Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = gammaretrovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4389 KiB  
Article
First Complete Genome of Reticuloendotheliosis Virus in a Mallard Duck from Brazil: Phylogenetic Insights and Evolutionary Analysis
by Ruy D. Chacón, Claudete S. Astolfi-Ferreira, Stefhany Valdeiglesias Ichillumpa, Henrique Lage Hagemann, Maristela Furlan Rocha, Larissa Fernandes Magalhães, Tânia Freitas Raso and Antonio J. Piantino Ferreira
Pathogens 2025, 14(2), 189; https://doi.org/10.3390/pathogens14020189 - 13 Feb 2025
Viewed by 1076
Abstract
Reticuloendotheliosis virus (REV) is an oncogenic retrovirus that affects both commercial and free-ranging birds. To date, only two complete REV genome sequences have been identified in chickens from South America, with no records in other avian species. This study reports the first complete [...] Read more.
Reticuloendotheliosis virus (REV) is an oncogenic retrovirus that affects both commercial and free-ranging birds. To date, only two complete REV genome sequences have been identified in chickens from South America, with no records in other avian species. This study reports the first complete genome of REV detected in a mallard duck (Anas platyrhynchos domesticus) in South America. In 2021, a mallard duck in Brazil died from severe lymphoproliferative disease affecting multiple organs. Molecular detection and histopathological analysis confirmed REV as the causative agent. Using dideoxy sequencing and phylogenetic analysis, the virus was classified as subtype 3 (REV-3). The phylogenetic analysis identified three clades, each with a bootstrap value of 100, corresponding to the three REV subtypes. Furthermore, a comprehensive comparative genomic analysis revealed two distinct REV-3 subclusters—‘East’ (38 strains) and ‘West’ (24 strains)—with notable geographical associations. Additionally, 27 genomes in chimeric states with fowlpox virus (FWPV) were distributed across the phylogenetic tree, emphasizing the critical role of FWPV in the dissemination of REV. Selective pressure analysis revealed evidence of positive selection acting on several codons within the gag, pol, and env genes, particularly in domains such as matrix, p18, reverse transcriptase/ribonuclease H, and surface. These findings provide valuable insights into REV evolution and underscore the importance of genomic surveillance for detecting REV circulation in diverse hosts. Full article
(This article belongs to the Special Issue Retroviruses: Molecular Biology, Immunology and Pathogenesis)
Show Figures

Figure 1

20 pages, 2381 KiB  
Article
Reliable Polymerase Chain Reaction Methods for Screening for Porcine Endogenous Retroviruses-C (PERV-C) in Pigs
by Hina Jhelum, Dusan Kunec, Vasileios Papatsiros, Benedikt B. Kaufer and Joachim Denner
Viruses 2025, 17(2), 164; https://doi.org/10.3390/v17020164 - 24 Jan 2025
Viewed by 1013
Abstract
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells [...] Read more.
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells of multiple host species, including humans, thereby posing a risk for xenotransplantation when pigs are used as donor animals. Notably, PERV-C can recombine with PERV-A to produce PERV-A/C recombinants that can infect human cells and replicate to higher titers compared to the paternal PERV-A. The objective of this study is to evaluate the reliability of both existing and newly developed polymerase chain reactions (PCR) methods for detecting PERV-C, with the aim of selecting PERV-C-free pigs to be used for xenotransplantation. To detect PERV-C by PCR, specific primers targeting the region of the envelope protein gene, which differs from that of PERV-A and PERV-B due to its unique receptor binding site, must be employed. In this study, new PCR assays were developed to detect PERV-C and a total of ten PCR assays and one real-time PCR assay were evaluated for their reliability in detecting PERV-C. These assays were used to screen indigenous Greek black pigs, Auckland Island pigs, and German slaughterhouse pigs. Two of the PCR assays consistently yielded reliable results, whereas the other PCRs and the real-time PCR gave false positive results. Using the reliable assays, it was shown that one out of four indigenous Greek black pigs (using the same method in a previous publication 11 of 21 pigs were found PERV-C-negative), one out of ten German slaughterhouse pigs, the pig kidney cell line PK15, and all the Auckland Island pigs were PERV-C-negative. The reliable PCR assays will enable the screening of PERV-C-negative donor pigs to be used in xenotransplantation. Most importantly, all the Auckland Island pigs that were genetically modified in Germany for use in clinical trials were PERV-C-negative. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

