Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = functional polymeric matrices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 945 KB  
Review
Ferulic Acid and Polyferulic Acid in Polymers: Synthesis, Properties, and Applications
by Mateusz Leszczyński, Mariusz Ł. Mamiński and Paweł G. Parzuchowski
Polymers 2025, 17(20), 2788; https://doi.org/10.3390/polym17202788 - 17 Oct 2025
Abstract
Ferulic acid (FA), together with its polymers and derivatives, has been attracting growing attention as a building block for advanced sustainable polymeric materials due to its renewable origin, intrinsic antioxidant activity, and potential for biodegradability. This review aims to provide a comprehensive overview [...] Read more.
Ferulic acid (FA), together with its polymers and derivatives, has been attracting growing attention as a building block for advanced sustainable polymeric materials due to its renewable origin, intrinsic antioxidant activity, and potential for biodegradability. This review aims to provide a comprehensive overview of recent progress in the synthesis and functionalization of FA-based polymers, covering polymerization strategies, enzymatic modifications, and grafting approaches. The physicochemical characteristics of these materials are discussed, with particular emphasis on thermal stability, antioxidant performance, controlled release of active agents, and their impact on the mechanical and barrier properties of polymer matrices. Furthermore, key application domains—including biomedicine, food packaging, and environmental engineering—are examined, highlighting both the advantages and current limitations associated with FA utilization. Finally, perspectives are outlined regarding the necessity for further research to enhance bioavailability, stability, and synthetic efficiency, as well as the potential of FA-derived polymers in the development of next-generation, functional, and environmentally sustainable materials. Full article
Show Figures

Graphical abstract

36 pages, 3444 KB  
Review
Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies
by Mubasshira, Md. Mahbubur Rahman, Md. Nizam Uddin, Mukitur Rhaman, Sourav Roy and Md Shamim Sarker
Processes 2025, 13(9), 2991; https://doi.org/10.3390/pr13092991 - 19 Sep 2025
Cited by 2 | Viewed by 721
Abstract
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable [...] Read more.
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable responsiveness to external stimuli such as strain, pressure, temperature, light, and chemical environments. This review provides a comprehensive overview of recent advances in the design and synthesis of CPNCs, focusing on their application in multifunctional sensors and actuator technologies. Key carbon nanomaterials including graphene, carbon nanotubes (CNTs), and MXenes were examined in the context of their integration into polymer matrices to enhance performance parameters such as sensitivity, flexibility, response time, and durability. The review also highlights novel fabrication techniques, such as 3D printing, self-assembly, and in situ polymerization, that are driving innovation in device architectures. Applications in wearable electronics, soft robotics, biomedical diagnostics, and environmental monitoring are discussed to illustrate the transformative impact of CPNCs. Finally, this review addresses current challenges and outlines future research directions toward scalable manufacturing, environmental stability, and multifunctional integration for the real-world deployment of smart sensing and actuation systems. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Smart Applications)
Show Figures

Figure 1

20 pages, 3129 KB  
Article
Selective Removal of Mo and W from Acidic Leachates Using Thiourea Modified Macroporous Anion Exchanger
by Akmaral Ismailova, Dilyara Rashit, Tomiris Kossova and Yerbol Tileuberdi
Molecules 2025, 30(18), 3803; https://doi.org/10.3390/molecules30183803 - 18 Sep 2025
Viewed by 376
Abstract
In this study, a commercial anion-exchange resin (D301), known for high regenerability but limited selectivity, was chemically modified to enhance its sorption performance. The modification included graft polymerization of glycidyl methacrylate followed by thiourea functionalization, yielding a new sorbent, TD301, with chelating functional [...] Read more.
In this study, a commercial anion-exchange resin (D301), known for high regenerability but limited selectivity, was chemically modified to enhance its sorption performance. The modification included graft polymerization of glycidyl methacrylate followed by thiourea functionalization, yielding a new sorbent, TD301, with chelating functional groups. Characterization using SEM/EDS, IR spectroscopy, XPS, and zeta potential measurements confirmed the successful introduction of sulfur- and nitrogen-containing groups, increased surface roughness, and decreased surface charge in the pH range 2–6. These changes shifted the sorption mechanism from nonspecific ion exchange to selective coordination. Sorption properties of TD301 were evaluated in mono- and bimetallic Mo–W systems, as well as in solutions obtained from real ore decomposition. The modified sorbent showed fast sorption kinetics and high selectivity for Mo(VI) at pH 1.5, while retaining high W(VI) uptake at pH 0.5. In binary systems, separation factors (α) reached 128.4, greatly exceeding those of unmodified D301. In real leachates (Mo ≈ W ≈ 0.04 g/L), TD301 selectively extracted W at pH 0.66 and Mo at pH 1.5. These findings demonstrate that TD301 is an effective sorbent for pH-dependent Mo/W separation in complex matrices, with potential for resource recovery, wastewater treatment, monitoring, and suitability for repeated use. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

