Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = fumarate hydratase (FH) gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 877 KiB  
Review
Implications of Fumarate Hydratase Deficiency (FHD) and Cancer Risk: A Window into the Clinical and Oncological Implications of a Rare Disorder in Gynecology
by Marco D’Indinosante, Sara Lardino, Matteo Bruno, Guglielmo Stabile, Matteo Pavone, Gaia Giannone, Pasquale Lombardi, Gennaro Daniele, Francesco Fanfani, Francesca Ciccarone and Giovanni Scambia
Cancers 2025, 17(4), 573; https://doi.org/10.3390/cancers17040573 - 8 Feb 2025
Cited by 2 | Viewed by 2203
Abstract
Fumarate hydratase (FH) deficiency is a rare, yet impactful metabolic disorder caused by mutations in the FH gene, affecting the Krebs cycle, leading to the accumulation of fumarate and pseudohypoxic states. This metabolic shift promotes cell signaling alterations that can drive tumorigenesis, as [...] Read more.
Fumarate hydratase (FH) deficiency is a rare, yet impactful metabolic disorder caused by mutations in the FH gene, affecting the Krebs cycle, leading to the accumulation of fumarate and pseudohypoxic states. This metabolic shift promotes cell signaling alterations that can drive tumorigenesis, as heterozygous germline mutations in the FH gene, resulting in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. FH-deficient uterine leiomyomas show peculiar histological features that may lead to misdiagnosis STUMP (smooth muscle tumor of uncertain malignant potential) and uLMS (uterine leiomyosarcoma). Definitive diagnosis involves clinical evaluation, imaging, and histopathological examination, with immunohistochemistry for FH protein being a key diagnostic tool. Management of FH-deficient leiomyomas may involve conventional treatments like surgery and hormonal therapy but also requires careful monitoring and genetic counseling for associated malignancies. High-intensity focused ultrasound (HIFU) has emerged as a promising treatment option for fibroids, although long-term efficacy remains a concern also because of its inability to obtain tissue for a pathological diagnosis. Fumarate hydratase deficiency (FHD) represents a significant challenge in gynecologic oncology due to its association with an increased risk of hereditary leiomyomatosis and renal cell carcinoma. Nevertheless, to the best of our knowledge, there is a lack of studies demonstrating the potential role of FH deficiency in increased risk of leiomyosarcomatosus transformation. Early detection, genetic screening, and personalized treatment approaches are critical for improving patient outcomes. The aim of this review is to develop a narrative overview of the implications of FHD in gynecological diseases and its correlation with cancer risk. For the first time, this review offers an overview of the necessity for studies to address the possible correlation between FH deficiency and the risk of developing leiomyosarcoma, focusing on new perspectives that can be explored in the field of better FH deficiency knowledge and cancer risk. Full article
(This article belongs to the Special Issue Gynecologic Oncology: Clinical and Translational Research)
Show Figures

Figure 1

5 pages, 8233 KiB  
Case Report
Whole-Exome Sequencing Revealed a Pathogenic Germline Variant in the Fumarate Hydratase Gene, Leading to the Diagnosis of Hereditary Leiomyomatosis and Renal Cell Cancer
by Akari Nagashima, Sohshi Morimura, Toshihisa Hamada, Takayuki Shiomi, Ichiro Mori, Naoko Sato, Junko Nomoto, Masaki Tanaka, Shoji Tsuji and Makoto Sugaya
Diagnostics 2024, 14(12), 1279; https://doi.org/10.3390/diagnostics14121279 - 17 Jun 2024
Viewed by 1335
Abstract
The diagnosis of hereditary skin tumors is difficult for “old” diagnostic tools such as immunohistochemistry. Whole-exome sequencing analysis as a “new” diagnostic tool enables us to make a final diagnosis in spite of unknown hereditary diseases in the past. Hereditary leiomyomatosis and renal [...] Read more.
The diagnosis of hereditary skin tumors is difficult for “old” diagnostic tools such as immunohistochemistry. Whole-exome sequencing analysis as a “new” diagnostic tool enables us to make a final diagnosis in spite of unknown hereditary diseases in the past. Hereditary leiomyomatosis and renal cell cancer are autosomal dominant hereditary cancer syndromes characterized by uterine myomas, cutaneous leiomyomas, and aggressive renal cell cancer. The syndrome is associated with pathogenic germline variants in the fumarate hydratase gene. Herein, we demonstrate a pathogenic germline variant of the fumarate hydratase gene in a 60-year-old woman with multiple cutaneous leiomyomas, leading to the diagnosis of hereditary leiomyomatosis and renal cell cancer. Whole-exome sequencing analysis using genomic DNA extracted from peripheral blood leukocytes revealed one germline variant in the FH gene on chromosome 1 (c.290G>A, p.Gly97Asp). She received total hysterectomy due to uterine myoma, which strongly supported the diagnosis. No tumor was detected in her kidney by computed tomography and ultrasound examination. Genetic examination for the mutation of the fumarate hydratase gene is important in order to reach the correct diagnosis and to detect renal cancer at its early stage. Full article
Show Figures

