Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = friction energy harvesting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4493 KiB  
Article
Highly Efficient Tribocatalysis of Superhard SiC for Water Purification
by Yuanfang Wang, Zheng Wu, Siqi Hong, Ziqi Zhu, Siqi Wu, Biao Chen and Yanmin Jia
Nanomaterials 2025, 15(15), 1206; https://doi.org/10.3390/nano15151206 - 6 Aug 2025
Abstract
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm [...] Read more.
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm that the SiC particles effectively trigger the tribocatalytic decomposition of Rhodamine B (RhB). During the tribocatalytic decomposition of dye, mechanical friction is generated at the contact surface between the tribocatalyst and a custom-fabricated polytetrafluoroethylene (PTFE) rotating disk, under varying conditions of stirring speed, temperature, and pH value. Hydroxyl radicals and superoxide radicals are confirmed as the dominant reactive species participating in tribocatalytic dye decomposition, as demonstrated by reactive species inhibition experiments. Furthermore, the SiC particles demonstrate remarkable reusability, even after being subjected to five consecutive recycling processes. The exceptional tribocatalytic performance of SiC particles makes them potentially applicable in water purification by harnessing environmental friction energy. Full article
Show Figures

Figure 1

50 pages, 15545 KiB  
Review
Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting
by T. Pavan Rahul and P. S. Rama Sreekanth
J. Compos. Sci. 2025, 9(8), 386; https://doi.org/10.3390/jcs9080386 - 23 Jul 2025
Viewed by 463
Abstract
Sophisticated energy-harvesting technologies have swiftly progressed, expanding energy supply distribution and leveraging advancements in self-sustaining electronic devices. Despite substantial advancements in friction nanomotors within the last decade, a considerable technical obstacle remains for their flawless incorporation using printed electronics and autonomous devices. Integrating [...] Read more.
Sophisticated energy-harvesting technologies have swiftly progressed, expanding energy supply distribution and leveraging advancements in self-sustaining electronic devices. Despite substantial advancements in friction nanomotors within the last decade, a considerable technical obstacle remains for their flawless incorporation using printed electronics and autonomous devices. Integrating advanced triboelectric nanogenerator (TENG) technology with the rapidly evolving field of composite material 3D printing with has resulted in the advancement of three-dimensionally printed TENGs. Triboelectric nanogenerators are an important part of the next generation of portable energy harvesting and sensing devices that may be used for energy harvesting and artificial intelligence tasks. This paper systematically analyzes the continual development of 3D-printed TENGs and the integration of composite materials. The authors thoroughly review the latest material combinations of composite materials and 3D printing techniques for TENGs. Furthermore, this paper showcases the latest applications, such as using a TENG device to generate energy for electrical devices and harvesting energy from human motions, tactile sensors, and self-sustaining sensing gloves. This paper discusses the obstacles in constructing composite-material-based 3D-printed TENGs and the concerns linked to research and methods for improving electrical output performance. The paper finishes with an assessment of the issues associated with the evolution of 3D-printed TENGs, along with innovations and potential future directions in the dynamic realm of composite-material-based 3D-printed TENGs. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Figure 1

20 pages, 7982 KiB  
Article
Harvesting Friction Energy on Zinc Oxide and Zinc Oxide/Europium Oxide Sol-Gel Catalysts for Tribocatalytic Paracetamol Degradation
by Dobrina Ivanova, Hristo Kolev, Ralitsa Mladenova, Bozhidar I. Stefanov and Nina Kaneva
Molecules 2025, 30(11), 2265; https://doi.org/10.3390/molecules30112265 - 22 May 2025
Viewed by 844
Abstract
In the natural environment, mechanical energy is widely available as a sustainable and green energy source. In this paper, we successfully convert mechanical energy on ZnO and ZnO/Eu2O3 tribocatalysts via a friction route. Electrons were transferred across the contact interface [...] Read more.
In the natural environment, mechanical energy is widely available as a sustainable and green energy source. In this paper, we successfully convert mechanical energy on ZnO and ZnO/Eu2O3 tribocatalysts via a friction route. Electrons were transferred across the contact interface when the catalyst particles and the polytetrafluoroethylene (PTFE)-sealed magnetic bar rubbed against each other under magnetic stirring. At the same time, holes were left on the catalyst while the PTFE absorbed the electrons. Similar to photocatalysis, organic pollutants can be effectively oxidized by the holes in the valence band of sol-gel catalysts due to their strong oxidative ability. The tribocatalytic tests demonstrated that ZnO and ZnO/Eu2O3 could eliminate organic analgesics (paracetamol) under magnetic stirring in the dark. By controlling the quantity of rare earth elements (1, 2, and 3 mol%), stirring speed, and the number of magnetic rods, we could further enhance the tribocatalytic performance. In addition to developing a green tribocatalysis approach for the oxidative purification of organic pollutants, this work offers a potential route for converting environmental mechanical energy into chemical energy, which could be used in sustainable energy and environmental remediation. Full article
Show Figures

