Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = fucosyltransferases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3548 KB  
Article
Identification and Functional Evaluation of a Fucosyltransferase in Bursaphelenchus xylophilus
by Ziao Li, Chenglei Qin, Yujiang Sun, Qunqun Guo, Chao Wang, Fan Wang, Chengzhen Yuan, Tianjia Zhang, Guicai Du and Ronggui Li
Forests 2026, 17(1), 7; https://doi.org/10.3390/f17010007 - 19 Dec 2025
Viewed by 301
Abstract
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, is a devastating pine disease that is characterized by rapid transmission, high lethality, and limited control options. In our previous study, the fucosyltransferase gene (fut) which encoded [...] Read more.
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, is a devastating pine disease that is characterized by rapid transmission, high lethality, and limited control options. In our previous study, the fucosyltransferase gene (fut) which encoded fucosyltransferase (FUT) was found to be a putative virulence determinant in PWN, which regulates pathogenicity of nematodes. To investigate the functional role of the fut gene in PWN, a comprehensive analysis was conducted to understand its molecular structure and biological activity. The full-length open reading frame (ORF) of fut was amplified using reverse transcription PCR (RT-PCR) and successfully ligated into the pET-28a expression vector. Heterologous expression of the recombinant FUT was achieved in Escherichia coli Rosetta (DE3) through induction with 1.0 mM isopropyl-β-D-thiogalactoside (IPTG), followed by purification via nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. Biochemical characterization revealed that the recombinant FUT exhibited optimal enzymatic activity at 30 °C and pH 8.0, respectively. Furthermore, RNA interference (RNAi) validated by RT-qPCR was used to explore the biological functions of fut in PWN, and results indicated that downregulation of the fut gene could significantly reduce the vitality, reproduction, pathogenicity, development, and lifespan of PWN. Furthermore, gallic acid as an inhibitor of FUT displayed a strong inhibitory effect on recombinant FUT activity and nematicidal activity against PWNs in vitro and could alleviate the wilt symptom of pine seedlings inoculated with PWNs at a concentration of 100 μg/mL, indicating that it has the potential to be a novel nematicide. Collectively, these results establish fut as a critical virulence determinant in PWN and highlight its potential as a molecular target for controlling pine wilt disease. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

14 pages, 1957 KB  
Article
Zygosity Genotyping by Pyrosequencing of SNPs rs601338 and rs1047781 of the FUT2 Gene in Children Living in the Amazon Region
by Mauro França Silva, Diego Archanjo Oliveira Rodrigues, Letícia Bomfim Campos, Yan Cardoso Pimenta, Silas de Souza Oliveira, Bruno Loreto de Aragão Pedroso, Emanuelle Ramalho, Alberto Ignacio Olivares Olivares, José Paulo Gagliardi Leite, José Júnior França de Barros and Marcia Terezinha Baroni de Moraes
DNA 2025, 5(4), 54; https://doi.org/10.3390/dna5040054 - 17 Nov 2025
Viewed by 764
Abstract
Human populations are classified as secretors or non-secretors by, respectively, the ability to produce or not produce FUT2 enzyme (alpha-1,2-fucosyltransferase; FUT2 gene). Non-secretors have some protection against diseases and viral infections. Two single-nucleotide polymorphisms (SNPs), rs601338 (non-secretor; sese), and rs1047781 [...] Read more.
Human populations are classified as secretors or non-secretors by, respectively, the ability to produce or not produce FUT2 enzyme (alpha-1,2-fucosyltransferase; FUT2 gene). Non-secretors have some protection against diseases and viral infections. Two single-nucleotide polymorphisms (SNPs), rs601338 (non-secretor; sese), and rs1047781 (weak secretor; Sew), are known population markers. In this study, 68 saliva samples collected from children living in the Brazilian Amazon region were evaluated for zygosity—genotyping (homozygous or heterozygous) of the rs601338 and rs1047781 SNPs by pyrosequencing. Nine children were heterozygous (Sese) for the rs601338 SNP (13.2%; 9/68) and one homozygous (sese) (1.5%; 1/68). One child that was heterozygous for the rs601338 SNP was also heterozygous for the rs1047781 SNP (Sew) (1.5%; 1/68). By using Sanger nucleotide sequencing of the FUT2 coding region, strongly linked SNPs (171A>G, 216C>T, 357T>C, 428G>A, 739G>A, 960A>G), including the FUT2*01N.02 allele (428G>A; 739A>G), were detected and have been associated with non-secretor children. A novel SNP (315C>T) and others (40A>G; 480C>T; 863C>T) detected in worldwide populations were also detected. The sensitivity of the pyrosequencing method provided an unprecedented discovery of the zygosity of the SNP rs1047781 only previously detected in East and Southeast Asians. The identification of novel SNPs in this population expands our knowledge of genetic susceptibility to viral infections. Full article
Show Figures

