Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = functionalized graphene oxide (GO@SiO2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 656 KiB  
Communication
Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates
by Grazia Giuseppina Politano
Crystals 2025, 15(7), 603; https://doi.org/10.3390/cryst15070603 - 27 Jun 2025
Viewed by 276
Abstract
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis [...] Read more.
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis revealed a slight but measurable broadening (~0.7 cm−1) of the Si TO phonon mode at 514 cm−1, indicating local interfacial strain. Cyclic voltammetry measurements showed a substantial increase in photocurrent in comparison to pristine silicon substrates. These effects are attributed to a GO-induced p-type inversion layer and enhanced interfacial charge transfer. The results suggest that GO can serve as a functional interfacial layer for improving silicon-based optoelectronic and photoelectrochemical devices. Full article
(This article belongs to the Special Issue Optical Characterization of Functional Materials)
Show Figures

Figure 1

20 pages, 13636 KiB  
Article
Cross-Linked Self-Standing Graphene Oxide Membranes: A Pathway to Scalable Applications in Separation Technologies
by Juan A. G. Carrio, Vssl Prasad Talluri, Swamy T. Toolahalli, Sergio G. Echeverrigaray and Antonio H. Castro Neto
Membranes 2025, 15(1), 31; https://doi.org/10.3390/membranes15010031 - 15 Jan 2025
Viewed by 1728
Abstract
The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as Fe2O3, Al2 [...] Read more.
The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as Fe2O3, Al2O3, CaSO4, Nb2O5, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties. The membranes were prepared by casting aqueous suspensions of GO and SiC or oxide powders onto substrates, followed by drying and detachment to yield self-standing films. This method enabled precise control over membrane thickness and the formation of laminated microstructures with interlayer spacings ranging from 0.8 to 1.2 nm. The resulting self-standing membranes, with areas between 0.002 m2 and 0.090 m2 and thicknesses from 0.6 μm to 20 μm, exhibit excellent flexibility and retain their chemical and physical integrity during prolonged testing in direct contact with ethanol/water and methanol/water mixtures in both liquid and vapour phases, with stability demonstrated over 24 h and up to three months. Gas permeation and chemical characterisation tests evidence their suitability for gas separation applications. The interactions promoted by the oxides and carbide with the functional groups of GO confer great stability and unique mass transport properties—the Nb2O5 cross-linked membranes present distinct performance characteristics—creating the potential for scalable advancements in cross-linked 2D material membranes for separation technologies. Full article
Show Figures

Figure 1

15 pages, 5011 KiB  
Article
Building Chemical Interface Layers in Functionalized Graphene Oxide/Rubber Composites to Achieve Enhanced Mechanical Properties and Thermal Control Capability of Tires
by Haixiang Jia, Xiaohe Miao and Zhiyi Zhang
Polymers 2024, 16(16), 2234; https://doi.org/10.3390/polym16162234 - 6 Aug 2024
Cited by 1 | Viewed by 2111
Abstract
With the rapid development of the transport industry, there is a higher demand for environmental friendliness, durability, and stability of tires. Rubber composites with excellent mechanical properties, abrasion resistance, and low heat generation are very important for the preparation of green tires. In [...] Read more.
With the rapid development of the transport industry, there is a higher demand for environmental friendliness, durability, and stability of tires. Rubber composites with excellent mechanical properties, abrasion resistance, and low heat generation are very important for the preparation of green tires. In this study, the all-aqueous phase process was initially employed to prepare 2-Amino-5-mercapto-1,3,4-thiadiazole (AZT) functionalized graphene oxide (AGO). Subsequently, modified graphene oxide/silica/natural rubber (AGO/SiO2/NR) composites were obtained through latex blending and hot press vulcanization processes. This method was environmentally friendly and exhibited high modification efficiency. Benefiting from the good dispersion of AGO in the latex and the cross-linking reaction between AGO and NR, AGO/SiO2/NR composites with good dispersion and enhanced interfacial interaction were finally obtained. AGO/SiO2/NR composites showed significantly improved overall performance. Compared to GO/SiO2/NR composites, the tensile strength (28.1 MPa) and tear strength (75.3 N/mm) of the AGO/SiO2/NR composites were significantly increased, while the heat build-up value (10.4 °C) and DIN abrasion volume (74.9 mm3) were significantly reduced. In addition, the steady-state temperature field distribution inside the tire was visualized by ANSYS finite element simulation. The maximum temperature of the prepared AGO/SiO2/NR was reduced by 18.2% compared to that of the GO/SiO2/NR tires. This strategy is expected to provide a new approach for the development of low energy consumption, environmentally friendly, and long-life rubber for tires. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

