjiang Yu, Qianyong Liang, Tianle Liu, Guosheng Jiang, Guokun Yang and Chengxiang Tang
Sustainability 2025, 17(15), 6989; https://doi.org/10.3390/su17156989 - 1 Aug 2025
Viewed by 336
Abstract
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and [...] Read more.
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and elevated operational expenditures. This study investigates the development of a novel microbial self-healing well cement slurry system, employing fly ash as microbial carriers and sustained-release microcapsules encapsulating calcium sources and nutrients. Systematic evaluations were conducted, encompassing microbial viability, cement slurry rheology, fluid loss control, anti-channeling capability, and the mechanical strength, permeability, and microstructural characteristics of set cement stones. Results demonstrated that fly ash outperformed blast furnace slag and nano-silica as a carrier, exhibiting superior microbial loading capacity and viability. Optimal performance was observed with additions of 3% microorganisms and 3% microcapsules to the cement slurry. Microscopic analysis further revealed effective calcium carbonate precipitation within and around micro-pores, indicating a self-healing mechanism. These findings highlight the significant potential of the proposed system to enhance cement sheath integrity through localized self-healing, offering valuable insights for the development of advanced, durable well-cementing materials tailored for challenging downhole environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

20 pages, 3578 KiB  
Article
Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate
by Qingsong Song, Shuochen Yang, Hongtao Li, Yunguang Ji, Dajun Cai, Guangyu Wang and Yuan Liufu
Energies 2025, 18(15), 4068; https://doi.org/10.3390/en18154068 - 31 Jul 2025
Viewed by 210
Abstract
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The [...] Read more.
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The function of the bipolar plate is to guide the transfer of reactant gases to the gas diffusion layer and catalytic layer inside the PEMFC, while removing unreacted gases and gas–liquid byproducts. Therefore, the design of the bipolar plate flow channel is directly related to the water and thermal management of the PEMFC. In order to improve the comprehensive performance of PEMFCs and ensure their safe and stable operation, it is necessary to design the flow channels in bipolar plates rationally and effectively. This study addresses the limitations of existing bipolar plate flow channels by proposing a new coupling of serpentine and radial channels. The distribution of oxygen, water concentrations, and temperature inside the channel is simulated using the multi-physics simulation software COMSOL Multiphysics 6.0. The performance of this novel design is compared with conventional flow channels, with a particular focus on the pressure drop and current density to evaluate changes in the output performance of the PEMFC. The results show that the maximum current density of this novel design is increased by 67.36% and 10.43% compared to straight channel and single serpentine channels, respectively. The main contribution of this research is the innovative design of a new coupling of serpentine and radial channels in bipolar plates, which improves the overall performance of the PEMFC. This study provides theoretical support for the design of bipolar plate flow channels in PEMFCs and holds significant importance for the green development of energy. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

14 pages, 6242 KiB  
Article
Characteristic Analysis of Ictalurus punctatus STING and Screening Validation of Interacting Proteins with Ictalurid herpesvirus 1
by Lihui Meng, Shuxin Li, Hongxun Chen, Sheng Yuan and Zhe Zhao
Microorganisms 2025, 13(8), 1780; https://doi.org/10.3390/microorganisms13081780 - 30 Jul 2025
Viewed by 365
Abstract
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function [...] Read more.
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function of STING and evade the host antiviral defenses. Understanding both the mechanism of action and the viruses targets of STING effector is important because of their importance to evade the host antiviral defenses. In this study, the STING (IpSTING) of Ictalurus punctatus was first identified and characterized. Subsequently, the yeast two-hybrid system (Y2HS) was used to screen for proteins from channel catfish virus (CCV, Ictalurid herpesvirus 1) that interact with IpSTING. The ORFs of the CCV were cloned into the pGBKT7 vector and expressed in the AH109 yeast strain. The bait protein expression was validated by autoactivation, and toxicity investigation compared with control (AH109 yeast strain transformed with empty pGBKT7 and pGADT7 vector). Two positive candidate proteins, ORF41 and ORF65, were identified through Y2HS screening as interacting with IpSTING. Their interactions were further validated using co-immunoprecipitation (Co-IP). This represented the first identification of interactions between IpSTING and the CCV proteins ORF41 and ORF65. The data advanced our understanding of the functions of ORF41 and ORF65 and suggested that they might contribute to the evasion of host antiviral defenses. However, the interaction mechanism between IpSTING, and CCV proteins ORF41 and ORF65 still needs to be further explored. Full article
Show Figures

Figure 1

13 pages, 2826 KiB  
Article
Design and Application of p-AlGaN Short Period Superlattice
by Yang Liu, Changhao Chen, Xiaowei Zhou, Peixian Li, Bo Yang, Yongfeng Zhang and Junchun Bai
Micromachines 2025, 16(8), 877; https://doi.org/10.3390/mi16080877 - 29 Jul 2025
Viewed by 335
Abstract
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using [...] Read more.
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using the device simulation software Silvaco. The results demonstrate that thin barrier structures lead to reduced acceptor incorporation, thereby decreasing the number of ionized acceptors, while facilitating vertical hole transport. Superlattice samples with varying periodic thicknesses were grown via metal-organic chemical vapor deposition, and their crystalline quality and electrical properties were characterized. The findings reveal that although gradient-thickness barriers contribute to enhancing hole concentration, the presence of thick barrier layers restricts hole tunneling and induces stronger scattering, ultimately increasing resistivity. In addition, we simulated the structure of the enhancement-mode HEMT with p-AlGaN as the under-gate material. Analysis of its energy band structure and channel carrier concentration indicates that adopting p-AlGaN superlattices as the under-gate material facilitates achieving a higher threshold voltage in enhancement-mode HEMT devices, which is crucial for improving device reliability and reducing power loss in practical applications such as electric vehicles. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