Figure 1

15 pages, 1267 KB  
Article
Genetic Variations of the FUT3 Gene in Le(a−b−) Individuals and Their Association with Lewis Antibody Responses
by Oytip Nathalang, Piyathida Khumsuk, Wiradee Sasikarn and Kamphon Intharanut
Med. Sci. 2025, 13(4), 218; https://doi.org/10.3390/medsci13040218 - 2 Oct 2025
Viewed by 767
Abstract
Background: The biosynthesis of Lewis (Le) antigens depends on the FUT3 gene, encoding an α(1,3/4)-fucosyltransferase. Individuals lacking functional FUT3 exhibit a Le(a–b–) phenotype, regardless of secretor status. Methods: This study determined the prevalence of FUT3 single nucleotide variants (SNVs) in Thai blood donors [...] Read more.
Background: The biosynthesis of Lewis (Le) antigens depends on the FUT3 gene, encoding an α(1,3/4)-fucosyltransferase. Individuals lacking functional FUT3 exhibit a Le(a–b–) phenotype, regardless of secretor status. Methods: This study determined the prevalence of FUT3 single nucleotide variants (SNVs) in Thai blood donors and characterised genotype and allele distributions. We also examined the association between FUT3 variants and the presence of Le antibodies to better understand variability in immune responses. A total of 112 blood donors were recruited, comprising 52 non-responders and 60 responders for Le antibody detection. The FUT3 coding sequence was amplified by polymerase chain reaction and directly sequenced to identify single nucleotide variants (SNVs) and haplotypes. Results: Associations between FUT3 SNVs, haplotypes, and Le antibody responsiveness were subsequently analysed. Thirteen FUT3 SNVs were identified, with c.59T>G (rs28362459) present in all Le(a–b–) cases. The FUT3*01N.17.03 (le59,1067) haplotype was most common (0.634) and showed the strongest association with Le antibody responsiveness (adjusted OR = 3.052, 95% CI: 1.683–5.534, p < 0.0001). Differences in antibody types, isotypes, and the FUT3*01N.17.03 genotype between groups were not statistically significant. Conclusions: This first study characterises FUT3 variations in Le(a–b–) Thai blood donors and identifies FUT3*01N.17.03 as associated with Le antibody responsiveness, highlighting its relevance for population-specific genetic diagnostics in transfusion medicine. Full article
(This article belongs to the Section Translational Medicine)
Show Figures