14 pages, 3750 KiB  
Article
Concurrent Thermal Reduction and Boron-Doped Graphene Oxide by Metal–Organic Chemical Vapor Deposition for Ultraviolet Sensing Application
by Beo Deul Ryu, Hyeon-Sik Jang, Kang Bok Ko, Min Han, Tran Viet Cuong, Chel-Jong Choi and Chang-Hee Hong
Appl. Nano 2024, 5(1), 1-13; https://doi.org/10.3390/applnano5010001 - 28 Dec 2023
Cited by 1 | Viewed by 2176
Abstract
We synthesized a boron-doped reduced graphene oxide (BrGO) material characterized by various electrical properties, through simultaneous thermal reduction and doping procedures, using a metal–organic chemical vapor deposition technique. X-ray photoelectron spectroscopy (XPS) was used to study the impact of the doping level on [...] Read more.
We synthesized a boron-doped reduced graphene oxide (BrGO) material characterized by various electrical properties, through simultaneous thermal reduction and doping procedures, using a metal–organic chemical vapor deposition technique. X-ray photoelectron spectroscopy (XPS) was used to study the impact of the doping level on the B bonding in the reduced graphene oxide (rGO) layer that is influenced by the annealing temperature. The synthesized BrGO layer demonstrated a high B concentration with a considerable number of O-B bonds, that were altered by annealing temperatures. This resulted in a decreased work function and the formation of a Schottky contact between the BrGO and n-type Si substrate. Due to the higher proportion of B-C and B-C3 bonding in the BrGO/Si device than that in the rGO/Si, the decreased Schottky barrier height of the BrGO/n-Si vertical junction photodetector resulted in a higher responsivity. This study showcases a promise of a simple B-doping method in use to alter the electrical characteristics of graphene materials. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

20 pages, 13948 KiB  
Article
Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
by Yuliya Kan, Julia V. Bondareva, Eugene S. Statnik, Elizaveta V. Koudan, Evgeniy V. Ippolitov, Mikhail S. Podporin, Polina A. Kovaleva, Roman R. Kapaev, Alexandra M. Gordeeva, Julijana Cvjetinovic, Dmitry A. Gorin, Stanislav A. Evlashin, Alexey I. Salimon, Fedor S. Senatov and Alexander M. Korsunsky
Int. J. Mol. Sci. 2023, 24(7), 6255; https://doi.org/10.3390/ijms24076255 - 26 Mar 2023
Cited by 11 | Viewed by 3739
Abstract
The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), [...] Read more.
The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO2 initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO2-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus. Full article
(This article belongs to the Special Issue Potentialities and Challenges of Bio-Inspired Delivery Systems)
Show Figures