24 pages, 2970 KiB  
Review
piRNA Defense Against Endogenous Retroviruses
by Milky Abajorga, Leonid Yurkovetskiy and Jeremy Luban
Viruses 2024, 16(11), 1756; https://doi.org/10.3390/v16111756 - 9 Nov 2024
Cited by 1 | Viewed by 2806
Abstract
Infection by retroviruses and the mobilization of transposable elements cause DNA damage that can be catastrophic for a cell. If the cell survives, the mutations generated by retrotransposition may confer a selective advantage, although, more commonly, the effect of new integrants is neutral [...] Read more.
Infection by retroviruses and the mobilization of transposable elements cause DNA damage that can be catastrophic for a cell. If the cell survives, the mutations generated by retrotransposition may confer a selective advantage, although, more commonly, the effect of new integrants is neutral or detrimental. If retrotransposition occurs in gametes or in the early embryo, it introduces genetic modifications that can be transmitted to the progeny and may become fixed in the germline of that species. PIWI-interacting RNAs (piRNAs) are single-stranded, 21–35 nucleotide RNAs generated by the PIWI clade of Argonaute proteins that maintain the integrity of the animal germline by silencing transposons. The sequence specific manner by which piRNAs and germline-encoded PIWI proteins repress transposons is reminiscent of CRISPR, which retains memory for invading pathogen sequences. piRNAs are processed preferentially from the unspliced transcripts of piRNA clusters. Via complementary base pairing, mature antisense piRNAs guide the PIWI clade of Argonaute proteins to transposon RNAs for degradation. Moreover, these piRNA-loaded PIWI proteins are imported into the nucleus to modulate the co-transcriptional repression of transposons by initiating histone and DNA methylation. How retroviruses that invade germ cells are first recognized as foreign by the piRNA machinery, as well as how endogenous piRNA clusters targeting the sequences of invasive genetic elements are acquired, is not known. Currently, koalas (Phascolarctos cinereus) are going through an epidemic due to the horizontal and vertical transmission of the KoRV-A gammaretrovirus. This provides an unprecedented opportunity to study how an exogenous retrovirus becomes fixed in the genome of its host, and how piRNAs targeting this retrovirus are generated in germ cells of the infected animal. Initial experiments have shown that the unspliced transcript from KoRV-A proviruses in koala testes, but not the spliced KoRV-A transcript, is directly processed into sense-strand piRNAs. The cleavage of unspliced sense-strand transcripts is thought to serve as an initial innate defense until antisense piRNAs are generated and an adaptive KoRV-A-specific genome immune response is established. Further research is expected to determine how the piRNA machinery recognizes a new foreign genetic invader, how it distinguishes between spliced and unspliced transcripts, and how a mature genome immune response is established, with both sense and antisense piRNAs and the methylation of histones and DNA at the provirus promoter. Full article
(This article belongs to the Special Issue The Diverse Regulation of Transcription in Endogenous Retroviruses)
Show Figures