Figure 1

17 pages, 695 KB  
Review
Genetic Diseases of Fucosylation: Insights from Model Organisms
by Muhammad T. Ameen and Curtis R. French
Genes 2025, 16(7), 800; https://doi.org/10.3390/genes16070800 - 3 Jul 2025
Cited by 2 | Viewed by 2384
Abstract
Fucosylation plays a fundamental role in maintaining cellular functions and biological processes across all animals. As a form of glycosylation, it involves the biochemical addition of fucose, a six-carbon monosaccharide, to biological molecules like lipids, proteins, and glycan chains. This modification is essential [...] Read more.
Fucosylation plays a fundamental role in maintaining cellular functions and biological processes across all animals. As a form of glycosylation, it involves the biochemical addition of fucose, a six-carbon monosaccharide, to biological molecules like lipids, proteins, and glycan chains. This modification is essential for optimizing cellular interactions required for receptor-ligand binding, cell adhesion, immune responses, and development. Disruptions in cellular fucose synthesis or in the mechanisms enabling its transfer to other molecules have been linked to human disease. Inherited defects in the fucosylation pathway are rare, with about thirty patients described. Through genome-wide association studies (GWAS), variants in fucosylation pathway genes have been associated with complex diseases such as glaucoma and stroke, and somatic mutations are often found in cancers. Recent studies have applied targeted genetic animal models to elucidate the mechanisms through which disruptions in fucosylation contribute to disease pathogenesis and progression. Key focus areas include GDP-fucose synthesis through de novo or salvage pathways, GDP-fucose transport into the Golgi and endoplasmic reticulum (ER), and its transfer by fucosyltransferases (FUTs) or protein O-fucosyltransferases (POFUTs) onto acceptor molecules. Loss or gain of function fucosylation gene mutations in animal models such as mice, zebrafish, and invertebrates have provided insights into some fucosylation disease pathogenesis. This review aims to bring together these findings, summarizing key insights from existing animal studies to possibly infer fucosylation disease mechanisms in humans. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

8 pages, 312 KB  
Communication
Non-Secretor Status Due to FUT2 Stop Mutation Is Associated with Reduced Rotavirus Infections but Not with Other Enteric Pathogens in Rwandan Children
by Jean Bosco Munyemana, Jean Claude Kabayiza, Eric Seruyange, Staffan Nilsson, Gustaf E. Rydell, Anna Martner, Maria E. Andersson and Magnus Lindh
Microorganisms 2025, 13(5), 1071; https://doi.org/10.3390/microorganisms13051071 - 3 May 2025
Viewed by 3328
Abstract
Enteric pathogens remain a health threat for children in low-income countries. A single nucleotide polymorphism (SNP) in the FUT2 gene that precludes the expression of fucosyltransferase 2 has been reported to influence the susceptibility to rotavirus and norovirus infections. The aim of this [...] Read more.
Enteric pathogens remain a health threat for children in low-income countries. A single nucleotide polymorphism (SNP) in the FUT2 gene that precludes the expression of fucosyltransferase 2 has been reported to influence the susceptibility to rotavirus and norovirus infections. The aim of this study was to investigate the association between G428A at rs601338 (stop codon variant) in the FUT2 gene and a range of enteric pathogens in children under 5 years of age. Rectal swab samples from 668 children (median age 13.6 months, 51% males, 93% rotavirus vaccinated, 468 with diarrhea) from Rwanda were analyzed via PCR for pathogen detection and SNP genotyping. A FUT2 stop codon (‘non-secretor’ status) was found in 19% of all children. Rotavirus was detected in 5.3% of non-secretors compared with in 13% of secretors (OR = 0.39, p = 0.019). Rotavirus P[8] was the predominant genotype and was found in 2.3% of non-secretors compared with 8.8% of secretors (p = 0.009). There was no association with any other pathogen, including noroviruses, of which 2 of 14 GII.4 infections were detected among non-secretors. Thus, the FUT2 stop codon variant was associated with rotavirus but not with any other pathogen. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

44 pages, 3571 KB  
Review
Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals
by Huilin Hao, Benjamin M. Eberand, Mark Larance and Robert S. Haltiwanger
Molecules 2025, 30(7), 1470; https://doi.org/10.3390/molecules30071470 - 26 Mar 2025
Cited by 6 | Viewed by 4433
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and [...] Read more.
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

