Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,703)

Search Parameters:
Keywords = fuzzy information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5950 KB  
Article
Fault Point Search with Obstacle Avoidance for Machinery Diagnostic Robots Using Hierarchical Fuzzy Logic Control
by Rui Mu, Ryojun Ikeura, Hongtao Xue, Chengxiang Zhao and Peng Chen
Sensors 2025, 25(19), 6127; https://doi.org/10.3390/s25196127 - 3 Oct 2025
Abstract
Higher requirements have been placed on fault detection for continuously operating machines in modern factories. Manual inspection faces challenges related to timeliness, leading to the emergence of autonomous diagnostic robots. To overcome the safety limitations of existing diagnostic robots in factory environments, a [...] Read more.
Higher requirements have been placed on fault detection for continuously operating machines in modern factories. Manual inspection faces challenges related to timeliness, leading to the emergence of autonomous diagnostic robots. To overcome the safety limitations of existing diagnostic robots in factory environments, a hierarchical fuzzy logic-based navigation and obstacle avoidance algorithm is proposed in this study. The algorithm is constructed based on zero-order Takagi–Sugeno type fuzzy control, comprising subfunctions for navigation, static obstacle avoidance, and dynamic obstacle avoidance. Coordinated navigation and equipment protection are achieved by jointly considering the information of the fault point and surrounding equipment. The concept of a dynamic safety boundary is introduced, wherein the normalized breached level is used to replace the traditional distance-based input. In the inference process for dynamic obstacle avoidance, the relative speed direction is additionally considered. A Mamdani-type fuzzy inference system is employed to infer the necessity of obstacle avoidance and determine the priority target for avoidance, thereby enabling multi-objective planning. Simulation results demonstrate that the proposed algorithm can guide the diagnostic robot to within 30 cm of the fault point while ensuring collision avoidance with both equipment and obstacles, enhancing the completeness and safety of the fault point searching process. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2025)
Show Figures

Figure 1

20 pages, 4430 KB  
Article
Path Tracking Controller and System Design for Agricultural Tractors Based on Improved Stanley and Sliding Mode Algorithms Considering Sideslip Compensation
by Anzhe Wang, Xin Ji, Qi Song, Xinhua Wei, Wenming Chen and Kun Wang
Agronomy 2025, 15(10), 2329; https://doi.org/10.3390/agronomy15102329 - 1 Oct 2025
Abstract
Global agriculture is confronting unprecedented pressures from population growth, diminishing arable land, and severe rural labor scarcity, necessitating the advancement of intelligent agricultural equipment. As a core component of precision farming, unmanned agricultural tractors demand highly accurate and robust path tracking control. However, [...] Read more.
Global agriculture is confronting unprecedented pressures from population growth, diminishing arable land, and severe rural labor scarcity, necessitating the advancement of intelligent agricultural equipment. As a core component of precision farming, unmanned agricultural tractors demand highly accurate and robust path tracking control. However, conventional methods often fail to cope with unstructured terrain and dynamic wheel slip under real field conditions. This paper proposes an extended state observer (ESO)-based improved Stanley guidance law, which incorporates real-time sideslip angle observation, adaptive preview-based path curvature compensation, and a sliding mode heading controller. The ESO estimates lateral slip caused by varying soil conditions, while the modified Stanley law utilizes look-ahead path information to proactively adjust the desired heading angle during high-curvature turns. Both co-simulation in Matlab-Carsim and field experiments demonstrate that the proposed method significantly reduces lateral tracking error and overshoot, outperforming classical algorithms such as fuzzy Stanley and sliding mode controller, especially in U-turn scenarios and under low-adhesion conditions. Full article
(This article belongs to the Special Issue Research Progress in Agricultural Robots in Arable Farming)
Show Figures