Figure 1

17 pages, 2871 KiB  
Article
Correlation between the Characteristic Flavour and Microbial Community of Xuanwei Ham after Ripening
by Guipeng Li, Simin Li, Yiling Wen, Jing Yang, Ping Wang, Huaiyao Wang, Yawen Cui, Wenliang Wu, Liang Li and Zhendong Liu
Fermentation 2024, 10(8), 392; https://doi.org/10.3390/fermentation10080392 - 30 Jul 2024
Cited by 3 | Viewed by 1755
Abstract
Xuanwei ham is a traditional fermented meat product in China with a unique production process and excellent-quality reputation at home and abroad. To reveal the microbial community succession of Xuanwei ham at different post-ripening times (W1-4) and its relationship with flavour formation, the [...] Read more.
Xuanwei ham is a traditional fermented meat product in China with a unique production process and excellent-quality reputation at home and abroad. To reveal the microbial community succession of Xuanwei ham at different post-ripening times (W1-4) and its relationship with flavour formation, the microbial community, free amino acids, and volatile flavour compounds (VOCs) were analysed by high-throughput sequencing, liquid chromatography (LC), and gas chromatography–mass spectrometry (GC-MS), respectively. A total of 25 free amino acids were detected, among which W3 contained the fewest, and most were generally lower than in hams in the other three years. Fifty-nine VOCs were detected, among which 17 were esters, and the highest ester content was found in W4. Analysis of the bacterial community composition revealed that the bacterial community composition of ham samples from W3 and other years differed greatly, and at the gate level, the dominant bacterial group of Xuanwei ham from different years was Pseudomonadota. At the genus level, the most abundant genera in W1, W2, and W4 were all dominated by Sarocladium, Klebsiella, and Vibrio, with Klebsiella being the most abundant in W1. The most abundant genus in W3 was Vibrio, and the second most dominant genera were Sarocladium and Gammaretrovirus. In short, this study provides a theoretical basis for the storage, quality, and improvement of Xuanwei ham. Full article
(This article belongs to the Special Issue Analysis of Quality and Sensory Characteristics of Fermented Products)
Show Figures

Figure 1

11 pages, 2035 KiB  
Article
Status Quo of Feline Leukaemia Virus Infection in Turkish Cats and Their Antigenic Prevalence
by Emrah Korkulu, Elif İrem Şenlik, Ece Adıgüzel, Fatma Gökçe Artut, Hüseyin Doğukan Çetinaslan, Eda Erdem-Şahinkesen and Tuba Çiğdem Oğuzoğlu
Animals 2024, 14(3), 385; https://doi.org/10.3390/ani14030385 - 25 Jan 2024
Cited by 1 | Viewed by 4279
Abstract
Feline leukaemia virus (FeLV) is a member of the Gammaretrovirus genus, which has two genotypes in cats: endogenous (replication-defective provirus) and exogenous (replication-competent). In this study, 550 cats were examined, and 112 of them (20.36%) were found to have the endogenous FeLV (enFeLV) [...] Read more.
Feline leukaemia virus (FeLV) is a member of the Gammaretrovirus genus, which has two genotypes in cats: endogenous (replication-defective provirus) and exogenous (replication-competent). In this study, 550 cats were examined, and 112 of them (20.36%) were found to have the endogenous FeLV (enFeLV) genotype. EnFeLV-positive animals were also tested for additional viral infections, and 48 cats (42.85%) were discovered to be co-infected with other viruses. According to co-infection data, these cats were infected with feline coronavirus (FCoV) (27/112, 24.1%), feline panleukopenia virus (FPV) (14/112, 12.5%), feline immunodeficiency virus (FIV) (0/112, 0%), and domestic cat hepadnavirus (DCH) (13/112, 11.6%). Their age, sex, breed, clinical state, lifestyle (in/outdoor), and immunization data against FeLV were also evaluated. In line with our results, the prevalence of enFeLV and co-infection with other pathogens in cats admitted to the clinic for various reasons were discussed. The majority of positive animals in terms of FeLV (94/112, 83.93%) had clinical findings. We emphasized that the FeLV-positive situation of cats should be taken into consideration by veterinarians when planning treatment and vaccination programs. Additionally, in this study, we questioned the group in which our enFeLVs were phylogenetically located. Therefore, we performed a phylogenetic analysis based on a comparison with global FeLV sequences obtained from the GenBank database. The sequenced positive samples were in the AGTT subgroup within Group-II. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