Figure 1

11 pages, 1931 KiB  
Article
Intravascular Laser Blood Irradiation (ILIB) Enhances Antioxidant Activity and Energy Metabolism in Aging Ovaries
by Li-Te Lin, Chia-Jung Li, Chyi-Uei Chern, Pei-Hsuan Lin, Po-Wen Lin, Yu-Chen Chen, Hsiao-Wen Tsai and Kuan-Hao Tsui
J. Pers. Med. 2024, 14(6), 551; https://doi.org/10.3390/jpm14060551 - 22 May 2024
Cited by 3 | Viewed by 3766
Abstract
Background: Ovarian aging is characterized by the accumulation of free radicals, leading to tissue damage and affecting reproductive health. Intravascular laser irradiation of blood (ILIB, using a low-energy He-Ne laser) is known for its efficacy in treating vascular-related diseases by reducing free radicals [...] Read more.
Background: Ovarian aging is characterized by the accumulation of free radicals, leading to tissue damage and affecting reproductive health. Intravascular laser irradiation of blood (ILIB, using a low-energy He-Ne laser) is known for its efficacy in treating vascular-related diseases by reducing free radicals and inflammation. However, its impact on ovarian aging remains unexplored. This study aimed to investigate the effects of ILIB on oxidative stress and energy metabolism in aging ovaries. Methods: Genetic analysis was conducted on 75 infertile patients with aging ovaries, divided into ILIB-treated and control (CTRL) groups. Patients underwent two courses of laser treatment, and clinical parameters were evaluated. Cumulus cells were collected for the genetic analysis of oxeiptosis, glycolysis, and the tricarboxylic acid (TCA) cycle. Results: The analysis of gene expression patterns revealed intriguing findings in ILIB-treated patients compared to the untreated group. Notably, ILIB treatment resulted in significant upregulation of oxeiptosis-related genes AIFM1 and NRF2, suggesting a potential protective effect against oxidative stress-induced cell death. Furthermore, ILIB treatment led to a downregulation of glycolysis-associated gene hexokinase 2 (HK2), indicating a shift away from anaerobic metabolism, along with an increase in PDHA levels, indicative of enhanced mitochondrial function. Consistent with these changes, ILIB-treated patients exhibited elevated expression of the key TCA cycle genes citrate synthase (CS), succinate dehydrogenase complex subunit A (SDHA), and fumarate hydratase (FH), signifying improved energy metabolism. Conclusion: The findings from this study underscore the potential of ILIB as a therapeutic strategy for mitigating ovarian aging. By targeting oxidative stress and enhancing energy metabolism, ILIB holds promise for preserving ovarian function and reproductive health in aging individuals. Further research is warranted to elucidate the underlying mechanisms and optimize the application of ILIB in clinical settings, with the ultimate goal of improving fertility outcomes in women experiencing age-related ovarian decline. Full article
(This article belongs to the Section Mechanisms of Diseases)
Show Figures