Graphical abstract

17 pages, 8495 KiB  
Article
Obtention and Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds with Different Oxidation Degrees and Ultrasound Methods
by Areli Marlen Salgado-Delgado, Elizabeth Grissel González-Mondragón, Ricardo Hernández-Pérez, René Salgado-Delgado, José Alfonso Santana-Camilo and Alfredo Olarte-Paredes
C 2023, 9(1), 28; https://doi.org/10.3390/c9010028 - 1 Mar 2023
Cited by 6 | Viewed by 3764
Abstract
This work reports the obtention of nanocompounds from epoxy resin (EP) with graphenes at three different oxidation degrees (GO1, GO2, and GO3), functionalized with 3-glycidyloxypropyl trimethoxysilane (GPTMS), and three different graphene concentrations (1%, 2%, and 3%). The aim is to improve GO compatibility [...] Read more.
This work reports the obtention of nanocompounds from epoxy resin (EP) with graphenes at three different oxidation degrees (GO1, GO2, and GO3), functionalized with 3-glycidyloxypropyl trimethoxysilane (GPTMS), and three different graphene concentrations (1%, 2%, and 3%). The aim is to improve GO compatibility in EP and obtain a nanocompound with synergistic properties. Ultrasonic bath was used to disperse the GO, a factor in the effective interaction between GO and the polymeric matrix. The nanocompounds were characterized by FTIR, SEM, and mechanical tension testing. The FTIR analysis evidenced stretching bonds created during the functionalization of graphene oxide (GO) with the silane (GPTMS); they are characteristic Si-O-Si and Si-O-C at 1000 and 1085 cm−1, respectively. There was a difference between GO and GO-GPTMS nanocompounds regarding the formation of these signals. The SEM micrographs showed morphological changes when GO was added: the smooth fracture surface of EP became rougher. During tension testing, Young’s modulus (2.09 GPa) of GO2-GPTMS/epoxy nanocompounds (1% weight GO) increased by 35% while their resistance to traction (98.71 MPa) grew by 52%; both were higher than in pure EP. In conclusion, the variables studied (oxidation degrees and silanization) significantly affect the mechanical properties studied. Full article
(This article belongs to the Special Issue Advanced Carbon Based Nanomaterials)
Show Figures

Figure 1

22 pages, 8084 KiB  
Article
Experimental Investigation on the Wear Performance of Nano-Additives on Degraded Gear Lubricant
by Harish Hirani, Dharmender Jangra and Kishan Nath Sidh
Lubricants 2023, 11(2), 51; https://doi.org/10.3390/lubricants11020051 - 30 Jan 2023
Cited by 13 | Viewed by 3065
Abstract
This study investigates the degradation of a commercially available gear lubricant and the potential of nano-additives to mitigate such degradation. Initially, we performed an experimental study on the chemical degradation of commercially available API GL-4 EP90 gear lubricant by mixing the different concentrations [...] Read more.
This study investigates the degradation of a commercially available gear lubricant and the potential of nano-additives to mitigate such degradation. Initially, we performed an experimental study on the chemical degradation of commercially available API GL-4 EP90 gear lubricant by mixing the different concentrations of aqueous hydrochloric acid (aqueous HCl) varying from 0.0005% v/v up to 0.0025% v/v, while maintaining overall water content in the oil below the prescribed limits. The degradation was monitored using the pH value, total acid number (TAN) value, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analysis. The experiments were performed on a developed gear test rig using conventional gear oil as well as chemically aged gear oil, and the corresponding results of pH value and wear debris were recorded. Based on the results, an empirical regression model between the concentration of aqueous HCl and lubricant aging time has been established. Under chemically aged lubricant, severe wear of gear was observed, which motivated us to explore suitable nano-additive to minimize the gear wear. Initially, three nano-additives—graphite, graphene, and “graphene oxide functionalized with silicon oxide (GO@SiO2)”—were chosen. A series of tests were conducted using the design of experiments method (L8 and L16 orthogonal array) to investigate the effect of nano-additives and to find the optimum additive for wear performance. Finally, experiments were conducted on gear setup using the degraded lubricant optimized with nano-additive. Overall results indicate a very significant contribution of nano-additives in decreasing gear wear. Full article
(This article belongs to the Special Issue Nanolubrication and Superlubrication)
Show Figures