Figure 1

28 pages, 924 KB  
Article
Hybrid Fuzzy Fractional for Multi-Phasic Epidemics: The Omicron–Malaria Case Study
by Mohamed S. Algolam, Ashraf A. Qurtam, Mohammed Almalahi, Khaled Aldwoah, Mesfer H. Alqahtani, Alawia Adam and Salahedden Omer Ali
Fractal Fract. 2025, 9(10), 643; https://doi.org/10.3390/fractalfract9100643 - 1 Oct 2025
Abstract
This study introduces a novel Fuzzy Piecewise Fractional Derivative (FPFD) framework to enhance epidemiological modeling, specifically for the multi-phasic co-infection dynamics of Omicron and malaria. We address the limitations of traditional models by incorporating two key realities. First, we use fuzzy set theory [...] Read more.
This study introduces a novel Fuzzy Piecewise Fractional Derivative (FPFD) framework to enhance epidemiological modeling, specifically for the multi-phasic co-infection dynamics of Omicron and malaria. We address the limitations of traditional models by incorporating two key realities. First, we use fuzzy set theory to manage the inherent uncertainty in biological parameters. Second, we employ piecewise fractional operators to capture the dynamic, phase-dependent nature of epidemics. The framework utilizes a fuzzy classical derivative for initial memoryless spread and transitions to a fuzzy Atangana–Baleanu–Caputo (ABC) fractional derivative to capture post-intervention memory effects. We establish the mathematical rigor of the FPFD model through proofs of positivity, boundedness, and stability of equilibrium points, including the basic reproductive number (R0). A hybrid numerical scheme, combining Fuzzy Runge–Kutta and Fuzzy Fractional Adams–Bashforth–Moulton algorithms, is developed for solving the system. Simulations show that the framework successfully models dynamic shifts while propagating uncertainty. This provides forecasts that are more robust and practical, directly informing public health interventions. Full article
Show Figures