16 pages, 639 KB  
Review
Modifiable and Non-Modifiable Factors That Affect Human Milk Oligosaccharides Composition
by Małgorzata Konieczna, Anna Koryszewska-Bagińska, Agnieszka Bzikowska-Jura, Magdalena Chmielewska-Jeznach, Sylwia Jarzynka and Gabriela Olędzka
Nutrients 2024, 16(17), 2887; https://doi.org/10.3390/nu16172887 - 28 Aug 2024
Cited by 8 | Viewed by 2952
Abstract
Human milk, the gold standard in infant nutrition, is a unique fluid that provides essential nutrients such as lactose, lipids, proteins, and free oligosaccharides. While its primary role is nutritional, it also protects against pathogens. This protection mainly comes from immunoglobulins, with human [...] Read more.
Human milk, the gold standard in infant nutrition, is a unique fluid that provides essential nutrients such as lactose, lipids, proteins, and free oligosaccharides. While its primary role is nutritional, it also protects against pathogens. This protection mainly comes from immunoglobulins, with human milk oligosaccharides (HMOs) providing additional support by inhibiting pathogen binding to host cell ligands. The prebiotic and immune-modulatory activity of HMOs strongly depends on their structure. Over 200 individual structures have been identified so far, with the composition varying significantly among women. The structure and composition of HMOs are influenced by factors such as the Lewis blood group, secretor status, and the duration of nursing. HMO profiles are heavily influenced by maternal phenotypes, which are defined based on the expression of two specific fucosyltransferases. However, recent data have shown that HMO content can be modified by various factors, both changeable and unchangeable, including diet, maternal age, gestational age, mode of delivery, breastfeeding frequency, and race. The first part of this overview presents the historical background of these sugars and the efforts by scientists to extract them using the latest chromatography methods. The second part is divided into subchapters that examine modifiable and non-modifiable factors, reviewing the most recent articles on HMO composition variations due to specific reasons and summarizing potential future challenges in conducting these types of studies. Full article
Show Figures

Figure 1

13 pages, 535 KB  
Article
The Importance of the FUT2 rs602662 Polymorphism in the Risk of Cardiovascular Complications in Patients after Kidney Transplantation
by Maciej Józef Kotowski, Piotr Ostrowski, Jerzy Sieńko, Bogusław Czerny, Karol Tejchman, Bogusław Machaliński, Aleksandra Górska, Aleksandra E. Mrozikiewicz and Anna Bogacz
Int. J. Mol. Sci. 2024, 25(12), 6562; https://doi.org/10.3390/ijms25126562 - 14 Jun 2024
Viewed by 3946
Abstract
The FUT2 gene encodes an enzyme called α-1,2-fucosyltransferase, which is involved in the formation of blood group antigens AB0(H) and is also involved in the processes of vitamin B12 absorption and its transport between cells. FUT2 gene polymorphisms are associated with vitamin B12 [...] Read more.
The FUT2 gene encodes an enzyme called α-1,2-fucosyltransferase, which is involved in the formation of blood group antigens AB0(H) and is also involved in the processes of vitamin B12 absorption and its transport between cells. FUT2 gene polymorphisms are associated with vitamin B12 levels in the body. Vitamin B12 deficiency associated with hyperhomocysteinemia is a major risk factor for cardiovascular diseases (CVDs), which are one of the main causes of death in patients after kidney transplantation. The aim of our study was to determine the impact of the rs602662 (G>A) polymorphism of the FUT2 gene on the functionality of transplanted kidneys and the risk of CVD in patients after kidney transplantation. The study included 402 patients treated with immunosuppression (183 patients taking cyclosporine (CsA) and 219 patients taking tacrolimus (TAC)). The analysis of the FUT2 rs602662 (G>A) polymorphism was performed using real-time PCR. Patients with CsA were more likely to be underweight (1.64% vs. 0.91%) and obese (27.87% vs. 15.98%), while those taking TAC were more likely to be of normal weight (39.27%) or overweight (43.84%). No statistically significant differences were observed comparing the mean blood pressure, both systolic and diastolic. The renal profile showed a higher median urea nitrogen concentration in patients with CsA (26.45 mg/dL (20.60–35.40) vs. 22.95 mg/dL (17.60–33.30), p = 0.004). The observed frequency of rs602662 alleles of the FUT2 gene was similar in the analyzed groups. The A allele was present in 43.7% of patients with CsA and 41.1% of those taking TAC (OR = 0.898; 95% CI: 0.678–1.189; p = 0.453). In the group with CsA, the GG genotype was present in 32.2% of patients, the GA in 48.1% and the AA in 19.7%. A similar distribution was obtained in the TAC group: GG—33.8%, GA—50.2%, and AA—16.0%. An association of genotypes containing the G allele with a higher incidence of hypertension was observed. The G allele was present in 65% of people with hypertension and in 56% of patients with normal blood pressure (p = 0.036). Moreover, the evaluation of the renal parameters showed no effect of the FUT2 polymorphism on the risk of organ rejection because the levels of creatinine, eGFR, potassium, and urea nitrogen were prognostic of successful transplantation. Our results suggest that the rs6022662 FUT2 polymorphism may influence the risk of cardiovascular diseases. Full article
Show Figures