Figure 1

17 pages, 6630 KiB  
Article
Methylene Blue-Loaded Mesoporous Silica-Coated Gold Nanorods on Graphene Oxide for Synergistic Photothermal and Photodynamic Therapy
by Sun-Hwa Seo, Ara Joe, Hyo-Won Han, Panchanathan Manivasagan and Eue-Soon Jang
Pharmaceutics 2022, 14(10), 2242; https://doi.org/10.3390/pharmaceutics14102242 - 20 Oct 2022
Cited by 24 | Viewed by 3501
Abstract
Photo-nanotheranostics integrates near-infrared (NIR) light-triggered diagnostics and therapeutics, which are combined into a novel all-in-one phototheranostic nanomaterial that holds great promise for the early detection and precise treatment of cancer. In this study, we developed methylene blue-loaded mesoporous silica-coated gold nanorods on graphene [...] Read more.
Photo-nanotheranostics integrates near-infrared (NIR) light-triggered diagnostics and therapeutics, which are combined into a novel all-in-one phototheranostic nanomaterial that holds great promise for the early detection and precise treatment of cancer. In this study, we developed methylene blue-loaded mesoporous silica-coated gold nanorods on graphene oxide (MB-GNR@mSiO2-GO) as an all-in-one photo-nanotheranostic agent for intracellular surface-enhanced Raman scattering (SERS) imaging-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for cancer. Amine functionalization of the MB-GNR@mSiO2 surfaces was performed using 3-aminopropyltriethoxysilane (APTES), which was well anchored on the carboxyl groups of graphene oxide (GO) nanosheets uniformly, and showed a remarkably higher photothermal conversion efficiency (48.93%), resulting in outstanding PTT/PDT for cancer. The in vitro photothermal/photodynamic effect of MB-GNR@mSiO2-GO with laser irradiation showed significantly reduced cell viability (6.32%), indicating that MB-GNR@mSiO2-GO with laser irradiation induced significantly more cell deaths. Under laser irradiation, MB-GNR@mSiO2-GO showed a strong SERS effect, which permits accurate cancer cell detection by SERS imaging. Subsequently, the same Raman laser can focus on highly detected MDA-MB-23l cells for a prolonged time to perform PTT/PDT. Therefore, MB-GNR@mSiO2-GO has great potential for precise SERS imaging-guided synergistic PTT/PDT for cancer. Full article
(This article belongs to the Special Issue Metal Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

13 pages, 6918 KiB  
Article
Friction and Wear Properties of a Nanoscale Ionic Liquid-like GO@SiO2 Hybrid as a Water-Based Lubricant Additive
by Liang Hao, Wendi Hao, Peipei Li, Guangming Liu, Huaying Li, Abdulrahman Aljabri and Zhongliang Xie
Lubricants 2022, 10(6), 125; https://doi.org/10.3390/lubricants10060125 - 13 Jun 2022
Cited by 14 | Viewed by 3223
Abstract
In this study, a nanoscale ionic liquid (NIL) GO@SiO2 hybrid was synthesized by attaching silica nanoparticles onto graphene oxide (GO). It was then functionalized to exhibit liquid-like behavior in the absence of solvents. The physical and chemical properties of the synthesized samples [...] Read more.
In this study, a nanoscale ionic liquid (NIL) GO@SiO2 hybrid was synthesized by attaching silica nanoparticles onto graphene oxide (GO). It was then functionalized to exhibit liquid-like behavior in the absence of solvents. The physical and chemical properties of the synthesized samples were characterized by means of a transmission electron microscope, X-ray diffraction, Fourier transform infra-red, Raman spectroscopy, and thermogravimetric analysis. The tribological properties of the NIL GO@SiO2 hybrid as a water-based (WB) lubricant additive were investigated on a ball-on-disk tribometer. The results illustrate that the NIL GO@SiO2 hybrid demonstrates good dispersity as a WB lubricant, and can decrease both the coefficient of friction (COF) and wear loss. Full article
(This article belongs to the Special Issue Advances in Water-Based Nanolubricants)
Show Figures