Figure 1

13 pages, 3061 KiB  
Article
Increased Occurrence of Cutaneous Leiomyomas and Dermatofibromas in Patients with Uterine Leiomyomas without Fumarate Hydratase Gene Mutations
by Elena Campione, Monia Di Prete, Gaetana Costanza, Andrea Saggini, Sara Agostinelli, Alessandro Terrinoni, Federica Centofanti, Maria Cristina Rapanotti, Luca Bianchi, Amedeo Ferlosio, Maria Giovanna Scioli and Augusto Orlandi
Dermatopathology 2023, 10(3), 231-243; https://doi.org/10.3390/dermatopathology10030032 - 4 Aug 2023
Cited by 1 | Viewed by 2776
Abstract
Leiomyomas are smooth muscle-derived benign neoplasms that can affect all organs, most frequently in the uterus. Fumarate hydratase gene (FH) mutation is characterised by an autosomal dominant disease with increased occurrence of renal tumours, but also by cutaneous (CLs) and uterine leiomyomas (ULs). [...] Read more.
Leiomyomas are smooth muscle-derived benign neoplasms that can affect all organs, most frequently in the uterus. Fumarate hydratase gene (FH) mutation is characterised by an autosomal dominant disease with increased occurrence of renal tumours, but also by cutaneous (CLs) and uterine leiomyomas (ULs). So far, an increased occurrence of skin tumours in non-mutated patients with ULs has not been verified. To this aim, a case-group of women who were FH non-mutated patients surgically treated for ULs (n = 34) was compared with a control-group (n = 37) of consecutive age-matched healthy women. The occurrence of skin neoplasms, including CLs and dermatofibromas (DFs), was evaluated. Moreover, the microscopic features of FH non-mutated skin tumours were compared with those of an age-matched population group (n = 70) who presented, in their clinical history, only one type of skin tumour and no ULs. Immunohistochemical and in vitro studies analysed TGFβ and vitamin D receptor expression. FH non-mutated patients with ULs displayed a higher occurrence of CLs and DFs (p < 0.03 and p < 0.001), but not of other types of skin tumours. Immunohistochemistry revealed a lower vitamin D receptor (VDR) expression in CLs and DFs from the ULs group compared with those from the population group (p < 0.01), but a similar distribution of TGFβ-receptors and SMAD3. In vitro studies documented that TGFβ-1 treatment and vitamin D3 have opposite effects on α-SMA, TGFβR2 and VDR expression on dermal fibroblast and leiomyoma cell cultures. This unreported increased occurrence of CLs and DFs in FH non-mutated patients with symptomatic ULs with vitamin D deficiency suggests a potential pathogenetic role of vitamin D bioavailability also for CLs and DFs. Full article
Show Figures

Figure 1

16 pages, 5298 KiB  
Article
A Missense Mutation c.1132G > A in Fumarate Hydratase (FH) Leads to Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) Syndrome and Insights into Clinical Management in Uterine Leiomyomata
by Yue Shi, Yan Xu, Chao Wang, Yiqing Chen, Xiaojun Ren, Yu Kang and Chao Wang
Genes 2023, 14(3), 744; https://doi.org/10.3390/genes14030744 - 18 Mar 2023
Cited by 2 | Viewed by 3450
Abstract
Background: HLRCC syndrome is a hereditary cancer predisposition syndrome caused by heterozygous germline pathogenic variant of the fumarate hydratase (FH) gene and characterized by cutaneous leiomyomas (CL), uterine leiomyomas (UL), and renal cell carcinoma (RCC). Loss of function variant of FH gene inactivates [...] Read more.
Background: HLRCC syndrome is a hereditary cancer predisposition syndrome caused by heterozygous germline pathogenic variant of the fumarate hydratase (FH) gene and characterized by cutaneous leiomyomas (CL), uterine leiomyomas (UL), and renal cell carcinoma (RCC). Loss of function variant of FH gene inactivates the Kreb’s cycle enzyme activity and predisposes individuals with such variant to the development of HLRCC. Methods: Next-generation sequencing (NGS) and Sanger confirmation were given to family members accessible. Following that, a functional study in vitro was performed to further confirm the pathogenicity of the variant. FH-Wild type (FH-WT) and FH-mutant (FH-MUT) (E378K) plasmid were constructed and transfected into 293T and uterine leiomyoma cell lines, respectively. Proliferation assessment was executed to show how this mutation affects the growth of uterine leiomyoma. qPCR and Western blotting were performed to investigate the change of transcription and translation of FH with mutation (E378K), and FH enzyme assay activity were tested in 293T cells with mutation and wild-type plasmids. Results: Here, we presented two families with the same missense variant (c.1132G > A) that has not been reported as a germline mutation in hereditary uterine leiomyomas before and classified as VUS in gene databases. Our in vitro experiments supported the pathogenicity of this missense variant, especially in uterine leiomyomata. Conclusions: According to the American College of Medical Genetics (ACMG) guideline, the E378K variant was classified as likely pathogenic (with evidence PS4_support, PS3_support, PM2_support, PP1, PP3 and PP4 evidence). Further insights into clinical management in uterine leiomyomata were discussed and should be practiced in gynecological clinical settings. Full article
(This article belongs to the Special Issue Genetic and Phenotypic Correlation: Gene-Disease Validation)
Show Figures