Figure 1

30 pages, 15743 KB  
Article
Fusing Historical Records and Physics-Informed Priors for Urban Waterlogging Susceptibility Assessment: A Framework Integrating Machine Learning, Fuzzy Evaluation, and Decision Analysis
by Guangyao Chen, Wenxin Guan, Jiaming Xu, Chan Ghee Koh and Zhao Xu
Appl. Sci. 2025, 15(19), 10604; https://doi.org/10.3390/app151910604 - 30 Sep 2025
Abstract
Urban Waterlogging Susceptibility Assessment (UWSA) is vital for resilient urban planning and disaster preparedness. Conventional methods depend heavily on Historical Waterlogging Records (HWR), which are limited by their reliance on extreme rainfall events and prone to human omissions, resulting in spatial bias and [...] Read more.
Urban Waterlogging Susceptibility Assessment (UWSA) is vital for resilient urban planning and disaster preparedness. Conventional methods depend heavily on Historical Waterlogging Records (HWR), which are limited by their reliance on extreme rainfall events and prone to human omissions, resulting in spatial bias and incomplete coverage. While hydrodynamic models can simulate waterlogging scenarios, their large-scale application is restricted by the lack of accessible underground drainage data. Recently released flood control plans and risk maps provide valuable physics-informed priors (PI-Priors) that can supplement HWR for susceptibility modeling. This study introduces a dual-source integration framework that fuses HWR with PI-Priors to improve UWSA performance. PI-Priors rasters were vectorized to delineate two-dimensional waterlogging zones, and based on the Three-Way Decision (TWD) theory, a Multi-dimensional Connection Cloud Model (MCCM) with CRITIC-TOPSIS was employed to build an index system incorporating membership degree, credibility, and impact scores. High-quality samples were extracted and combined with HWR to create an enhanced dataset. A Maximum Entropy (MaxEnt) model was then applied with 20 variables spanning natural conditions, social capital, infrastructure, and built environment. The results demonstrate that this framework increases sample adequacy, reduces spatial bias, and substantially improves the accuracy and generalizability of UWSA under extreme rainfall. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
25 pages, 1268 KB  
Article
Sustainable Development of Smart Regions via Cybersecurity of National Infrastructure: A Fuzzy Risk Assessment Approach
by Oleksandr Korchenko, Oleksandr Korystin, Volodymyr Shulha, Svitlana Kazmirchuk, Serhii Demediuk and Serhii Zybin
Sustainability 2025, 17(19), 8757; https://doi.org/10.3390/su17198757 - 29 Sep 2025
Abstract
This article proposes a scientifically grounded approach to risk assessment for infrastructural and functional systems that underpin the development of digitally transformed regional territories under conditions of high threat dynamics and sociotechnical instability. The core methodology is based on modeling of multifactorial threats [...] Read more.
This article proposes a scientifically grounded approach to risk assessment for infrastructural and functional systems that underpin the development of digitally transformed regional territories under conditions of high threat dynamics and sociotechnical instability. The core methodology is based on modeling of multifactorial threats through the application of fuzzy set theory and logic–linguistic analysis, enabling consideration of parameter uncertainty, fragmented expert input, and the lack of a unified risk landscape within complex infrastructure environments. A special emphasis is placed on components of technogenic, informational, and mobile infrastructure that ensure regional viability across planning, response, and recovery phases. The results confirm the relevance of the approach for assessing infrastructure resilience risks in regional spatial–functional systems, which demonstrates the potential integration into sustainable development strategies at the level of regional governance, cross-sectoral planning, and cultural reevaluation of the role of analytics as an ethically grounded practice for cultivating trust, transparency, and professional maturity. Full article
20 pages, 1372 KB  
Article
A Novel Multi-Scale Entropy Approach for EEG-Based Lie Detection with Channel Selection
by Jiawen Li, Guanyuan Feng, Chen Ling, Ximing Ren, Shuang Zhang, Xin Liu, Leijun Wang, Mang I. Vai, Jujian Lv and Rongjun Chen
Entropy 2025, 27(10), 1026; https://doi.org/10.3390/e27101026 - 29 Sep 2025
Abstract
Entropy-based analyses have emerged as a powerful tool for quantifying the complexity, regularity, and information content of complex biological signals, such as electroencephalography (EEG). In this regard, EEG-based lie detection offers the advantage of directly providing more objective and less susceptible-to-manipulation results compared [...] Read more.
Entropy-based analyses have emerged as a powerful tool for quantifying the complexity, regularity, and information content of complex biological signals, such as electroencephalography (EEG). In this regard, EEG-based lie detection offers the advantage of directly providing more objective and less susceptible-to-manipulation results compared to traditional polygraph methods. To this end, this study proposes a novel multi-scale entropy approach by fusing fuzzy entropy (FE), time-shifted multi-scale fuzzy entropy (TSMFE), and hierarchical multi-band fuzzy entropy (HMFE), which enables the multidimensional characterization of EEG signals. Subsequently, using machine learning classifiers, the fused feature vector is applied to lie detection, with a focus on channel selection to investigate distinguished neural signatures across brain regions. Experiments utilize a publicly benchmarked LieWaves dataset, and two parts are performed. One is a subject-dependent experiment to identify representative channels for lie detection. Another is a cross-subject experiment to assess the generalizability of the proposed approach. In the subject-dependent experiment, linear discriminant analysis (LDA) achieves impressive accuracies of 82.74% under leave-one-out cross-validation (LOOCV) and 82.00% under 10-fold cross-validation. The cross-subject experiment yields an accuracy of 64.07% using a radial basis function (RBF) kernel support vector machine (SVM) under leave-one-subject-out cross-validation (LOSOCV). Furthermore, regarding the channel selection results, PZ (parietal midline) and T7 (left temporal) are considered the representative channels for lie detection, as they exhibit the most prominent occurrences among subjects. These findings demonstrate that the PZ and T7 play vital roles in the cognitive processes associated with lying, offering a solution for designing portable EEG-based lie detection devices with fewer channels, which also provides insights into neural dynamics by analyzing variations in multi-scale entropy. Full article
(This article belongs to the Special Issue Entropy Analysis of Electrophysiological Signals)
Show Figures