Figure 1

18 pages, 3294 KB  
Article
Detection and Analysis of Antidiarrheal Genes and Immune Factors in Various Shanghai Pig Breeds
by Jinyong Zhou, Fuqin Liu, Mengqian He, Jun Gao, Caifeng Wu, Yeqing Gan, Yi Bian, Jinliang Wei, Weijian Zhang, Wengang Zhang, Xuejun Han, Jianjun Dai and Lingwei Sun
Biomolecules 2024, 14(5), 595; https://doi.org/10.3390/biom14050595 - 17 May 2024
Cited by 2 | Viewed by 2130
Abstract
The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and [...] Read more.
The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and Mucin 13 (MUC13) diarrhea-resistance genes in the local pig breeds, namely Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, to provide a reference for the characterization of local pig breed resources in Shanghai. Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLR) and sequence sequencing were applied to analyze the polymorphisms of the above genes and to explore the effects on the immunity of Shanghai local pig breeds in conjunction with some immunity factors. The results showed that both TAP1 and MUC4 genes had antidiarrheal genotype GG in the five pig breeds, AG and GG genotypes of the FUT1 gene were detected in Pudong white pigs, AA antidiarrheal genes of the NRAMP1 gene were detected in Meishan pigs, the AB type of the NRAMP1 gene was detected in Pudong white pigs, and antidiarrheal genotype GG of the MUC13 gene was only detected in Shanghai white pigs. The MUC13 antidiarrhea genotype GG was only detected in Shanghai white pigs. The TAP1 gene was moderately polymorphic in Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, among which TAP1 in Shanghai white pigs and Shawutou pigs did not satisfy the Hardy–Weinberg equilibrium. The FUT1 gene of Pudong white pigs was in a state of low polymorphism. NRAMP1 of Meishan pigs and Pudong white pigs was in a state of moderate polymorphism, which did not satisfy the Hardy–Weinberg equilibrium. The MUC4 genes of Shanghai white pigs and Pudong white pigs were in a state of low polymorphism, and the MUC4 genes of Fengjing pigs and Shawutou pigs were in a state of moderate polymorphism, and the MUC4 genes of Fengjing pigs and Pudong white pigs did not satisfy the Hardy–Weinberg equilibrium. The MUC13 gene of Shanghai white pigs and Pudong white pigs was in a state of moderate polymorphism. Meishan pigs had higher levels of IL-2, IL-10, IgG and TNF-α, and Pudong white pigs had higher levels of IL-12 than the other pigs. The level of interleukin 12 (IL-12) was significantly higher in the AA genotype of the MUC13 gene of Shanghai white pigs than in the AG genotype. The indicator of tumor necrosis factor alpha (TNF-α) in the AA genotype of the TAP1 gene of Fengjing pigs was significantly higher than that of the GG and AG genotypes. The indicator of IL-12 in the AG genotype of the Shawutou pig TAP1 gene was significantly higher than that of the GG genotype. The level of TNF-α in the AA genotype of the NRAMP1 gene of Meishan pigs was markedly higher than that of the AB genotype. The IL-2 level of the AG type of the FUT1 gene was obviously higher than that of the GG type of Pudong white pigs, the IL-2 level of the AA type of the MUC4 gene was dramatically higher than that of the AG type, and the IgG level of the GG type of the MUC13 gene was apparently higher than that of the AG type. The results of this study are of great significance in guiding the antidiarrhea breeding and molecular selection of Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs and laying the foundation for future antidiarrhea breeding of various local pig breeds in Shanghai. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