Figure 1

15 pages, 3584 KiB  
Article
Depletion of Fumarate Hydratase, an Essential TCA Cycle Enzyme, Drives Proliferation in a Two-Step Model
by Balakrishnan Solaimuthu, Michal Lichtenstein, Arata Hayashi, Anees Khatib, Inbar Plaschkes, Yuval Nevo, Mayur Tanna, Ophry Pines and Yoav D. Shaul
Cancers 2022, 14(22), 5508; https://doi.org/10.3390/cancers14225508 - 9 Nov 2022
Cited by 4 | Viewed by 2827
Abstract
Fumarate hydratase (FH) is an evolutionary conserved TCA cycle enzyme that reversibly catalyzes the hydration of fumarate to L-malate and has a moonlight function in the DNA damage response (DDR). Interestingly, FH has a contradictory cellular function, as it is pro-survival through its [...] Read more.
Fumarate hydratase (FH) is an evolutionary conserved TCA cycle enzyme that reversibly catalyzes the hydration of fumarate to L-malate and has a moonlight function in the DNA damage response (DDR). Interestingly, FH has a contradictory cellular function, as it is pro-survival through its role in the TCA cycle, yet its loss can drive tumorigenesis. Here, we found that in both non-cancerous (HEK-293T) and cancerous cell lines (HepG2), the cell response to FH loss is separated into two distinct time frames based on cell proliferation and DNA damage repair. During the early stages of FH loss, cell proliferation rate and DNA damage repair are inhibited. However, over time the cells overcome the FH loss and form knockout clones, indistinguishable from WT cells with respect to their proliferation rate. Due to the FH loss effect on DNA damage repair, we assumed that the recovered cells bear adaptive mutations. Therefore, we applied whole-exome sequencing to identify such mutated genes systematically. Indeed, we identified recurring mutations in genes belonging to central oncogenic signaling pathways, such as JAK/STAT3, which we validated in impaired FH-KO clones. Intriguingly, we demonstrate that these adaptive mutations are responsible for FH-KO cell proliferation under TCA cycle malfunction. Full article
(This article belongs to the Special Issue Metabolic Rewiring in Cancer)
Show Figures