16 pages, 3311 KB  
Article
Green Synthesis of Zwitterionic–Cyclodextrin Hybrid Polymer for Efficient Extraction of Polypeptides: Combination of Instrumental Analysis and DFT Calculation
by Xiaoyun Lei, Xin Wang, Yuzhe Cao, Bingxing Ren, Yanyan Peng and Hanghang Zhao
Polymers 2025, 17(18), 2524; https://doi.org/10.3390/polym17182524 - 18 Sep 2025
Viewed by 387
Abstract
Adhering to the principles of green analytical chemistry (GAC) is crucial for advancing sample pretreatment. In this work, we developed a green in-tube solid-phase microextraction (IT-SPME) material utilizing non-toxic cyclodextrin and zwitterionic polymers as co-functioning monomers. The hybrid monolithic material was synthesized within [...] Read more.
Adhering to the principles of green analytical chemistry (GAC) is crucial for advancing sample pretreatment. In this work, we developed a green in-tube solid-phase microextraction (IT-SPME) material utilizing non-toxic cyclodextrin and zwitterionic polymers as co-functioning monomers. The hybrid monolithic material was synthesized within 38 min via an efficient epoxy ring-opening reaction and free radical polymerization. Comprehensive characterization confirmed a rigid framework with strong anti-swelling properties, good permeability, and high enrichment efficiency on the polymers. When coupled with HPLC-UV, the optimized IT-SPME method enabled highly sensitive detection of polypeptides (vancomycin and teicoplanin) in aqueous matrices, achieving detection limits as low as 15.0–20.0 μg L−1, a wide linear range (60–800 μg L−1, R2 > 0.99), and good precision (RSDs = 5.9–8.2%). The prepared material demonstrated remarkable performance in real complex water samples, achieving recovery rates of up to 95.4%. Density functional theory (DFT) calculations indicated that the adsorption mechanism primarily involves hydrogen bonding and electrostatic interactions. This study presents an effective approach for the development of green chemical synthesis of extraction materials and offers a sustainable platform for monitoring trace contaminants in environmental waters. Full article
Show Figures

Graphical abstract

25 pages, 2114 KB  
Review
Functional Hydrogels: A Promising Platform for Biomedical and Environmental Applications
by Mohzibudin Z. Quazi, Aaquib Saeed Quazi, Youngseo Song and Nokyoung Park
Int. J. Mol. Sci. 2025, 26(18), 9066; https://doi.org/10.3390/ijms26189066 - 17 Sep 2025
Viewed by 738
Abstract
Functional hydrogels are a growing class of soft materials. Functional hydrogels are characterized by their three-dimensional (3D) polymeric network and high water-retention capacity. Functional hydrogels are deliberately engineered with specific chemical groups, stimuli-responsive motifs, or crosslinking strategies that impart targeted biomedical or environmental [...] Read more.
Functional hydrogels are a growing class of soft materials. Functional hydrogels are characterized by their three-dimensional (3D) polymeric network and high water-retention capacity. Functional hydrogels are deliberately engineered with specific chemical groups, stimuli-responsive motifs, or crosslinking strategies that impart targeted biomedical or environmental roles (e.g., drug delivery, pollutant removal). Their capacity to imitate the extracellular matrix, and their biocompatibility and customizable physicochemical properties make them highly suitable for biomedical and environmental applications. In contrast, non-functional hydrogels are defined as passive polymer networks that primarily serve as water-swollen matrices without such application-oriented modifications. Recent progress includes stimuli-responsive hydrogel designs. Stimuli such as pH, temperature, enzymes, light, etc., enable controlled drug delivery and targeted therapy. Moreover, hydrogels have shown great potential in tissue engineering and regenerative medicine. The flexibility and biofunctionality of hydrogels improve cell adhesion and tissue integration. Functional hydrogels are being explored for water purification by heavy metal ion removal and pollutant detection. The surface functionalities of hydrogels have shown selective binding and adsorption, along with porous structures that make them effective for environmental remediation. However, hydrogels have long been postulated as potential candidates to be used in clinical advancements. The first reported clinical trial was in the 1980s; however, their exploration in the last two decades has still struggled to achieve positive results. In this review, we discuss the rational hydrogel designs, synthesis techniques, application-specific performance, and the hydrogel-based materials being used in ongoing clinical trials (FDA–approved) and their mechanism of action. We also elaborate on the key challenges remaining, such as biocompatibility, mechanical stability, scalability, and future directions, to unlocking their multifunctionality and responsiveness. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