13 pages, 766 KB  
Review
Investigating ABO Blood Groups and Secretor Status in Relation to SARS-CoV-2 Infection and COVID-19 Severity
by Stefanos Ferous, Nikolaos Siafakas, Fotini Boufidou, George P. Patrinos, Athanasios Tsakris and Cleo Anastassopoulou
J. Pers. Med. 2024, 14(4), 346; https://doi.org/10.3390/jpm14040346 - 26 Mar 2024
Cited by 3 | Viewed by 5553
Abstract
The ABO blood groups, Lewis antigens, and secretor systems are important components of transfusion medicine. These interconnected systems have been also shown to be associated with differing susceptibility to bacterial and viral infections, likely as the result of selection over the course of [...] Read more.
The ABO blood groups, Lewis antigens, and secretor systems are important components of transfusion medicine. These interconnected systems have been also shown to be associated with differing susceptibility to bacterial and viral infections, likely as the result of selection over the course of evolution and the constant tug of war between humans and infectious microbes. This comprehensive narrative review aimed to explore the literature and to present the current state of knowledge on reported associations of the ABO, Lewis, and secretor blood groups with SARS-CoV-2 infection and COVID-19 severity. Our main finding was that the A blood group may be associated with increased susceptibility to SARS-CoV-2 infection, and possibly also with increased disease severity and overall mortality. The proposed pathophysiological pathways explaining this potential association include antibody-mediated mechanisms and increased thrombotic risk amongst blood group A individuals, in addition to altered inflammatory cytokine expression profiles. Preliminary evidence does not support the association between ABO blood groups and COVID-19 vaccine response, or the risk of developing long COVID. Even though the emergency state of the pandemic is over, further research is needed especially in this area since tens of millions of people worldwide suffer from lingering COVID-19 symptoms. Full article
(This article belongs to the Special Issue Personalized Medicine for COVID-19)
Show Figures

Figure 1

14 pages, 1778 KB  
Article
Label-Free Liquid Chromatography–Mass Spectrometry Quantitation of Relative N- and O-Glycan Concentrations in Human Milk in Japan
by Toshiyuki Yamaguchi, Hirofumi Fukudome, Junichi Higuchi, Tomoki Takahashi, Yuta Tsujimori, Hiroshi M. Ueno, Yasuhiro Toba and Fumihiko Sakai
Int. J. Mol. Sci. 2024, 25(3), 1772; https://doi.org/10.3390/ijms25031772 - 1 Feb 2024
Cited by 5 | Viewed by 3262
Abstract
Human milk is abundant in carbohydrates and includes human milk oligosaccharides (HMOs) and N/O-glycans conjugated to proteins. HMO compositions and concentrations vary in individuals according to the maternal secretor status based on the fucosyltransferase 2 genotype; however, the profile of [...] Read more.
Human milk is abundant in carbohydrates and includes human milk oligosaccharides (HMOs) and N/O-glycans conjugated to proteins. HMO compositions and concentrations vary in individuals according to the maternal secretor status based on the fucosyltransferase 2 genotype; however, the profile of N/O-glycans remains uninvestigated because of the analytical complexity. Herein, we applied a label-free chromatography–mass spectrometry (LC–MS) technique to elucidate the variation in the composition and concentration of N/O-glycans in human milk. We used label-free LC–MS to relatively quantify 16 N-glycans and 12 O-glycans in 200 samples of Japanese human milk (1–2 months postpartum) and applied high performance anion exchange chromatography with pulsed amperometric detection to absolutely quantify the concentrations of 11 representative HMOs. Cluster analysis of the quantitative data revealed that O-glycans and several HMOs were classified according to the presence or absence of fucose linked to galactose while N-glycans were classified into a different group from O-glycans and HMOs. O-glycans and HMOs with fucose linked to galactose were more abundant in human milk from secretor mothers than from nonsecretor mothers. Thus, secretor status influenced the composition and concentration of HMOs and O-glycans but not those of N-glycans in human milk. Full article
Show Figures