Figure 1

15 pages, 2722 KiB  
Article
Identification and Validation of TRIM25 as a Glucose Metabolism Regulator in Prostate Cancer
by Chao Li, Peng Dou, Xin Lu, Pengwei Guan, Zhikun Lin, Yanyan Zhou, Xin Lu, Xiaohui Lin and Guowang Xu
Int. J. Mol. Sci. 2022, 23(16), 9325; https://doi.org/10.3390/ijms23169325 - 19 Aug 2022
Cited by 6 | Viewed by 2668
Abstract
Prostate cancer (PCa) malignant progression is accompanied with the reprogramming of glucose metabolism. However, the genes involved in the regulation of glucose metabolism in PCa are not fully understood. Here, we propose a new method, DMRG, which constructs a weighted differential network (W-K-DN) [...] Read more.
Prostate cancer (PCa) malignant progression is accompanied with the reprogramming of glucose metabolism. However, the genes involved in the regulation of glucose metabolism in PCa are not fully understood. Here, we propose a new method, DMRG, which constructs a weighted differential network (W-K-DN) to define the important metabolism-related genes. Based on biological knowledge and prostate cancer transcriptome data, a tripartite motif-containing 25 (TRIM25) was defined using DMRG; TRIM25 was involved in the regulation of glucose metabolism, which was verified by overexpressing or knocking down TRIM25 in PCa cell lines. Differential expression analysis of TCA cycle enzymes revealed that TRIM25 regulated isocitrate dehydrogenase 1 (IDH1) and fumarate hydratase (FH) expression. Moreover, a protein–RNA interaction network of TRIM25 revealed that TRIM25 interacted with RNA-binding proteins, including DExH-box helicase 9 and DEAD-box helicase 5, to play a role in regulating the RNA processing of metabolic enzymes, including IDH1 and FH. Furthermore, TRIM25 expression level was found to be positively correlated with Gleason scores in PCa patient tissues. In conclusion, this study provides a new method to define genes influencing tumor progression, and sheds light on the role of the defined TRIM25 in regulating glucose metabolism and promoting PCa malignancy. Full article
(This article belongs to the Special Issue Cancer Cell Metabolism 2.0)
Show Figures

Figure 1

12 pages, 23353 KiB  
Article
Functional Characterization of FH Mutation c.557G>A Underlies Uterine Leiomyomas
by Ping Li, Yanru Wu, Huizhi Wu, Qiuhong Xiong, Na Zhao, Guangxin Chen, Changxin Wu and Han Xiao
Int. J. Mol. Sci. 2022, 23(3), 1452; https://doi.org/10.3390/ijms23031452 - 27 Jan 2022
Cited by 4 | Viewed by 2746
Abstract
The FH gene encodes the fumarate hydratase of the Krebs cycle and functions as a homotetramer to catalyze the hydration of fumarate to malate. Mutations in FH result in uterine leiomyomas, a rare autosomal dominant inherited metabolic disease. However, how FH mutations result [...] Read more.
The FH gene encodes the fumarate hydratase of the Krebs cycle and functions as a homotetramer to catalyze the hydration of fumarate to malate. Mutations in FH result in uterine leiomyomas, a rare autosomal dominant inherited metabolic disease. However, how FH mutations result in this disease is poorly understood. Here, the FH mutation c.557G>A (p.S186N) was identified in a family with uterine leiomyomas phenotype. A series of studies were performed to confirm the pathogenicity of this mutation. Results showed that the FH mutant exhibited significantly lower fumarase enzyme activity and increased the fumarates level compared with the wildtype, which might be due to the impaired homotetramer formation in the native gel electrophoresis. Interestingly, the immunofluorescence study revealed that the overexpressed FH mutant exhibited puncta structures compared with the evenly expressed FH wildtype in cytoplasm suggesting that the altered amino acid might result in dysfunctional proteins which were accumulated to reduce its cytotoxicity. Importantly, the cells overexpressing the FH mutant exhibited higher proliferation and extracellular acidification rate value (ECAR) which might be caused by the upregulated HIF-1α indicating the tumor phenotype. Notably, phospho-mTOR was significantly increased and autophagy was inhibited in the FH mutant overexpression cells compared with the wildtype. Our work provides new insight into the FH mutation c.557G>A (p.S186N) underlies uterine leiomyomas and important information for accurate genetic counseling and clinical diagnosis of the disease. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 3114 KiB  
Case Report
Germline Whole-Gene Deletion of FH Diagnosed from Tumor Profiling
by Arisa Ueki, Kokichi Sugano, Kumiko Misu, Eriko Aimono, Kohei Nakamura, Shigeki Tanishima, Nobuyuki Tanaka, Shuji Mikami, Akira Hirasawa, Miho Ando, Teruhiko Yoshida, Mototsugu Oya, Hiroshi Nishihara and Kenjiro Kosaki
Int. J. Mol. Sci. 2021, 22(15), 7962; https://doi.org/10.3390/ijms22157962 - 26 Jul 2021
Cited by 4 | Viewed by 3424
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HL (RCC)) entails cutaneous and uterine leiomyomatosis with aggressive type 2 papillary RCC-like histology. HLRCC is caused by pathogenic variants in the FH gene, which encodes fumarate hydratase (FH). Here, we describe an episode of young-onset RCC [...] Read more.
Hereditary leiomyomatosis and renal cell carcinoma (HL (RCC)) entails cutaneous and uterine leiomyomatosis with aggressive type 2 papillary RCC-like histology. HLRCC is caused by pathogenic variants in the FH gene, which encodes fumarate hydratase (FH). Here, we describe an episode of young-onset RCC caused by a genomic FH deletion that was diagnosed via clinical sequencing. A 35-year-old woman was diagnosed with RCC and multiple metastases: histopathological analyses supported a diagnosis of FH-deficient RCC. Although the patient had neither skin tumors nor a family history of HLRCC, an aggressive clinical course at her age and pathological diagnosis of FH-deficient RCC suggested a germline FH variant. After counseling, the patient provided written informed consent for germline genetic testing. She was simultaneously subjected to paired tumor profiling tests targeting the exome to identify a therapeutic target. Although conventional germline sequencing did not detect FH variants, exome sequencing revealed a heterozygous germline FH deletion. As such, paired tumor profiling, not conventional sequencing, was required to identify this genetic deletion. RCC caused by a germline FH deletion has hitherto not been described in Japan, and the FH deletion detected in this patient was presumed to be of maternal European origin. Although the genotype-phenotype correlation in HLRCC-related tumors is unclear, the patient’s family was advised to undergo genetic counseling to consider additional RCC screening. Full article
(This article belongs to the Special Issue Molecular Research on Urology 2.0)
Show Figures