Figure 1

21 pages, 538 KB  
Article
Finite-Time Synchronization and Mittag–Leffler Synchronization for Uncertain Fractional-Order Delayed Cellular Neural Networks with Fuzzy Operators via Nonlinear Adaptive Control
by Hongguang Fan, Kaibo Shi, Zizhao Guo, Anran Zhou and Jiayi Cai
Fractal Fract. 2025, 9(10), 634; https://doi.org/10.3390/fractalfract9100634 - 29 Sep 2025
Abstract
This paper investigates a class of uncertain fractional-order delayed cellular neural networks (UFODCNNs) with fuzzy operators and nonlinear activations. Both fuzzy AND and fuzzy OR are considered, which help to improve the robustness of the model when dealing with various uncertain problems. To [...] Read more.
This paper investigates a class of uncertain fractional-order delayed cellular neural networks (UFODCNNs) with fuzzy operators and nonlinear activations. Both fuzzy AND and fuzzy OR are considered, which help to improve the robustness of the model when dealing with various uncertain problems. To achieve the finite-time (FT) synchronization and Mittag–Leffler synchronization of the concerned neural networks (NNs), a nonlinear adaptive controller consisting of three information feedback modules is devised, and each submodule performs its function based on current or delayed historical information. Based on the fractional-order comparison theorem, the Lyapunov function, and the adaptive control scheme, new FT synchronization and Mittag–Leffler synchronization criteria for the UFODCNNs are derived. Unlike previous feedback controllers, the control strategy proposed in this article can adaptively adjust the strength of the information feedback, and partial parameters only need to satisfy inequality constraints within a local time interval, which shows our control mechanism has a significant advantage in conservatism. The experimental results show that our mean synchronization time and variance are 11.397% and 12.5% lower than the second-ranked controllers, respectively. Full article
Show Figures