Figure 1

13 pages, 4985 KiB  
Article
Kinetic Energy Harvesting with a Piezoelectric Patch Using a Bistable Laminate
by Sonia Bradai, Slim Naifar, Piotr Wolszczak, Jarosław Bieniaś, Patryk Jakubczak, Andrzej Rysak, Grzegorz Litak and Olfa Kanoun
Micromachines 2025, 16(4), 410; https://doi.org/10.3390/mi16040410 - 30 Mar 2025
Viewed by 429
Abstract
A bistable effect on a laminate structure with a piezoelectric patch was tested to harvest kinetic energy. The composite bistable plate was prepared in the autoclave with two different orientations of the glass fibers. The dynamic tests were performed on the universal testing [...] Read more.
A bistable effect on a laminate structure with a piezoelectric patch was tested to harvest kinetic energy. The composite bistable plate was prepared in the autoclave with two different orientations of the glass fibers. The dynamic tests were performed on the universal testing machine using cyclic vertical compression excitation. During the tests, the bottom edge of the plate was clamped firmly while its upper edge was attached with some clearance to enable sliding. In such a configuration, the friction force between the plate and upper clamp element is responsible for the plate excitation. Simultaneously, the plate has enough space to change the shape between the two equilibria. During the harmonic excitation of the testing machine operating mode, a piezoelectric element was placed on the bistable plate and its voltage and normalized power outputs were evaluated. The experiments were repeated with additional mass distribution, which influenced the natural frequency of the plate. Full article
(This article belongs to the Special Issue Linear and Nonlinear Vibrations for Sensing and Energy Harvesting)
Show Figures

Figure 1

24 pages, 7615 KiB  
Article
Light-Powered Self-Translation of an Asymmetric Friction Slider Using a Liquid Crystal Elastomer String Oscillator
by Dali Ge, Jiangtao Duan, Wu Bao and Haiyi Liang
Polymers 2024, 16(24), 3520; https://doi.org/10.3390/polym16243520 - 18 Dec 2024
Viewed by 825
Abstract
In recent years, there have been many studies focused on improving the performance of active materials; however, applying these materials to active machines still presents significant challenges. In this study, we introduce a light-powered self-translation system for an asymmetric friction slider using a [...] Read more.
In recent years, there have been many studies focused on improving the performance of active materials; however, applying these materials to active machines still presents significant challenges. In this study, we introduce a light-powered self-translation system for an asymmetric friction slider using a liquid crystal elastomer (LCE) string oscillator. The self-translation system was composed of a hollow slide, two LCE fibers, and a mass ball. Through the evolution of photothermal-induced contraction, we derived the governing equations for the system. Numerical simulations revealed two distinct motion modes: the static mode and the self-translation mode. As the mass ball moved, the LCE fibers alternated between illuminated and non-illuminated states, allowing them to effectively harvest light energy to compensate for the energy dissipation within the system. Unlike traditional self-oscillating systems that oscillate around a fixed position, the asymmetric friction enabled the slider to advance continuously through the oscillator’s symmetric self-sustained oscillation. Furthermore, we explored the critical conditions necessary for initiating self-translation as well as key system parameters that influence the frequency and amplitude of the oscillator and average speed of the slider. This self-translation system, with its simple design and ease of control, holds promising potential for applications in various fields including soft robotics, energy harvesting, and active machinery. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 11860 KiB  
Review
Recent Advances in Piezoelectric Compliant Devices for Ultrahigh-Precision Engineering
by Zeyi Wu, Zehao Wu, I-Ming Chen and Qingsong Xu
Micromachines 2024, 15(12), 1456; https://doi.org/10.3390/mi15121456 - 29 Nov 2024
Cited by 3 | Viewed by 1708
Abstract
With advancements in small-scale research fields, precision manipulation has become crucial for interacting with small objects. As research progresses, the demand for higher precision in manipulation has led to the emergence of ultrahigh-precision engineering (UHPE), which exhibits significant potential for various applications. Traditional [...] Read more.
With advancements in small-scale research fields, precision manipulation has become crucial for interacting with small objects. As research progresses, the demand for higher precision in manipulation has led to the emergence of ultrahigh-precision engineering (UHPE), which exhibits significant potential for various applications. Traditional rigid-body manipulators suffer from issues like backlash and friction, limiting their effectiveness at smaller-scale applications. Smart materials, particularly piezoelectric materials, offer promising solutions with their rapid response and high resolution, making them ideal for creating efficient piezoelectric transducers. Meanwhile, compliant mechanisms, which use elastic deformation to transmit force and motion, eliminate inaccuracies induced by rigid-body mechanisms. Integrating piezoelectric transducers and compliant mechanisms into piezoelectric compliant devices enhances UHPE system performance. This paper reviews the recent advances in piezoelectric compliant devices. By focusing on the utilization of piezoelectric transducers and compliant mechanisms, their applications in perception, energy harvesting, and actuation have been surveyed, and future research suggestions are discussed. Full article
Show Figures