Figure 1

15 pages, 2159 KiB  
Article
Synthetically Lethal Interactions of Heme Oxygenase-1 and Fumarate Hydratase Genes
by Paulina Podkalicka, Olga Mucha, Szczepan Kruczek, Anna Biela, Kalina Andrysiak, Jacek Stępniewski, Maciej Mikulski, Michał Gałęzowski, Kamil Sitarz, Krzysztof Brzózka, Alicja Józkowicz, Józef Dulak and Agnieszka Łoboda
Biomolecules 2020, 10(1), 143; https://doi.org/10.3390/biom10010143 - 16 Jan 2020
Cited by 16 | Viewed by 4950
Abstract
Elevated expression of heme oxygenase-1 (HO-1, encoded by HMOX1) is observed in various types of tumors. Hence, it is suggested that HO-1 may serve as a potential target in anticancer therapies. A novel approach to inhibit HO-1 is related to the synthetic [...] Read more.
Elevated expression of heme oxygenase-1 (HO-1, encoded by HMOX1) is observed in various types of tumors. Hence, it is suggested that HO-1 may serve as a potential target in anticancer therapies. A novel approach to inhibit HO-1 is related to the synthetic lethality of this enzyme and fumarate hydratase (FH). In the current study, we aimed to validate the effect of genetic and pharmacological inhibition of HO-1 in cells isolated from patients suffering from hereditary leiomyomatosis and renal cell carcinoma (HLRCC)—an inherited cancer syndrome, caused by FH deficiency. Initially, we confirmed that UOK 262, UOK 268, and NCCFH1 cell lines are characterized by non-active FH enzyme, high expression of Nrf2 transcription factor-regulated genes, including HMOX1 and attenuated oxidative phosphorylation. Later, we demonstrated that shRNA-mediated genetic inhibition of HMOX1 resulted in diminished viability and proliferation of cancer cells. Chemical inhibition of HO activity using commercially available inhibitors, zinc and tin metalloporphyrins as well as recently described new imidazole-based compounds, especially SLV-11199, led to decreased cancer cell viability and clonogenic potential. In conclusion, the current study points out the possible relevance of HO-1 inhibition as a potential anti-cancer treatment in HLRCC. However, further studies revealing the molecular mechanisms are still needed. Full article
(This article belongs to the Special Issue Therapeutic Significance of Heme Oxygenase Induction or Inhibition)
Show Figures