18 pages, 3556 KB  
Article
Development of Double Crosslinked Nano Microspheres and Study on CO2 Drive Blocking Mechanism
by Ping Guo, Yong Li, Yanbao Liu and Yunlong Zou
Processes 2025, 13(9), 2903; https://doi.org/10.3390/pr13092903 - 11 Sep 2025
Viewed by 367
Abstract
In this study, a new type of double crosslinked nanospheres (DCNPM-A) was developed to solve the problem of gas channeling caused by fracture development in the process of CO2 oil displacement, and the microsphere system with delayed swelling was successfully synthesized by [...] Read more.
In this study, a new type of double crosslinked nanospheres (DCNPM-A) was developed to solve the problem of gas channeling caused by fracture development in the process of CO2 oil displacement, and the microsphere system with delayed swelling was successfully synthesized by inverse micro lotion polymerization. The microsphere adopts a dual crosslinking structure of stable crosslinking agent (MBA) and unstable crosslinking agent (UCA), achieving intelligent sealing function of shallow low expansion and deep high temperature triggered secondary expansion. The successful preparation of microspheres was verified by characterization methods such as Zeta potential and SEM, and the effects of reaction temperature, time, initiator and crosslinking agent dosage on microsphere properties were systematically studied. The experimental results show that DCNPM-A microspheres exhibit excellent expansion performance, thermal stability, and acid resistance in acidic, high-temperature, and high mineralization environments. Their expansion ratio can reach 13.5 times, and they can maintain stability for more than 60 days in supercritical CO2 environments. Core displacement experiments have confirmed that the microspheres have the best sealing performance in matrices with a permeability of 10 × 10−3 μm2 and fractures with a width of 0.03 mm. The combination of 0.8 PV injection volume, 0.5 mL·min−1 injection rate, and continuous injection method significantly improved the plugging rate and recovery rate of CO2 flooding. This study provides new technical support for the efficient development of low-permeability fractured reservoirs. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

23 pages, 1426 KB  
Review
Chitosan-Based Materials as Effective Materials to Remove Pollutants
by Anathi Dambuza, Pennie P. Mokolokolo, Mamookho E. Makhatha and Motshabi A. Sibeko
Polymers 2025, 17(18), 2447; https://doi.org/10.3390/polym17182447 - 10 Sep 2025
Cited by 1 | Viewed by 1530
Abstract
Chitosan is a natural polymer derived from chitin through the deacetylation process. It has emerged as a key ingredient in sustainable wastewater treatment, due to its biodegradability, non-toxicity, and low cost. This biopolymer possesses abundant functional groups, such as -NH2 and -OH, [...] Read more.
Chitosan is a natural polymer derived from chitin through the deacetylation process. It has emerged as a key ingredient in sustainable wastewater treatment, due to its biodegradability, non-toxicity, and low cost. This biopolymer possesses abundant functional groups, such as -NH2 and -OH, that efficiently interact with pollutants. This review offers a comprehensive evaluation of pollutant separation techniques involving chitosan-based materials, including adsorption, membrane filtration, flocculation, and photocatalysis. It further examines the underlying adsorption mechanisms, emphasizing how pollutants interact with chitosan and its derivatives at the molecular level. Special focus is given to various modifications of chitosan, alongside a comparative assessment of different chitosan-based adsorbents (hydrogels, nanoparticles, nanocomposites, microspheres, nanofibers, etc.), highlighting their performance in removing heavy metals, dyes, and emerging organic pollutants. The reviewed performance of these polymeric materials from 2015–2025 not only gives an insight about the recent advancement but also points the need for the design of high-performing chitosan-based adsorbents with applications in real water matrices. Full article
(This article belongs to the Special Issue Advanced Study on Natural Polymers and Their Applications)
Show Figures