15 pages, 1289 KiB  
Article
BET Inhibitor JQ1 Attenuates Feline Leukemia Virus DNA, Provirus, and Antigen Production in Domestic Cat Cell Lines
by Garrick M. Moll, Cheryl L. Swenson and Vilma Yuzbasiyan-Gurkan
Viruses 2023, 15(9), 1853; https://doi.org/10.3390/v15091853 - 31 Aug 2023
Cited by 1 | Viewed by 3612
Abstract
Feline leukemia virus (FeLV) is a cosmopolitan gammaretrovirus that causes lifelong infections and fatal diseases, including leukemias, lymphomas, immunodeficiencies, and anemias, in domestic and wild felids. There is currently no definitive treatment for FeLV, and while existing vaccines reduce the prevalence of progressive [...] Read more.
Feline leukemia virus (FeLV) is a cosmopolitan gammaretrovirus that causes lifelong infections and fatal diseases, including leukemias, lymphomas, immunodeficiencies, and anemias, in domestic and wild felids. There is currently no definitive treatment for FeLV, and while existing vaccines reduce the prevalence of progressive infections, they neither provide sterilizing immunity nor prevent regressive infections that result in viral reservoirs with the potential for reactivation, transmission, and the development of associated clinical diseases. Previous studies of murine leukemia virus (MuLV) established that host cell epigenetic reader bromodomain and extra-terminal domain (BET) proteins facilitate MuLV replication by promoting proviral integration. Here, we provide evidence that this facilitatory effect of BET proteins extends to FeLV. Treatment with the archetypal BET protein bromodomain inhibitor (+)-JQ1 and FeLV challenge of two phenotypically disparate feline cell lines, 81C fibroblasts and 3201 lymphoma cells, significantly reduced FeLV proviral load, total FeLV DNA load, and p27 capsid protein expression at nonlethal concentrations. Moreover, significant decreases in FeLV proviral integration were documented in 81C and 3201 cells. These findings elucidate the importance of BET proteins for efficient FeLV replication, including proviral integration, and provide a potential target for treating FeLV infections. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

31 pages, 3333 KiB  
Review
Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein
by Victoria Hogan and Welkin E. Johnson
Viruses 2023, 15(2), 274; https://doi.org/10.3390/v15020274 - 18 Jan 2023
Cited by 13 | Viewed by 6707
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and [...] Read more.
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) “immunosuppressive domain”, and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function. Full article
(This article belongs to the Special Issue Molecular Genetics of Retrovirus Replication)
Show Figures

Figure 1

31 pages, 1270 KiB  
Review
Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV—Based Vectors and for a Cure for HIV-1 Infection
by Eline Pellaers, Anayat Bhat, Frauke Christ and Zeger Debyser
Viruses 2023, 15(1), 32; https://doi.org/10.3390/v15010032 - 21 Dec 2022
Cited by 4 | Viewed by 3712
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, [...] Read more.
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection. Full article
(This article belongs to the Special Issue Integrase Inhibitors 2023)
Show Figures