Figure 1

20 pages, 2808 KB  
Article
Core Fucosylation Mediated by the FucT-8 Enzyme Affects TRAIL-Induced Apoptosis and Sensitivity to Chemotherapy in Human SW480 and SW620 Colorectal Cancer Cells
by Rubén López-Cortés, Isabel Correa Pardo, Laura Muinelo-Romay, Almudena Fernández-Briera and Emilio Gil-Martín
Int. J. Mol. Sci. 2023, 24(15), 11879; https://doi.org/10.3390/ijms241511879 - 25 Jul 2023
Cited by 11 | Viewed by 3033
Abstract
Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to [...] Read more.
Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to the pentasaccharide core of complex N-glycans. Specifically, in the cellular model of colorectal cancer (CRC) progression formed using the human syngeneic lines SW480 and SW620, knockdown of the FucT-8-encoding FUT8 gene significantly enhanced TRAIL-induced apoptosis in SW480 cells. However, FUT8 repression did not affect SW620 cells, which suggests that core fucosylation differentiates TRAIL-sensitive premetastatic SW480 cells from TRAIL-resistant metastatic SW620 cells. In this regard, we provide evidence that phosphorylation of ERK1/2 kinases can dynamically regulate TRAIL-dependent apoptosis and that core fucosylation can control the ERK/MAPK pro-survival pathway in which SW480 and SW620 cells participate. Moreover, the depletion of core fucosylation sensitises primary tumour SW480 cells to the combination of TRAIL and low doses of 5-FU, oxaliplatin, irinotecan, or mitomycin C. In contrast, a combination of TRAIL and oxaliplatin, irinotecan, or bevacizumab reinforces resistance of FUT8-knockdown metastatic SW620 cells to apoptosis. Consequently, FucT-8 could be a plausible target for increasing apoptosis and drug response in early CRC. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cancer and Their Applications)
Show Figures

Graphical abstract

16 pages, 5169 KB  
Article
Host Cell Response to Rotavirus Infection with Emphasis on Virus–Glycan Interactions, Cholesterol Metabolism, and Innate Immunity
by Molly Raque, Sergei A. Raev, Yusheng Guo, Maryssa K. Kick, Linda J. Saif and Anastasia N. Vlasova
Viruses 2023, 15(7), 1406; https://doi.org/10.3390/v15071406 - 21 Jun 2023
Cited by 6 | Viewed by 2751
Abstract
Although rotavirus A (RVA) is the primary cause of acute viral gastroenteritis in children and young animals, mechanisms of its replication and pathogenesis remain poorly understood. We previously demonstrated that the neuraminidase-mediated removal of terminal sialic acids (SAs) significantly enhanced RVA-G9P[13] replication, while [...] Read more.
Although rotavirus A (RVA) is the primary cause of acute viral gastroenteritis in children and young animals, mechanisms of its replication and pathogenesis remain poorly understood. We previously demonstrated that the neuraminidase-mediated removal of terminal sialic acids (SAs) significantly enhanced RVA-G9P[13] replication, while inhibiting RVA-G5P[7] replication. In this study, we compared the transcriptome responses of porcine ileal enteroids (PIEs) to G5P[7] vs. G9P[13] infections, with emphasis on the genes associated with immune response, cholesterol metabolism, and host cell attachment. The analysis demonstrated that G9P[13] infection led to a robust modulation of gene expression (4093 significantly modulated genes vs. 488 genes modulated by G5P[7]) and a significant modulation of glycosyltransferase-encoding genes. The two strains differentially affected signaling pathways related to immune response, with G9P[13] mostly upregulating and G5P[7] inhibiting them. Both RVAs modulated the expression of genes encoding for cholesterol transporters. G9P[13], but not G5P[7], significantly affected the ceramide synthesis pathway known to affect both cholesterol and glycan metabolism. Thus, our results highlight the unique mechanisms regulating cellular response to infection caused by emerging/re-emerging and historical RVA strains relevant to RVA-receptor interactions, metabolic pathways, and immune signaling pathways that are critical in the design of effective control strategies. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 2878 KB  
Article
Detection of c.375A>G, c.385A>T, c.571C>T, and sedel2 of FUT2 via Real-Time PCR in a Single Tube
by Mikiko Soejima and Yoshiro Koda
Diagnostics 2023, 13(12), 2022; https://doi.org/10.3390/diagnostics13122022 - 10 Jun 2023
Cited by 1 | Viewed by 2792
Abstract
α(1,2)fucosyltransferase (Se enzyme) encoded by FUT2 is involved in the secretor status of ABH(O) blood group antigens. The sedel2 allele is one of the non-functional FUT2 (se) alleles in which 9.3 kb, containing the entire coding region of FUT2, [...] Read more.
α(1,2)fucosyltransferase (Se enzyme) encoded by FUT2 is involved in the secretor status of ABH(O) blood group antigens. The sedel2 allele is one of the non-functional FUT2 (se) alleles in which 9.3 kb, containing the entire coding region of FUT2, is deleted by Alu-mediated nonhomologous recombination. In addition to this allele, three SNPs of FUT2, c.375A>G, c.385A>T, and c.571C>T, appear to be prevalent in certain Oceanian populations such as Polynesians. Recently, we developed an endpoint genotyping assay to determine sedel2 zygosity, using a FAM-labeled probe for detection of the sedel2 allele and a VIC-labeled probe for the detection of FUT2. In this study, instead of the VIC probe, a HEX-labeled probe covering both c.375A>G and c.385A>T and a Cy5-labeled probe covering c.571C>T were added to the sedel2 allele assay mixture to allow for the simultaneous detection of these four variations via endpoint genotyping for sedel2 zygosity and fluorescence melting curve analysis for c.375A>G, c.385A>T, and c.571C>T genotyping. The results obtained from 24 Samoan subjects using this method were identical to those obtained using previous methods. Therefore, it appears that the present method can accurately determine these four variations simultaneously. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