Figure 1

17 pages, 1671 KB  
Article
A Soft Computing Approach to Ensuring Data Integrity in IoT-Enabled Healthcare Using Hesitant Fuzzy Sets
by Waeal J. Obidallah
Appl. Sci. 2025, 15(19), 10520; https://doi.org/10.3390/app151910520 - 28 Sep 2025
Abstract
The Internet of Medical Things (IoMT) is the latest advancement in the Internet of Things (IoT). Researchers are increasingly drawn to its vast potential applications in secure healthcare systems. The growing use of internet-connected medical device sensors has significantly transformed healthcare, necessitating the [...] Read more.
The Internet of Medical Things (IoMT) is the latest advancement in the Internet of Things (IoT). Researchers are increasingly drawn to its vast potential applications in secure healthcare systems. The growing use of internet-connected medical device sensors has significantly transformed healthcare, necessitating the development of robust methodologies to assess their integrity. As access to computer networks continues to expand, these sensors have become vulnerable to a wide range of security threats, thereby compromising their integrity. To prevent such lapses, it is essential to understand the complexities of the operational environment and to systematically identify technical vulnerabilities. This paper proposes a unified hesitant fuzzy-based healthcare system for assessing IoMT sensor integrity. The approach integrates the hesitant fuzzy Analytic Network Process (ANP) and the hesitant fuzzy Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS). In this study, a hesitant fuzzy ANP is employed to construct a comprehensive network that illustrates the interrelationships among various integrity criteria. This network incorporates expert input and accounts for inherent uncertainties. The research also offers sensitivity analysis and comparative evaluations to show that the suggested method can analyse many medical device sensors. The unified hesitant fuzzy-based healthcare system presented here offers a systematic and valuable tool for informed decision-making in healthcare. It strengthens both the integrity and security of healthcare systems amid the rapidly evolving landscape of medical technology. Healthcare stakeholders and beyond can significantly benefit from adopting this integrated fuzzy-based approach as they navigate the challenges of modern healthcare. Full article
(This article belongs to the Special Issue Applications of Data Science and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 1482 KB  
Article
Models and Methods for Assessing Intruder’s Awareness of Attacked Objects
by Vladimir V. Baranov and Alexander A. Shelupanov
Symmetry 2025, 17(10), 1604; https://doi.org/10.3390/sym17101604 - 27 Sep 2025
Abstract
The formation of strategies and tactics of destructive impact (DI) at the stages of complex computer attacks (CCAs) largely depends on the content of intelligence data obtained by the intruder about the attacked elements of distributed information systems (DISs). This study analyzes scientific [...] Read more.
The formation of strategies and tactics of destructive impact (DI) at the stages of complex computer attacks (CCAs) largely depends on the content of intelligence data obtained by the intruder about the attacked elements of distributed information systems (DISs). This study analyzes scientific papers, methodologies and standards in the field of assessing the indicators of awareness of the intruder about the objects of DI and symmetrical indicators of intelligence security of the elements of the DIS. It was revealed that the aspects of changing the quantitative and qualitative characteristics of intelligence data (ID) at the stages of CCA, as well as their impact on the possibilities of using certain types of simple computer attacks (SKAs), are poorly studied and insufficiently systematized. This paper uses technologies for modeling the process of an intruder obtaining ID based on the application of the methodology of black, grey and white boxes and the theory of fuzzy sets. This allowed us to identify the relationship between certain arrays of ID and the possibilities of applying certain types of SCA end-structure arrays of ID according to the levels of identifying objects of DI, and to create a scale of intruder awareness symmetrical to the scale of intelligence protection of the elements of the DIS. Experiments were conducted to verify the practical applicability of the developed models and techniques, showing positive results that make it possible to identify vulnerable objects, tactics and techniques of the intruder in advance. The result of this study is the development of an intruder awareness scale, which includes five levels of his knowledge about the attacked system, estimated by numerical intervals and characterized by linguistic terms. Each awareness level corresponds to one CCA stage: primary ID collection, penetration and legalization, privilege escalation, distribution and DI. Awareness levels have corresponding typical ID lists that can be potentially available after conducting the corresponding type of SCA. Typical ID lists are classified according to the following DI levels: network, hardware, system, application and user level. For each awareness level, the method of obtaining the ID by the intruder is specified. These research results represent a scientific contribution. The practical contribution is the application of the developed scale for information security (IS) incident management. It allows for a proactive assessment of DIS security against CCAs—modeling the real DIS structure and various CCA scenarios. During an incident, upon detection of a certain CCA stage, it allows for identifying data on DIS elements potentially known by the intruder and eliminating further development of the incident. The results of this study can also be used for training IS specialists in network security, risk assessment and IS incident management. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2025)
Show Figures