Figure 1

45 pages, 5319 KB  
Review
Polymeric Systems as Hydrogels and Membranes Containing Silver Nanoparticles for Biomedical and Food Applications: Recent Approaches and Perspectives
by Alexandra Nicolae-Maranciuc and Dan Chicea
Gels 2025, 11(9), 699; https://doi.org/10.3390/gels11090699 - 2 Sep 2025
Cited by 2 | Viewed by 1278
Abstract
Silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties and broad-spectrum efficacy against pathogens. Recent advances in polymer science have enabled the development of AgNPs-integrated hydrogels and membranes, offering multifunctional platforms for biomedical and food-related applications. This review provides [...] Read more.
Silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties and broad-spectrum efficacy against pathogens. Recent advances in polymer science have enabled the development of AgNPs-integrated hydrogels and membranes, offering multifunctional platforms for biomedical and food-related applications. This review provides a comprehensive overview of recent strategies for synthesizing and incorporating AgNPs into polymeric matrices, highlighting both natural and synthetic polymers as carriers. The structural and functional properties of these nanocomposite systems, such as biocompatibility, mechanical stability, controlled silver ion release, and antimicrobial activity, are critically examined. The focus is placed on their application in wound healing, drug delivery, food packaging, and preservation technologies. Challenges such as cytotoxicity, long-term stability, and regulatory concerns are discussed alongside emerging trends and safety paradigms. This work underscores the potential of AgNPs–polymer hybrids as next-generation materials and outlines future directions for their sustainable and targeted application in biomedical and food systems. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Biomedical Applications)
Show Figures

Figure 1

29 pages, 2598 KB  
Review
Exploring the Integration of Anthocyanins with Functional Materials in Smart Food Packaging: From Stabilization to Application
by Xiaowei Huang, Ke Zhang, Zhihua Li, Junjun Zhang, Xiaodong Zhai, Ning Zhang, Liuzi Du and Zhou Qin
Foods 2025, 14(16), 2896; https://doi.org/10.3390/foods14162896 - 20 Aug 2025
Cited by 1 | Viewed by 1722
Abstract
Anthocyanins, the most ubiquitous water-soluble phytopigments in terrestrial flora, have garnered substantial attention in sustainable food packaging research owing to their exceptional chromatic properties, pH-responsive characteristics, and putative health-promoting effects. Nevertheless, their inherent chemical lability manifests as rapid chromatic fading, structural degradation, and [...] Read more.
Anthocyanins, the most ubiquitous water-soluble phytopigments in terrestrial flora, have garnered substantial attention in sustainable food packaging research owing to their exceptional chromatic properties, pH-responsive characteristics, and putative health-promoting effects. Nevertheless, their inherent chemical lability manifests as rapid chromatic fading, structural degradation, and compromised bioactivity/bioavailability, ultimately restricting industrial implementation and incurring significant economic penalties. Recent advances in stabilization technologies through molecular encapsulation within polymeric matrices or nanoscale encapsulation systems have demonstrated remarkable potential for preserving anthocyanin integrity while augmenting multifunctionality. The integration of anthocyanins into advanced functional materials has emerged as a promising strategy for enhancing food safety and extending shelf life through smart packaging solutions. Despite their exceptional chromatic and bioactive properties, anthocyanins face challenges such as chemical instability under environmental stressors, limiting their industrial application. Recent advancements in stabilization technologies, including molecular encapsulation within polymeric matrices and nanoscale systems, have demonstrated significant potential in preserving anthocyanin integrity while enhancing multifunctionality. This review systematically explores the integration of anthocyanins with natural polymers, nanomaterials, and hybrid architectures, focusing on their roles as smart optical sensors, bioactive regulators, and functional components in active and smart packaging systems. Furthermore, the molecular interactions and interfacial phenomena governing anthocyanin stabilization are elucidated. The review also addresses current technological constraints and proposes future directions for scalable, sustainable, and optimized implementations in food preservation. Full article
Show Figures