Figure 1

22 pages, 4745 KiB  
Article
Measuring the Humoral Immune Response in Cats Exposed to Feline Leukaemia Virus
by Yasmin A. Parr, Melissa J. Beall, Julie K. Levy, Michael McDonald, Natascha T. Hamman, Brian J. Willett and Margaret J. Hosie
Viruses 2021, 13(3), 428; https://doi.org/10.3390/v13030428 - 7 Mar 2021
Cited by 10 | Viewed by 5218
Abstract
Retroviruses belong to an important and diverse family of RNA viruses capable of causing neoplastic disease in their hosts. Feline leukaemia virus (FeLV) is a gammaretrovirus that infects domestic and wild cats, causing immunodeficiency, cytopenia and neoplasia in progressively infected cats. The outcome [...] Read more.
Retroviruses belong to an important and diverse family of RNA viruses capable of causing neoplastic disease in their hosts. Feline leukaemia virus (FeLV) is a gammaretrovirus that infects domestic and wild cats, causing immunodeficiency, cytopenia and neoplasia in progressively infected cats. The outcome of FeLV infection is influenced by the host immune response; progressively infected cats demonstrate weaker immune responses compared to regressively infected cats. In this study, humoral immune responses were examined in 180 samples collected from 123 domestic cats that had been naturally exposed to FeLV, using a novel ELISA to measure antibodies recognizing the FeLV surface unit (SU) glycoprotein in plasma samples. A correlation was demonstrated between the strength of the humoral immune response to the SU protein and the outcome of exposure. Cats with regressive infection demonstrated higher antibody responses to the SU protein compared to cats belonging to other outcome groups, and samples from cats with regressive infection contained virus neutralising antibodies. These results demonstrate that an ELISA that assesses the humoral response to FeLV SU complements the use of viral diagnostic tests to define the outcome of exposure to FeLV. Together these tests could allow the rapid identification of regressively infected cats that are unlikely to develop FeLV-related disease. Full article
(This article belongs to the Special Issue Viral Infections in Companion Animals)
Show Figures

Figure 1

12 pages, 3677 KiB  
Article
Xenotropic Mouse Gammaretroviruses Isolated from Pre-Leukemic Tissues Include a Recombinant
by Devinka Bamunusinghe, Matthew Skorski, Alicia Buckler-White and Christine A. Kozak
Viruses 2018, 10(8), 418; https://doi.org/10.3390/v10080418 - 9 Aug 2018
Cited by 2 | Viewed by 3299
Abstract
Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic [...] Read more.
Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic host range, the X-MLVs are also present in the pre-leukemic tissues. We analyzed two such isolates from the AKR mice to identify their ERV progenitors and to look for evidence of recombination. AKR40 resembles the active X-ERV Bxv1, while AKR6 has a Bxv1-like backbone with substitutions that alter the long terminal repeat (LTR) enhancer and the envelope (env). AKR6 has a modified xenotropic host range, and its Env residue changes all lie outside of the domain that governs the receptor choice. The AKR6 segment spanning the two substitutions, but not the entire AKR6 env-LTR, exists as an ERV, termed Xmv67, in AKR, but not in the C57BL/6 mice. This suggests that AKR6 is the product of one, not two, recombination events. Xmv67 originated in the Asian mice. These data indicate that the recombinant X-MLVs that can be generated during lymphomagenesis, describe a novel X-ERV subtype found in the AKR genome, but not in the C57BL/6 reference genome, and identify residues in the envelope C-terminus that may influence the host range. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 8118 KiB  
Article
ESCRT Requirements for Murine Leukemia Virus Release
by Christina Bartusch and Reinhild Prange
Viruses 2016, 8(4), 103; https://doi.org/10.3390/v8040103 - 18 Apr 2016
Cited by 21 | Viewed by 7713
Abstract
The Murine Leukemia Virus (MLV) is a gammaretrovirus that hijack host components of the endosomal sorting complex required for transport (ESCRT) for budding. To determine the minimal requirements for ESCRT factors in MLV viral and viral-like particles (VLP) release, an siRNA knockdown screen [...] Read more.
The Murine Leukemia Virus (MLV) is a gammaretrovirus that hijack host components of the endosomal sorting complex required for transport (ESCRT) for budding. To determine the minimal requirements for ESCRT factors in MLV viral and viral-like particles (VLP) release, an siRNA knockdown screen of ESCRT(-associated) proteins was performed in MLV-producing human cells. We found that MLV VLPs and virions primarily engage the ESCRT-I factor Tsg101 and marginally the ESCRT-associated adaptors Nedd4-1 and Alix to enter the ESCRT pathway. Conversely, the inactivation of ESCRT-II had no impact on VLP and virion egress. By analyzing the effects of individual ESCRT-III knockdowns, VLP and virion release was profoundly inhibited in CHMP2A- and CHMP4B-knockdown cells. In contrast, neither the CHMP2B and CHMP4A isoforms nor CHMP3, CHMP5, and CHMP6 were found to be essential. In case of CHMP1, we unexpectedly observed that the CHMP1A isoform was specifically required for virus budding, but dispensable for VLP release. Hence, MLV utilizes only a subset of ESCRT factors, and viral and viral-like particles differ in ESCRT-III factor requirements. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