Figure 1

13 pages, 622 KiB  
Review
Mitochondrial Deficiencies in the Predisposition to Paraganglioma
by Charlotte Lussey-Lepoutre, Alexandre Buffet, Anne-Paule Gimenez-Roqueplo and Judith Favier
Metabolites 2017, 7(2), 17; https://doi.org/10.3390/metabo7020017 - 4 May 2017
Cited by 23 | Viewed by 6534
Abstract
Paragangliomas and pheochromocytomas are rare neuroendocrine tumours with a very strong genetic component. It is estimated that around 40% of all cases are caused by a germline mutation in one of the 13 predisposing genes identified so far. Half of these inherited cases [...] Read more.
Paragangliomas and pheochromocytomas are rare neuroendocrine tumours with a very strong genetic component. It is estimated that around 40% of all cases are caused by a germline mutation in one of the 13 predisposing genes identified so far. Half of these inherited cases are intriguingly caused by mutations in genes encoding tricarboxylic acid enzymes, namely SDHA, SDHB, SDHC, SDHD, and SDHAF2 genes, encoding succinate dehydrogenase and its assembly protein, FH encoding fumarate hydratase, and MDH2 encoding malate dehydrogenase. These mutations may also predispose to other type of cancers, such as renal cancer, leiomyomas, or gastro-intestinal stromal tumours. SDH, which is also the complex II of the oxidative respiratory chain, was the first mitochondrial enzyme to be identified having tumour suppressor functions, demonstrating that 80 years after his initial proposal, Otto Warburg may have actually been right when he hypothesized that low mitochondrial respiration was the origin of cancer. This review reports the current view on how such metabolic deficiencies may lead to cancer predisposition and shows that the recent data may lead to the development of innovative therapeutic strategies and establish precision medicine approaches for the management of patients affected by these rare diseases. Full article
(This article belongs to the Special Issue Cancer Metabolism)
Show Figures

Figure 1

15 pages, 985 KiB  
Article
Protein Profiling of Blood Samples from Patients with Hereditary Leiomyomatosis and Renal Cell Cancer by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
by Takao Kamai, Naohisa Tomosugi, Hideyuki Abe, Yasushi Kaji, Tetsunari Oyama and Ken-Ichiro Yoshida
Int. J. Mol. Sci. 2012, 13(11), 14518-14532; https://doi.org/10.3390/ijms131114518 - 8 Nov 2012
Cited by 12 | Viewed by 7039
Abstract
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an extremely rare syndrome with autosomal dominant inheritance. HLRCC is characterized by a predisposition to leiomyomas of the skin and the uterus as well as renal cell carcinoma. The disease-related gene has been identified as [...] Read more.
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an extremely rare syndrome with autosomal dominant inheritance. HLRCC is characterized by a predisposition to leiomyomas of the skin and the uterus as well as renal cell carcinoma. The disease-related gene has been identified as fumarate hydratase (fumarase, FH), which encodes an enzyme involved in the mitochondrial tricarboxylic acid cycle. Protein profiling may give some insight into the molecular pathways of HLRCC. Therefore, we performed protein profiling of blood samples from HLRCC patients, their family members, and healthy volunteers, using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) coupled with IMAC-Cu chips. For hierarchical clustering analysis, we used the 45 peaks that revealed significant differences in single-marker analysis over the range from 1500 to 15,000 m/z. Heat map analysis based on the results of clustering distinguished the HLRCC kindred from non-HLRCC subjects with a sensitivity of 94% and a specificity of 90%. SELDI-TOF MS profiling of blood samples can be applied to identify patients with HLRCC and to assess specific molecular mechanisms involved in this condition. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology (special issue))
Show Figures

Back to TopTop