Figure 1

25 pages, 5161 KB  
Article
Non-Destructive Classification of Sweetness and Firmness in Oranges Using ANFIS and a Novel CCI–GLCM Image Descriptor
by David Granados-Lieberman, Alejandro Israel Barranco-Gutiérrez, Adolfo R. Lopez, Horacio Rostro-Gonzalez, Miroslava Cano-Lara, Carlos Gustavo Manriquez-Padilla and Marcos J. Villaseñor-Aguilar
Appl. Sci. 2025, 15(19), 10464; https://doi.org/10.3390/app151910464 - 26 Sep 2025
Abstract
This study introduces a non-destructive computer vision method for estimating postharvest quality parameters of oranges, including maturity index, soluble solid content (expressed in degrees Brix), and firmness. A novel image-based descriptor, termed Citrus Color Index—Gray Level Co-occurrence Matrix Texture Features (CCI–GLCM-TF), was developed [...] Read more.
This study introduces a non-destructive computer vision method for estimating postharvest quality parameters of oranges, including maturity index, soluble solid content (expressed in degrees Brix), and firmness. A novel image-based descriptor, termed Citrus Color Index—Gray Level Co-occurrence Matrix Texture Features (CCI–GLCM-TF), was developed by integrating the Citrus Color Index (CCI) with texture features derived from the Gray Level Co-occurrence Matrix (GLCM). By combining contrast, correlation, energy, and homogeneity across multiscale regions of interest and applying geometric calibration to correct image acquisition distortions, the descriptor effectively captures both chromatic and structural information from RGB images. These features served as input to an Adaptive Neuro-Fuzzy Inference System (ANFIS), selected for its ability to model nonlinear relationships and gradual transitions in citrus ripening. The proposed ANFIS models achieved R-squared values greater than or equal to 0.81 and root mean square error values less than or equal to 1.1 across all quality parameters, confirming their predictive robustness. Notably, representative models (ANFIS 2, 4, 6, and 8) demonstrated superior performance, supporting the extension of this approach to full-surface exploration of citrus fruits. The results outperform methods relying solely on color features, underscoring the importance of combining spectral and textural descriptors. This work highlights the potential of the CCI–GLCM-TF descriptor, in conjunction with ANFIS, for accurate, real-time, and non-invasive assessment of citrus quality, with practical implications for automated classification, postharvest process optimization, and cost reduction in the citrus industry. Full article
(This article belongs to the Special Issue Sensory Evaluation and Flavor Analysis in Food Science)
Show Figures

Figure 1

25 pages, 1060 KB  
Article
Ambidextrous Market Orientation and Digital Business Model Innovation
by Xiaolong Liu and Yi Xie
Sustainability 2025, 17(19), 8633; https://doi.org/10.3390/su17198633 - 25 Sep 2025
Abstract
With accelerating digital transformation, firms must renew how they create, deliver, and capture value to remain competitive and to advance sustainable competitiveness. This study examines how ambidextrous market orientation drives digital business model innovation (DBMI) through the mediating role of digital resource bricolage [...] Read more.
With accelerating digital transformation, firms must renew how they create, deliver, and capture value to remain competitive and to advance sustainable competitiveness. This study examines how ambidextrous market orientation drives digital business model innovation (DBMI) through the mediating role of digital resource bricolage and the moderating effect of environmental turbulence. Using survey data and structural equation modeling (SEM), we find that both proactive and responsive market orientations positively affect DBMI. Digital resource bricolage partially mediates both relationships, with a stronger mediation effect for responsive orientation. Environmental turbulence strengthens the association between ambidextrous market orientation and digital resource bricolage. Complementing variable-centric tests, fuzzy-set qualitative comparative analysis (fsQCA) identifies three configurational pathways sufficient for high DBMI, revealing alternative routes to business-model renewal under different contextual conditions. The findings extend ambidextrous market orientation research to digital contexts, enrich the resource-recombination perspective on DBMI, and provide actionable guidance for firms seeking to orchestrate data, platforms, and legacy assets to reconfigure activity systems. By clarifying when and how market sensing and shaping translate into effective digital recombination, this study informs strategies for sustainable competitiveness in turbulent environments. Full article
Show Figures