21 pages, 1129 KiB  
Article
Evaluation of the Broad-Range PCR-Electrospray Ionization Mass Spectrometry (PCR/ESI-MS) System and Virus Microarrays for Virus Detection
by Lanyn P. Taliaferro, Teresa A. Galvin, Hailun Ma, Syed Shaheduzzaman, Dhanya K. Williams, Dustin R. Glasner and Arifa S. Khan
Viruses 2014, 6(5), 1876-1896; https://doi.org/10.3390/v6051876 - 25 Apr 2014
Cited by 9 | Viewed by 10233 | Correction
Abstract
Advanced nucleic acid-based technologies are powerful research tools for novel virus discovery but need to be standardized for broader applications such as virus detection in biological products and clinical samples. We have used well-characterized retrovirus stocks to evaluate the limit of detection (LOD) [...] Read more.
Advanced nucleic acid-based technologies are powerful research tools for novel virus discovery but need to be standardized for broader applications such as virus detection in biological products and clinical samples. We have used well-characterized retrovirus stocks to evaluate the limit of detection (LOD) for broad-range PCR with electrospray ionization mass spectrometry (PCR/ESI-MS or PLEX-ID), RT-PCR assays, and virus microarrays. The results indicated that in the absence of background cellular nucleic acids, PLEX-ID and RT-PCR had a similar LOD for xenotropic murine retrovirus-related virus (XMRV; 3.12 particles per µL) whereas sensitivity of virus detection was 10-fold greater using virus microarrays. When virus was spiked into a background of cellular nucleic acids, the LOD using PLEX-ID remained the same, whereas virus detection by RT-PCR was 10-fold less sensitive, and no virus could be detected by microarrays. Expected endogenous retrovirus (ERV) sequences were detected in cell lines tested and known species-specific viral sequences were detected in bovine serum and porcine trypsin. A follow-up strategy was developed using PCR amplification, nucleotide sequencing, and bioinformatics to demonstrate that an RD114-like retrovirus sequence that was detected by PLEX-ID in canine cell lines (Madin-Darby canine kidney (MDCK) and Cf2Th canine thymus) was due to defective, endogenous gammaretrovirus-related sequences. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 460 KiB  
Article
Murine Leukemia Virus Uses TREX Components for Efficient Nuclear Export of Unspliced Viral Transcripts
by Toshie Sakuma, Jason M. Tonne and Yasuhiro Ikeda
Viruses 2014, 6(3), 1135-1148; https://doi.org/10.3390/v6031135 - 10 Mar 2014
Cited by 9 | Viewed by 8322
Abstract
Previously we reported that nuclear export of both unspliced and spliced murine leukemia virus (MLV) transcripts depends on the nuclear export factor (NXF1) pathway. Although the mRNA export complex TREX, which contains Aly/REF, UAP56, and the THO complex, is involved in the NXF1-mediated [...] Read more.
Previously we reported that nuclear export of both unspliced and spliced murine leukemia virus (MLV) transcripts depends on the nuclear export factor (NXF1) pathway. Although the mRNA export complex TREX, which contains Aly/REF, UAP56, and the THO complex, is involved in the NXF1-mediated nuclear export of cellular mRNAs, its contribution to the export of MLV mRNA transcripts remains poorly understood. Here, we studied the involvement of TREX components in the export of MLV transcripts. Depletion of UAP56, but not Aly/REF, reduced the level of both unspliced and spliced viral transcripts in the cytoplasm. Interestingly, depletion of THO components, including THOC5 and THOC7, affected only unspliced viral transcripts in the cytoplasm. Moreover, the RNA immunoprecipitation assay showed that only the unspliced viral transcript interacted with THOC5. These results imply that MLV requires UAP56, THOC5 and THOC7, in addition to NXF1, for nuclear export of viral transcripts. Given that naturally intronless mRNAs, but not bulk mRNAs, require THOC5 for nuclear export, it is plausible that THOC5 plays a key role in the export of unspliced MLV transcripts. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