Graphical abstract

16 pages, 2076 KB  
Article
Amberlite XAD-4 Functionalized with 4-(2-Pyridylazo) Resorcinol via Aryldiazonium Chemistry for Efficient Solid-Phase Extraction of Trace Metals from Groundwater Samples
by Awadh O. AlSuhaimi
Appl. Sci. 2025, 15(16), 9044; https://doi.org/10.3390/app15169044 - 16 Aug 2025
Viewed by 762
Abstract
Aryl diazonium salt chemistry offers a robust and versatile approach for the modification of material surfaces via the covalent immobilization of reactive functional groups under mild conditions. In this study, this strategy was successfully applied to graft the chelating agent 4-(2-pyridylazo)resorcinol (PAR) onto [...] Read more.
Aryl diazonium salt chemistry offers a robust and versatile approach for the modification of material surfaces via the covalent immobilization of reactive functional groups under mild conditions. In this study, this strategy was successfully applied to graft the chelating agent 4-(2-pyridylazo)resorcinol (PAR) onto Amberlite XAD-4 resin. Initially, 4-nitrobenzenediazonium tetrafluoroborate (NBDT) was covalently anchored onto the resin surface using hypophosphorous acid as a reducing catalyst to introduce aryl nitro groups. These nitro groups were subsequently reduced to aniline functionalities, enabling diazo coupling with PAR. The successful modification of the resin was confirmed by ATR-FTIR spectroscopy, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The synthesized chelating resin exhibited sorption capacities of 0.152, 0.167, and 0.172 mM g−1 for Co(II), Ni(II), and Cu(II), respectively. The functionalized resin was packed into standard SPE cartridges and employed as a selective sorbent for the extraction and preconcentration of trace metals from groundwater samples collected from Dhalamah Valley, Al-Madinah Al-Munawwarah, prior to quantification by inductively coupled plasma mass spectrometry (ICP-MS). These results demonstrate the effectiveness of rapid diazonium-based surface functionalization for the preparation of selective polymeric metal chelators suitable for the extraction of trace metals from complex groundwater matrices. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

28 pages, 2546 KB  
Systematic Review
Sustainable Polymer Composites for Thermal Insulation in Automotive Applications: A Systematic Literature Review
by Dan Dobrotă, Gabriela-Andreea Sava, Andreea-Mihaela Bărbușiu and Gabriel Tiberiu Dobrescu
Polymers 2025, 17(16), 2200; https://doi.org/10.3390/polym17162200 - 12 Aug 2025
Viewed by 962
Abstract
This systematic literature review explores recent advancements in polymer-based composite materials designed for thermal insulation in automotive applications, with a particular focus on sustainability, performance optimization, and scalability. The methodology follows PRISMA 2020 guidelines and includes a comprehensive bibliometric and thematic analysis of [...] Read more.
This systematic literature review explores recent advancements in polymer-based composite materials designed for thermal insulation in automotive applications, with a particular focus on sustainability, performance optimization, and scalability. The methodology follows PRISMA 2020 guidelines and includes a comprehensive bibliometric and thematic analysis of 229 peer-reviewed articles published over the past 15 years across major databases (Scopus, Web of Science, ScienceDirect, MDPI). The findings are structured around four central research questions addressing (1) the functional role of insulation in automotive systems; (2) criteria for selecting suitable polymer systems; (3) optimization strategies involving nanostructuring, self-healing, and additive manufacturing; and (4) future research directions involving smart polymers, bioinspired architectures, and AI-driven design. Results show that epoxy resins, polyurethane, silicones, and polymeric foams offer distinct advantages depending on the specific application, yet each presents trade-offs between thermal resistance, recyclability, processing complexity, and ecological impact. Comparative evaluation tables and bibliometric mapping (VOSviewer) reveal an emerging research trend toward hybrid systems that combine bio-based matrices with functional nanofillers. The study concludes that no single material system is universally optimal, but rather that tailored solutions integrating performance, sustainability, and cost-effectiveness are essential for next-generation automotive thermal insulation. Full article
(This article belongs to the Special Issue Sustainable Polymer Materials for Industrial Applications)
Show Figures

Figure 1

27 pages, 5036 KB  
Article
Synthesis and Characterization of Magnetic Molecularly Imprinted Polymer Sorbents (Fe3O4@MIPs) for Removal of Tetrabromobisphenol A
by Clarissa Ciarlantini, Susanna Romano, Gian Marco Amici, Elisabetta Lacolla, Iolanda Francolini, Anna Maria Girelli, Andrea Martinelli and Antonella Piozzi
Int. J. Mol. Sci. 2025, 26(16), 7686; https://doi.org/10.3390/ijms26167686 - 8 Aug 2025
Viewed by 583
Abstract
Tetrabromobisphenol A (TBBPA) is a flame retardant widely added to polymer products. Successful isolation of target analytes from complex natural matrices relies on extraction materials that can selectively interact with the analytes. In this context, the use of magnetic nanostructured adsorbents, such as [...] Read more.
Tetrabromobisphenol A (TBBPA) is a flame retardant widely added to polymer products. Successful isolation of target analytes from complex natural matrices relies on extraction materials that can selectively interact with the analytes. In this context, the use of magnetic nanostructured adsorbents, such as magnetic molecularly imprinted polymer systems (MMIPs), can play a key role in both selective matrix–analyte interactions and separation processes. Here, to achieve different TBBPA loadings, Fe3O4 nanoparticles (NPs) were coated with chitosan (CS) or (3-aminopropyl) triethoxysilane (APTES). Moreover, to further promote template–NP interactions and modulate the polymeric shell thickness of MMIPs, 3,4-dihydroxyhydrocinnamic acid (HC) was covalently bonded in different amounts to APTES-functionalized MNPs. Thermal, SEM, and elemental analyses showed a different coating degree of the nanocomposites (Fe3O4@CS-MIP size d = 77 nm and Fe3O4@APTES-MIP d = 20 nm). In addition, it was confirmed that the adsorption mechanism of TBBPA on Fe3O4@APTES-HCX-MIPs was due to specific interactions between the systems and the analyte, unlike non-imprinted analogs (MNIPs). Among the developed systems, the Fe3O4@APTES-HC0.7-MIP sample showed the best extraction efficiency (85%) associated with good discharge efficiency (70%). Furthermore, this nanocomposite displayed high selectivity towards TBBPA (ε > 1) and good extraction efficiency in three consecutive cycles (67%), demonstrating great potential in the environmental field. Full article
(This article belongs to the Special Issue Synthesis of Advanced Polymer Materials, 3rd Edition)
Show Figures