Figure 1

35 pages, 2008 KB  
Article
Decision Framework for Asset Criticality and Maintenance Planning in Complex Systems: An Offshore Corrosion Management Case
by Marina Polonia Rios, Bruna Siqueira Kaiser, Rodrigo Goyannes Gusmão Caiado, Paulo Ivson and Deane Roehl
Appl. Sci. 2025, 15(19), 10407; https://doi.org/10.3390/app151910407 - 25 Sep 2025
Abstract
Asset maintenance management is critical in industries such as petrochemicals and oil and gas (O&G), where complex, interdependent systems heighten failure risks. Maintenance costs represent a significant portion of operational expenditures, emphasizing the need for effective risk-based strategies. A considerable gap exists in [...] Read more.
Asset maintenance management is critical in industries such as petrochemicals and oil and gas (O&G), where complex, interdependent systems heighten failure risks. Maintenance costs represent a significant portion of operational expenditures, emphasizing the need for effective risk-based strategies. A considerable gap exists in integrating uncertainty modelling into both criticality assessment and maintenance planning. Existing approaches often neglect combining expert-driven assessments with optimization models, limiting their applicability in real-world scenarios where cost-effective and risk-informed decision-making is crucial. Maintenance inefficiencies due to suboptimal asset selection result in substantial financial and safety-related consequences in asset-intensive industries. This study presents a framework integrating Reliability-Centered Maintenance (RCM) principles with fuzzy logic and decision-support methodologies to optimise maintenance portfolios for offshore O&G assets, particularly focusing on corrosion management. The framework evaluates asset criticality through comprehensive FMEA, employing MCDM and fuzzy logic to enhance maintenance planning and extend asset lifespan. A case study on offshore asset corrosion management demonstrates the framework’s effectiveness, selecting 60% of highly critical assets for maintenance, compared to 10% by current industry practices. This highlights the potential risk reduction and prevention of critical failures that might otherwise go unnoticed, providing actionable insights for asset integrity managers in the O&G sector. Full article
Show Figures

Figure 1

26 pages, 2184 KB  
Article
Interval Type-II Fuzzy Broad Model Predictive Control Based on the Static and Dynamic Hybrid Event-Triggering Mechanism and Adaptive Compensation for Furnace Temperature in the MSWI Process
by Bokang Wang, Jian Tang, Wei Wang and Jian Rong
Appl. Sci. 2025, 15(19), 10329; https://doi.org/10.3390/app151910329 - 23 Sep 2025
Viewed by 90
Abstract
Municipal solid waste incineration (MSWI) plays a key role in advancing environmental sustainability. However, the current main furnace temperature control methods are difficult to solve the problems of strong coupling, equipment wear, and frequent disturbances. To solve the above problems, in this article, [...] Read more.
Municipal solid waste incineration (MSWI) plays a key role in advancing environmental sustainability. However, the current main furnace temperature control methods are difficult to solve the problems of strong coupling, equipment wear, and frequent disturbances. To solve the above problems, in this article, we propose a static and dynamic hybrid event-triggering mechanism-based interval type-II fuzzy broad adaptive compensation model predictive control (SDHETM-IT2FB-ACMPC). Firstly, a furnace temperature prediction model based on the interval type-2 fuzzy broad learning system (IT2FBLS) is constructed, and the IT2FB-MPC method is obtained, which solve the problem of variable coupling. Secondly, DETM based on historical error information is designed using sliding window method and combined with SETM to form SDHETM to drive the update of control variable to reduce the problem of equipment wear. Finally, the adaptive compensation control law of the adaptive compensation optimization control (ACOC) algorithm can compensate for the influence of the disturbance and the event-triggered mechanism on the control effect, and overcome the problem of frequent disturbances. Experimental results show that the proposed method reduces ISE to 0.2821, IAE to 0.1930, and DEVmax to 6.6269—reductions of 79%, 59%, and 8% compared to traditional NMPC—while cutting control actions by 71%. The results prove that IT2FB-MPC has excellent control performance for furnace temperature, and that SDHETM and ACOC can effectively reduce the triggering times and effectively compensate for the influence caused by disturbances and the lack of control variable updates. The proposed method successfully solves the control difficulties of furnace temperature in the MSWI process. Full article
Show Figures