Figure 1

19 pages, 6402 KiB  
Review
Key Role of Cold-Start Circuits in Low-Power Energy Harvesting Systems: A Research Review
by Xiao Shi, Mengye Cai and Yanfeng Jiang
J. Low Power Electron. Appl. 2024, 14(4), 55; https://doi.org/10.3390/jlpea14040055 - 22 Nov 2024
Cited by 1 | Viewed by 2163
Abstract
The primary functions of an energy harvesting system include the harvesting, transformation, management, and storage of energy. Until now, various types of energy, with different power levels, have been harvested and stored by the energy harvesting system. In low-power scenarios, such as microwaves, [...] Read more.
The primary functions of an energy harvesting system include the harvesting, transformation, management, and storage of energy. Until now, various types of energy, with different power levels, have been harvested and stored by the energy harvesting system. In low-power scenarios, such as microwaves, sound, friction, and pressure, a specific low-power energy harvesting system is required. Due to the absence of an external power supply in such systems, cold-start circuits play a crucial role in igniting the low-power energy harvesting system, ensuring a reliable start-up from the initial state. This paper reviews the categorization and characteristics of energy harvesting systems, with a focus on the design and performance parameters of cold-start circuits. A tabular comparison of existing cold-start strategies is presented herein. The study demonstrates that resonance-based integrated cold-start methods offer significant advantages in terms of conversion efficiency and dynamic range, while ring oscillator-based integrated cold-start methods achieve the lowest start-up voltage. Additionally, the paper discusses the challenges of self-starting and future research directions, highlighting the potential role of emerging technologies, such as artificial intelligence (AI) and neural networks, in optimizing the design of energy harvesting systems. Full article
Show Figures

Figure 1

14 pages, 3014 KiB  
Article
High-Performance Triboelectric Nanogenerator with Double-Side Patterned Surfaces Prepared by CO2 Laser for Human Motion Energy Harvesting
by Dong-Yi Lin and Chen-Kuei Chung
Micromachines 2024, 15(11), 1299; https://doi.org/10.3390/mi15111299 - 25 Oct 2024
Cited by 2 | Viewed by 1834
Abstract
The triboelectric nanogenerator (TENG) has demonstrated exceptional efficiency in harvesting diverse forms of mechanical energy and converting it into electrical energy. This technology is particularly valuable for powering low-energy electronic devices and self-powered sensors. Most traditional TENGs use single-sided patterned friction pairs, which [...] Read more.
The triboelectric nanogenerator (TENG) has demonstrated exceptional efficiency in harvesting diverse forms of mechanical energy and converting it into electrical energy. This technology is particularly valuable for powering low-energy electronic devices and self-powered sensors. Most traditional TENGs use single-sided patterned friction pairs, which restrict their effective contact area and overall performance. Here, we propose a novel TENG that incorporates microwave patterned aluminum (MC-Al) foil and microcone structured polydimethylsiloxane (MC-PDMS). This innovative design utilizes two PMMA molds featuring identical micro-hole arrays ablated by a CO2 laser, making it both cost-effective and easy to fabricate. A novel room imprinting technique has been employed to create the micromorphology of aluminum (Al) foil using the PMMA mold with shallower micro-hole arrays. Compared to TENGs with flat friction layers and single-side-patterned friction layers, the double-side-patterned MW-MC-TENG demonstrates superior output performance due to increased cone deformation and contact area. The open-circuit voltage of the MW-MC-TENG can reach 141 V, while the short-circuit current can attain 71.5 μA, corresponding to a current density of 2.86 µA/cm2. The power density reaches 1.4 mW/cm2 when the resistance is 15 MΩ, and it can charge a 0.1 μF capacitor to 2.01 V in 2.28 s. In addition, the MW-MC-TENG can function as an insole device to harvest walking energy, power 11 LED bulbs, monitor step speed, and power a timer device. Therefore, the MW-MC-TENG has significant application potential in micro-wearable devices. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Physics 2024)
Show Figures