12 pages, 1867 KiB  
Article
Graphene Oxide-Constructed 2 nm Pore Anion Exchange Membrane for High Purity Hydrogen Production
by Hengcheng Wan, Hongjie Zhu, Ailing Zhang, Kexin Lv, Hongsen Wei, Yumo Wang, Huijie Sun, Lei Zhang, Xiang Liu and Haibin Zhang
Crystals 2025, 15(8), 689; https://doi.org/10.3390/cryst15080689 - 29 Jul 2025
Viewed by 371
Abstract
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional [...] Read more.
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional (2D) graphene oxide act as building blocks, with ethylenediamine as a crosslinking stabilizer, to construct a unique 3D/2D 2 nm-tunneling structure between the GO and WG sheets through via an amide connection at a WG/GO ratio of 1:1. Here, the wrinkled graphene (WG) undergoes a transition from two-dimensional (2D) graphene oxide (GO) into three-dimensional (3D) through the adjustment of surface energy. By increasing the interlayer spacing and the number of ion fluid channels within the membranes, the E-W/G membrane has achieved the rapid passage of hydroxide ions (OH) and simultaneous isolation of produced gas molecules. Moreover, the dense 2 nm nano-tunneling structure in the electrolytic water process enables the E-W/G membrane to attain current densities >99.9% and an extremely low gas crossover rate of hydrogen and oxygen. This result suggests that the as-prepared membrane effectively restricts the unwanted crossover of gases between the anode and cathode compartments, leading to improved efficiency and reduced gas leakage during electrolysis. By enhancing the purity of the hydrogen production industry and facilitating the energy transition, our strategy holds great potential for realizing the widespread utilization of hydrogen energy. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

25 pages, 1658 KiB  
Article
Energy-Related Carbon Emissions in Mega City in Developing Country: Patterns and Determinants Revealed by Hong Kong
by Fei Wang, Changlong Sun, Si Chen, Qiang Zhou and Changjian Wang
Sustainability 2025, 17(15), 6854; https://doi.org/10.3390/su17156854 - 28 Jul 2025
Viewed by 295
Abstract
Cities serve as the primary arenas for achieving the strategic objectives of “carbon peak and carbon neutrality”. This study employed the LMDI method to systematically analyze the evolution trend of energy-related carbon emissions in Hong Kong and their influencing factors from 1980 to [...] Read more.
Cities serve as the primary arenas for achieving the strategic objectives of “carbon peak and carbon neutrality”. This study employed the LMDI method to systematically analyze the evolution trend of energy-related carbon emissions in Hong Kong and their influencing factors from 1980 to 2023. The main findings are as follows: (1) Hong Kong’s energy consumption structure remains dominated by coal and oil. Influenced by energy prices, significant shifts in this structure occurred across different periods. Imported electricity from mainland China, in particular, has exerted a promoting effect on the optimization of its energy consumption mix. (2) Economic output and population concentration are the primary drivers of increased carbon emissions. However, the contribution of economic growth to carbon emissions has gradually weakened in recent years due to a lack of new growth drivers. (3) Energy consumption intensity, energy consumption structure, and carbon intensity are the primary influencing factors in curbing carbon emissions. Among these, the carbon reduction impact of energy consumption intensity is the most significant. Hong Kong should continue to adopt a robust strategy for controlling total energy consumption to effectively mitigate carbon emissions. Additionally, it should remain vigilant regarding the potential implications of future energy price fluctuations. It is also essential to sustain cross-border energy cooperation, primarily based on electricity imports from the Pearl River Delta, while simultaneously expanding international and domestic supply channels for natural gas. Full article
(This article belongs to the Special Issue Low Carbon Energy and Sustainability—2nd Edition)
Show Figures

Figure 1

26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 356
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

19 pages, 15236 KiB  
Article
Sedimentary Characteristics and Model of Estuary Dam-Type Shallow-Water Delta Front: A Case Study of the Qing 1 Member in the Daqingzijing Area, Songliao Basin, China
by Huijian Wen, Weidong Xie, Chao Wang, Shengjuan Qian and Cheng Yuan
Appl. Sci. 2025, 15(15), 8327; https://doi.org/10.3390/app15158327 - 26 Jul 2025
Viewed by 294
Abstract
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. [...] Read more.
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. Therefore, this paper reveals the distribution characteristics of estuary dams through the detailed dissection of the Qing 1 Member in the Daqingzijing area and establishes a completely new distribution pattern of estuary dams. By using geological data such as logging and core measurements, sedimentary microfacies at the shallow-water delta front are classified and logging facies identification charts for each sedimentary microfacies are developed. Based on the analysis of single-well and profile facies, the sedimentary evolution laws of the Qing 1 Member reservoirs are analyzed. On this basis, the sedimentary characteristics and model of the lacustrine shallow-water delta front are established. The results indicate that the Qing 1 Member in the Daqingzijing area exhibits a transitional sequence from a delta front to pro-delta facies and finally to deep lacustrine facies, with sediments continuously retrograding upward. Subaqueous distributary channels and estuary dams constitute the skeletal sand bodies of the retrogradational shallow-water delta. The estuary dam sand bodies are distributed on both sides of the subaqueous distributary channels, with sand body development gradually decreasing in scale from bottom to top. These bodies are intermittently distributed, overlapping, and laterally connected in plan view, challenging the conventional understanding that estuary dams only occur at the bifurcation points of underwater distributary channels. Establishing the sedimentary characteristics and model of the shallow-water delta front is of great significance for the exploration and development of reservoirs with similar sedimentary settings. Full article
Show Figures

Figure 1

Back to TopTop