Figure 1

21 pages, 7915 KiB  
Article
An Improved Humidity Sensor with GO-Mn-Doped ZnO Nanocomposite and Dimensional Orchestration of Comb Electrode for Effective Bulk Manufacturing
by Balashanmugam Priyadharshini and Prasad Valsalal
Nanomaterials 2022, 12(10), 1659; https://doi.org/10.3390/nano12101659 - 12 May 2022
Cited by 12 | Viewed by 3175
Abstract
The measurement and control of humidity is a major challenge that affects the sensing properties of sensors used in high-precision equipment manufacturing industries. Graphene Oxide(GO)-based materials have been extensively explored in humidity sensing applications because of their high surface area and functional groups. [...] Read more.
The measurement and control of humidity is a major challenge that affects the sensing properties of sensors used in high-precision equipment manufacturing industries. Graphene Oxide(GO)-based materials have been extensively explored in humidity sensing applications because of their high surface area and functional groups. However, there is a lack of effective bulk-manufacturing processes for the synthesis of 2D-based nanocomposites with comb electrodes. Moreover, water intercalation within the layers of 2D materials increases recovery time. This work demonstrates the enhanced sensing characteristics of a capacitive/resistive GO-MnZnO nanocomposite humidity sensor produced using a cost-effective single-pot synthesis process. The in-plane sensing layer consistently improves sensitivity and reduces response time for a wide range of relative humidity measurements (10% to 90%). Interdigitated gold electrodes with varying numbers of fingers and spacing were fabricated using photolithography on a Si/SiO₂ for a consistent sensor device platform. The choice of nanomaterials, dimension of the sensor, and fabrication method influence the performance of the humidity sensor in a controlled environment. GO nanocomposites show significant improvement in response time (82.67 times greater at 40% RH) and sensitivity (95.7 times more at 60% RH). The response time of 4.5 s and recovery time of 21 s was significantly better for a wider range of relative humidity compared to the reduced GO-sensing layer and ZnMnO. An optimized 6 mm × 3 mm dimension sensor with a 28-fingers comb was fabricated with a metal-etching process. This is one of the most effective methods for bulk manufacturing. The performance of the sensing layer is comparable to established sensing nanomaterials that are currently used in humidity sensors, and hence can be extended for optimal bulk manufacturing with minimum electrochemical treatments. Full article
Show Figures

Graphical abstract

19 pages, 6218 KiB  
Article
Effect of Graphene Oxide and Nanosilica Modifications on Electrospun Core-Shell PVA–PEG–SiO2@PVA–GO Fiber Mats
by Yuliya Kan, Julia V. Bondareva, Eugene S. Statnik, Julijana Cvjetinovic, Svetlana Lipovskikh, Arkady S. Abdurashitov, Maria A. Kirsanova, Gleb B. Sukhorukhov, Stanislav A. Evlashin, Alexey I. Salimon and Alexander M. Korsunsky
Nanomaterials 2022, 12(6), 998; https://doi.org/10.3390/nano12060998 - 18 Mar 2022
Cited by 16 | Viewed by 3672
Abstract
Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth [...] Read more.
Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth factors and subsequent control of their release into the target microenvironment to achieve therapeutic effect. The object of study is non-woven core-shell PVA–PEG–SiO2@PVA–GO fiber mats assembled by the technology of coaxial electrospinning. The task of the core-shell fiber development was set to regulate the degradation process under external factors. The dual structure was modified with silica nanoparticles and graphene oxide to ensure the fiber integrity and stability. The influence of the nano additives and crosslinking conditions for the composite was investigated as a function of fiber diameter, hydrolysis, and mechanical properties. Tensile mechanical tests and water degradation tests were used to reveal the fracture and dissolution behavior of the fiber mats and bundles. The obtained fibers were visualized by confocal fluorescence microscopy to confirm the continuous core-shell structure and encapsulation feasibility for biologically active components, selectively in the fiber core and shell. The results provide a firm basis to draw the conclusion that electrospun core-shell fiber mats have tremendous potential for biomedical applications as drug carriers, photocatalysts, and wound dressings. Full article
(This article belongs to the Special Issue Materials Science and Nanoengineering (ICMSN-2022))
Show Figures