Graphical abstract

21 pages, 1562 KB  
Review
Electrospun Molecularly Imprinted Polymers for Environmental Remediation: A Mini Review
by Sisonke Sigonya, Bakang Mo Mothudi, Olayemi J. Fakayode, Teboho C. Mokhena, Paul Mayer, Thabang H. Mokhothu, Talent R. Makhanya and Katekani Shingange
Polymers 2025, 17(15), 2082; https://doi.org/10.3390/polym17152082 - 30 Jul 2025
Cited by 2 | Viewed by 818
Abstract
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency [...] Read more.
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency in removing various pollutants, including dyes, heavy metals, and pharmaceutical residues such as NSAIDs and antiretroviral drugs. The synthesis methodologies are explored in detail, focusing on the choice of monomers, templates, and polymerization conditions that influence the structural and functional properties of the membranes. Characterization techniques used to assess morphology, surface area, porosity, and imprinting efficacy are also examined, providing insights into how these parameters affect adsorption performance. Furthermore, the review evaluates the performance metrics of electrospun MIPs, including adsorption capacities, selectivity, reusability, and stability in complex environmental matrices. Practical considerations, such as scalability, regeneration, and long-term operational stability, are discussed to assess their potential for real-world applications. The article concludes with an outline of future research directions, emphasizing the need for multi-template imprinting, integration with existing treatment technologies, and field-scale validation to address current limitations. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

13 pages, 1041 KB  
Article
Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications
by Gennaro Ruggiero, Davide Di Rosa, Francesco Caso, Roberto Sorrentino, Fernando Zarone and Giuseppe Caso
Materials 2025, 18(15), 3550; https://doi.org/10.3390/ma18153550 - 29 Jul 2025
Viewed by 794
Abstract
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into [...] Read more.
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into the polymer matrix. This study presents the synthesis and FT-IR/Raman characterization of GRAPHYMERE®, a novel graphene oxide-based monomer obtained through exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate. Methods: A novel GO-based monomer, GRAPHYMERE®, was synthesized through a three-step process involving GO exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate to introduce polymerizable acrylic groups. The resulting product was characterized using FT-IR and Raman spectroscopy. Results: Spectroscopic analyses confirmed the presence of aliphatic chains and amine functionalities on the GO surface. Although some expected signals were overlapped, the data suggest successful surface modification and partial insertion of methacrylamide groups. The process is straightforward, uses low-toxicity reagents, and avoids complex reaction steps. Conclusions: GRAPHYMERE® represents a chemically modified GO monomer potentially suitable for copolymerization within dental resin matrices. While its structural features support compatibility with radical polymerization systems, further studies are required to assess its mechanical performance and functional properties in dental resin applications. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications (2nd Edition))
Show Figures

Graphical abstract

4 pages, 137 KB  
Editorial
Advanced Polymer Composites and Applications
by Bing Wang, Lihua Zhan and Chenglong Guan
Polymers 2025, 17(15), 2062; https://doi.org/10.3390/polym17152062 - 28 Jul 2025
Viewed by 751
Abstract
Polymer composite materials, engineered by combining polymeric matrices with functional fillers or reinforcing phases, represent a frontier in advanced materials science driven by the dual imperatives of performance enhancement and sustainable development [...] Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites)
Back to TopTop