8 pages, 446 KB  
Brief Report
IgG1-Dominant Antibody Response Induced by Recombinant Trimeric SARS-CoV-2 Spike Protein with PIKA Adjuvant
by Jingxia Wang, Xinjia Mai, Yu He, Chenxi Zhu and Dapeng Zhou
Vaccines 2023, 11(4), 827; https://doi.org/10.3390/vaccines11040827 - 11 Apr 2023
Cited by 2 | Viewed by 3077
Abstract
Recombinant trimeric SARS-CoV-2 Spike protein with PIKA (polyI:C) adjuvant induces potent and durable neutralizing antibodies that protect against multiple SARS-CoV-2 variants. The immunoglobulin subclasses of viral-specific antibodies remain unknown, as do their glycosylation status on Fc regions. In this study, we analyzed immunoglobulins [...] Read more.
Recombinant trimeric SARS-CoV-2 Spike protein with PIKA (polyI:C) adjuvant induces potent and durable neutralizing antibodies that protect against multiple SARS-CoV-2 variants. The immunoglobulin subclasses of viral-specific antibodies remain unknown, as do their glycosylation status on Fc regions. In this study, we analyzed immunoglobulins adsorbed by plate-bound recombinant trimeric SARS-CoV-2 Spike protein from serum of Cynomolgus monkey immunized by recombinant trimeric SARS-CoV-2 Spike protein with PIKA (polyI:C) adjuvant. The results showed that IgG1 was the dominant IgG subclass as revealed by ion mobility mass spectrometry. The average percentage of Spike protein-specific IgG1 increased to 88.3% as compared to pre-immunization. Core fucosylation for Fc glycopeptide of Spike protein-specific IgG1 was found to be higher than 98%. These results indicate that a unique Th1-biased, IgG1-dominant antibody response was responsible for the effectiveness of PIKA (polyI:C) adjuvant. Vaccine-induced core-fucosylation of IgG1 Fc region may reduce incidence of severe COVID-19 disease associated with overstimulation of FCGR3A by afucosylated IgG1. Full article
(This article belongs to the Special Issue Antibody Response of Vaccines to SARS-CoV-2)
Show Figures

Figure 1

Back to TopTop