Graphical abstract

12 pages, 3692 KiB  
Article
Two Birds with One Stone: Preparation of 4, 4-Diaminodiphenylmethane Functionalized GO@SiO2 with Mechanical Reinforcement and UV Shielding Properties and Its Application in Thermoplastic Polyurethane
by Guoxin Ding, Hongxu Tai, Chuanxin Chen, Chenfeng Sun and Zhongfeng Tang
Polymers 2021, 13(23), 4220; https://doi.org/10.3390/polym13234220 - 1 Dec 2021
Cited by 4 | Viewed by 2877
Abstract
This study prepared 4,4-diaminodiphenylmethane (DDM)-functionalized graphene oxide (GO)@silica dioxide (SiO2) nano-composites through amidation reaction and low-temperature precipitation. The resulting modified GO, that was DDM−GO@SiO2. The study found that DDM−GO@SiO2 showed good dispersion and compatibility with thermoplastic polyurethane (TPU) [...] Read more.
This study prepared 4,4-diaminodiphenylmethane (DDM)-functionalized graphene oxide (GO)@silica dioxide (SiO2) nano-composites through amidation reaction and low-temperature precipitation. The resulting modified GO, that was DDM−GO@SiO2. The study found that DDM−GO@SiO2 showed good dispersion and compatibility with thermoplastic polyurethane (TPU) substrates. Compared with pure TPU, the tensile strength of the TPU composites increased by 41% to 94.6 MPa at only 0.5 wt% DDM−GO@SiO2. In addition, even when a small amount of DDM−GO@SiO2 was added, the UV absorption of TPU composites increased significantly, TPU composites can achieve a UV shielding efficiency of 95.21% in the UV-A region. These results show that this type of material holds great promise for the preparation of functional coatings and film materials with high strength and weather resistance. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Figure 1

19 pages, 11956 KiB  
Article
Ternary Nanocomposites Based on Oxidized Carbon Nanohorns as Sensing Layers for Room Temperature Resistive Humidity Sensing
by Bogdan-Catalin Serban, Cornel Cobianu, Octavian Buiu, Marius Bumbac, Niculae Dumbravescu, Viorel Avramescu, Cristina Mihaela Nicolescu, Mihai Brezeanu, Cristina Pachiu, Gabriel Craciun and Cristiana Radulescu
Materials 2021, 14(11), 2705; https://doi.org/10.3390/ma14112705 - 21 May 2021
Cited by 10 | Viewed by 2222
Abstract
This paper presents the relative humidity (RH) sensing response of a resistive sensor employing sensing layers based on a ternary nanocomposite comprising graphene oxide-oxidized carbon nanohorns-polyvinylpyrrolidone (GO-CNHox–PVP), at 1/1/1, 1/2/1, and 1/3/1 w/w/w mass ratios. The sensing structure is composed of a silicon [...] Read more.
This paper presents the relative humidity (RH) sensing response of a resistive sensor employing sensing layers based on a ternary nanocomposite comprising graphene oxide-oxidized carbon nanohorns-polyvinylpyrrolidone (GO-CNHox–PVP), at 1/1/1, 1/2/1, and 1/3/1 w/w/w mass ratios. The sensing structure is composed of a silicon substrate, a SiO2 layer, and interdigitated transducers (IDT) electrodes, on which the sensing layer is deposited via the drop-casting method. The morphology and the composition of the sensing layers are investigated through scanning electron microscopy (SEM) and RAMAN spectroscopy. The RH sensing capability of each carbonaceous nanocomposite-based thin film was analyzed by applying a current between the two electrodes and by measuring the voltage difference when varying the RH from 0% to 100% in humid nitrogen. The sensors have a room temperature response comparable to that of a commercial humidity sensor and are characterized by a rapid response, excellent linearity, good sensitivity, and recovery time. The manufactured sensing devices’ transfer functions were established, and we extracted the response and recovery times. While the structures with GO/CNHox/PVP at 1/1/1 ratio (w/w/w) had the best performance in terms of relative sensibility, response time, and recovery time, the sensors employing the GO/CNHox/PVP nanocomposite at the 1/2/1 ratio (w/w/w) had the best linearity. Moreover, the ternary mixture proved to have much better sensing properties compared to CNHox and CNHox-PVP-based sensing layers in terms of sensitivity and linearity. Each component of the ternary nanocomposites’ functional role is explained based on their physical and chemical properties. We analyzed the potential mechanism associated with the sensors’ response; among these, the effect of the p-type semiconductor behavior of CNHox and GO, correlated with swelling of the PVP, was dominant and led to increased resistance of the sensing layer. Full article
(This article belongs to the Special Issue Functional Carbon-Based Nanomaterials and Nanocomposites)
Show Figures