20 pages, 619 KiB  
Communication
The Human Lung Adenocarcinoma Cell Line EKVX Produces an Infectious Xenotropic Murine Leukemia Virus
by Joan L. Cmarik, Jami A. Troxler, Charlotte A. Hanson, Xiang Zhang and Sandra K. Ruscetti
Viruses 2011, 3(12), 2442-2461; https://doi.org/10.3390/v3122442 - 19 Dec 2011
Cited by 5 | Viewed by 10573
Abstract
The cell lines of the NCI-60 panel represent different cancer types and have been widely utilized for drug screening and molecular target identification. Screening these cell lines for envelope proteins or gene sequences related to xenotropic murine leukemia viruses (X-MLVs) revealed that one [...] Read more.
The cell lines of the NCI-60 panel represent different cancer types and have been widely utilized for drug screening and molecular target identification. Screening these cell lines for envelope proteins or gene sequences related to xenotropic murine leukemia viruses (X-MLVs) revealed that one cell line, EKVX, was a candidate for production of an infectious gammaretrovirus. The presence of a retrovirus infectious to human cells was confirmed by the cell-free transmission of infection to the human prostate cancer cell line LNCaP. Amplification and sequencing of additional proviral sequences from EKVX confirmed a high degree of similarity to X-MLV. The cell line EKVX was established following passage of the original tumor cells through nude mice, providing a possible source of the X-MLV found in the EKVX cells. Full article
Show Figures

Figure 1

8 pages, 506 KiB  
Commentary
Origin of XMRV and its Demise as a Human Pathogen Associated with Chronic Fatigue Syndrome
by Oliver Hohn and Norbert Bannert
Viruses 2011, 3(8), 1312-1319; https://doi.org/10.3390/v3081312 - 27 Jul 2011
Cited by 6 | Viewed by 5644
Abstract
Retroviruses are well known pathogens of mammals, birds and fish. Their potential to induce cancer in chickens was already described almost 100 years ago and murine retroviruses have been a subject of study for 50 years. The first human retroviruses, HTLV and HIV, [...] Read more.
Retroviruses are well known pathogens of mammals, birds and fish. Their potential to induce cancer in chickens was already described almost 100 years ago and murine retroviruses have been a subject of study for 50 years. The first human retroviruses, HTLV and HIV, were discovered more than 30 years ago, surprising researchers and physicians by the profound differences in the diseases they cause. HTLV-1 is able to induce, after decades of infection, lymphomas/leukemia or neuroimmune disorders whereas untreated HIV infection leads almost inevitably to AIDS. The recently described XMRV (xenotropic murine leukemia virus-related virus) appeared to possess many of the features known for HTLV and was regarded by some to be the third human retrovirus. However, recent publications by Knox et al. [1] and Paprotka et al. [2] have shed new light on this gammaretrovirus. Knox and colleagues clearly demonstrate that XMRV is absent in patients belonging to a chronic fatigue syndrome cohort who had previously been reported to be XMRV-positive [3]. This supports the growing suspicion that laboratory contamination was responsible for the postulated link between XMRV and the disease. Furthermore, Paprotka et al’s identification of XMRV’s origin and the phylogenetic analysis of known XMRV sequences are further nails in the coffin to the notion that XMRV is a clinically relevant infectious human retrovirus. Full article
Back to TopTop