Figure 1

19 pages, 584 KB  
Article
Fuzzy Logic Model for Informed Decision-Making in Risk Assessment During Software Design
by Gbenga David Aregbesola, Ikram Asghar, Saeed Akbar and Rahmat Ullah
Systems 2025, 13(9), 825; https://doi.org/10.3390/systems13090825 - 19 Sep 2025
Viewed by 227
Abstract
Software development projects are highly susceptible to risks during the design phase, which plays a crucial role in shaping the architecture, functionality, and quality of the final product. Decisions made during the design stage significantly affect the outcomes of the subsequent phases, including [...] Read more.
Software development projects are highly susceptible to risks during the design phase, which plays a crucial role in shaping the architecture, functionality, and quality of the final product. Decisions made during the design stage significantly affect the outcomes of the subsequent phases, including coding, testing, deployment, and maintenance. However, the complexities and uncertainties inherent in the design phase are often inadequately addressed by traditional risk management tools as they rely on deterministic models that oversimplify interdependent risks. This research introduces a fuzzy logic-based risk assessment model tailored specifically for the design phase of software development projects. The proposed fuzzy model, unlike the existing state-of-the-art models, regards the iterative nature of the design phase, the interaction between diverse stakeholders, and the potential inconsistencies that may arise between the initial and final version of the software design. More specifically, it develops a customized fuzzy model that incorporates design-specific risk factors such as evolving architectural requirements, technical feasibility concerns, and stakeholder misalignment. Finally, it integrates expert-driven rule definitions to enhance model accuracy and real-world applicability, ensuring that risk assessments reflect actual challenges faced by software design teams. Simulations conducted across diverse real-world scenarios demonstrate the model’s robustness in predicting risk levels and supporting mitigation strategies. The simulation results confirm that the proposed fuzzy logic model outperforms conventional approaches by offering greater flexibility and adaptability in managing design-phase risks, assisting project managers in prioritizing mitigation efforts more effectively to improve project outcomes. Full article
(This article belongs to the Special Issue Decision Making in Software Project Management)
Show Figures

Figure 1

25 pages, 1095 KB  
Article
Developing a Framework for Assessing Boat Collision Risks Using Fuzzy Multi-Criteria Decision-Making Methodology
by Ehidiame Ibazebo, Vimal Savsani, Arti Siddhpura and Milind Siddhpura
J. Mar. Sci. Eng. 2025, 13(9), 1816; https://doi.org/10.3390/jmse13091816 - 19 Sep 2025
Viewed by 259
Abstract
Boat collisions pose severe threats to maritime safety, economic activity, and environmental sustainability. Conventional risk assessment methods—such as Failure Mode and Effects Analysis, and Fault Tree Analysis—are widely applied but remain inadequate for addressing the uncertainty, subjectivity, and interdependency of risk factors in [...] Read more.
Boat collisions pose severe threats to maritime safety, economic activity, and environmental sustainability. Conventional risk assessment methods—such as Failure Mode and Effects Analysis, and Fault Tree Analysis—are widely applied but remain inadequate for addressing the uncertainty, subjectivity, and interdependency of risk factors in complex maritime environments. This study proposes a fuzzy Multi-Criteria Decision-Making framework for the risk assessment of boat collisions. The model integrates fuzzy logic with Analytic Hierarchy Process for criterion weighting and the Technique for Order Preference by Similarity to the Ideal Solution for risk ranking. Fuzzy logic is employed to capture linguistic expert judgments and to manage vague or incomplete data, which are common challenges in marine operations. Key collision risk factors—human error, boat engine system failure, environmental conditions, and intentional threats—are identified through literature review, incident data analysis, and expert consultation. A comparative analysis with a baseline non-fuzzy model demonstrates the added value of the fuzzy-integrated framework, showing improved capacity to handle imprecision and uncertainty. The model outputs not only prioritise risk rankings but also support the identification of critical control actions and effective safety measures. A case study of Nigerian waters illustrates the practicality of the framework in guiding risk mitigation strategies and informing policy decisions under uncertainty. Full article
(This article belongs to the Special Issue Recent Advances in Maritime Safety and Ship Collision Avoidance)
Show Figures

Figure 1

Back to TopTop