Figure 1

6 pages, 615 KiB  
Proceeding Paper
Synthesis, Characterization, and Functionalization of Graphene Oxide-Based Nanoplatforms for Gene Delivery
by Julián D. Torres, Juan C. Cruz and Luis H. Reyes
Mater. Proc. 2021, 4(1), 23; https://doi.org/10.3390/IOCN2020-07925 - 11 Nov 2020
Viewed by 1466
Abstract
Gene therapy has been considered a promising strategy for treating several inherited diseases and acquired complex disorders. One crucial challenge yet to be solved to ensure the nanomaterials’ success in delivering gene therapies is their ability to escape from endosomes. To address this [...] Read more.
Gene therapy has been considered a promising strategy for treating several inherited diseases and acquired complex disorders. One crucial challenge yet to be solved to ensure the nanomaterials’ success in delivering gene therapies is their ability to escape from endosomes. To address this issue, we previously developed magnetite nanoparticles conjugated with the antimicrobial peptide Buforin II, which showed potent translocating and endosomal escape abilities in several cell lines. In this work, we propose developing new cell-penetrating nanoplatforms by interfacing graphene oxide (GO) with powerful translocating peptides to take advantage of already tested and unique peptides as well as the distinctive interactions of GO with the phospholipids of membranes and endosomes. GO was prepared by the modified Hummers’ method through the oxidation of graphite sheets. Next, the functionalization of GO was carried out by rendering pendant amine groups to the GO surface. Thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) were used to corroborate the successful functionalization of the nanoplatform. FTIR analysis exhibited the peaks related to the distinct carboxyl groups of GO and the Si–O bonds after silanization. TGA allowed us to estimate a silanization efficiency of 38%. Future work will be focused on conjugating Buforin II and assessing translocation efficiency by conducting uptake assays in liposomes and various cell lines. Additionally, endosomal escape will be determined via confocal microscopy by labeling the peptide with fluorescent molecules and examining colocalization with the fluorescent marker of endosomes, LysoTracker. By taking advantage of the exceptional qualities in terms of the physicochemical, electrical, and optical properties of GO, this study might provide novel strategies to overcome limitations commonly faced, such as low stability of the translocating biomolecules and endosomal entrapment. Full article
(This article belongs to the Proceedings of The 2nd International Online-Conference on Nanomaterials)
Show Figures

Figure 1

9 pages, 2132 KiB  
Article
Chemical Changes of Graphene Oxide Thin Films Induced by Thermal Treatment under Vacuum Conditions
by María J. Hortigüela, Denise Machado, Igor Bdikin, Victor Neto and Gonzalo Otero-Irurueta
Coatings 2020, 10(2), 113; https://doi.org/10.3390/coatings10020113 - 29 Jan 2020
Cited by 16 | Viewed by 6135
Abstract
Reduction of graphene oxide is one of the most promising strategies for obtaining bulk quantities of graphene-like materials. In this study, graphene oxide was deposited on SiO2 and reduced by annealing at 500 K under vacuum conditions (5 × 10−1 Pa). [...] Read more.
Reduction of graphene oxide is one of the most promising strategies for obtaining bulk quantities of graphene-like materials. In this study, graphene oxide was deposited on SiO2 and reduced by annealing at 500 K under vacuum conditions (5 × 10−1 Pa). Here, graphene oxide films as well as their chemical changes upon heating were characterized in depth by X-ray photoelectron spectroscopy, Raman spectroscopy, and scanning electron and atomic force microscopies. From the chemical point of view, the as prepared graphene oxide films presented a large quantity of oxidized functional groups that were reduced to a large extent upon heating. Moreover, residual oxidized sulfur species that originated during the synthesis of graphene oxide (GO) were almost completely removed by heating while nitrogen traces were integrated into the carbon framework. On the other hand, regarding structural considerations, reduced graphene oxide films showed more homogeneity and lower roughness than graphene oxide films. Full article
(This article belongs to the Special Issue Nanolaminate Multilayer Coatings)
Show Figures

Figure 1

Back to TopTop