Figure 1

27 pages, 6323 KiB  
Review
Current Research Status and Future Trends of Vibration Energy Harvesters
by Guohao Qu, Hui Xia, Quanwei Liang, Yunping Liu, Shilin Ming, Junke Zhao, Yushu Xia and Jianbo Wu
Micromachines 2024, 15(9), 1109; https://doi.org/10.3390/mi15091109 - 30 Aug 2024
Cited by 4 | Viewed by 5538
Abstract
The continuous worsening of the natural surroundings requires accelerating the exploration of green energy technology. Utilising ambient vibration to power electronic equipment constitutes an important measure to address the power crisis. Vibration power is widely dispersed in the surroundings, such as mechanical vibration, [...] Read more.
The continuous worsening of the natural surroundings requires accelerating the exploration of green energy technology. Utilising ambient vibration to power electronic equipment constitutes an important measure to address the power crisis. Vibration power is widely dispersed in the surroundings, such as mechanical vibration, acoustic vibration, wind vibration, and water wave vibration. Collecting vibration energy is one of the research hotspots in the field of energy. Meanwhile, it is also an important way to solve the energy crisis. This paper illustrates the working principles and recent research progress of five known methods of vibrational energy harvesting, namely, electromagnetic, piezoelectric, friction electric, electrostatic, and magnetostrictive vibrational energy harvesters. The strengths and weaknesses of each method are summarised. At the end of the article, the future trends of micro-nano vibrational energy collectors are envisioned. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

11 pages, 12136 KiB  
Article
Solvent-Dependent Triboelectric Output Performance of Poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) Terpolymer
by Ying Chieh Hu, Hyun Soo Ahn, Joo Hyeong Lee, Kyung Hoon Kim, Jong Hun Kim and Jong Hoon Jung
Crystals 2024, 14(7), 664; https://doi.org/10.3390/cryst14070664 - 19 Jul 2024
Viewed by 1300
Abstract
The poly (vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) P(VDF-TrFE-CFE) terpolymer has been identified as a promising candidate for the effective conversion of low-frequency mechanical vibrations into electricity. In this study, we provide a comprehensive and systematic investigation of the solvent-dependent mechanical, microstructural, electrical, frictional properties and triboelectric [...] Read more.
The poly (vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) P(VDF-TrFE-CFE) terpolymer has been identified as a promising candidate for the effective conversion of low-frequency mechanical vibrations into electricity. In this study, we provide a comprehensive and systematic investigation of the solvent-dependent mechanical, microstructural, electrical, frictional properties and triboelectric output performance of a relaxor ferroelectric P(VDF-TrFE-CFE) terpolymer. The P(VDF-TrFE-CFE) terpolymer films obtained from high dipole moment solvents have a longer rod-shaped grain than those from low dipole moment solvents. The crystallinity, Young’s modulus and dielectric constant of P(VDF-TrFE-CFE) terpolymer become larger as the dipole moment of solvents increases, while the remnant polarization remains almost the same. The P(VDF-TrFE-CFE) terpolymer film obtained from the highest dipole moment solvent generates almost 1.55 times larger triboelectric charge than that obtained from the lowest moment. We attributed this large difference to the greatly enhanced lateral friction of terpolymer film obtained from high dipole moment solvents. Full article
Show Figures

Graphical abstract

26 pages, 4851 KiB  
Article
Light-Fueled Self-Propulsion of Liquid Crystal Elastomer-Engined Automobiles in Zero-Energy Modes
by Zongsong Yuan, Yuntong Dai, Junxiu Liu and Kai Li
Mathematics 2024, 12(13), 2109; https://doi.org/10.3390/math12132109 - 4 Jul 2024
Cited by 1 | Viewed by 1216
Abstract
The defining attribute of self-excited motion is its capability to extract energy from a stable environment and regulate it autonomously, making it an extremely promising innovation for microdevices, autonomous robotics, sensor technologies, and energy generation. Based on the concept of an automobile, we [...] Read more.
The defining attribute of self-excited motion is its capability to extract energy from a stable environment and regulate it autonomously, making it an extremely promising innovation for microdevices, autonomous robotics, sensor technologies, and energy generation. Based on the concept of an automobile, we propose a light-fueled self-propulsion of liquid crystal elastomer-engined automobiles in zero-energy mode. This system utilizes a wheel comprising a liquid crystal elastomer (LCE) turntable as an engine, a wheel with conventional material and a linkage. The dynamic behavior of the self-propulsion automobile under steady illumination is analyzed by integrating a nonlinear theoretical model with an established photothermally responsive LCE model. We performed the analysis using the fourth-order Runge–Kutta method. The numerical findings demonstrate the presence of two separate motion patterns in the automobile system: a static pattern and a self-propulsion pattern. The correlation between the energy input and energy dissipation from damping is essential to sustain the repetitive motion of the system. This study delves deeper into the crucial requirements for initiating self-propulsion and examines the effect of critical system parameters on the motion of the system. The proposed system with zero-energy mode motions has the advantage of a simple structural design, easy control, low friction and stable kinematics, and it is very promising for many future uses, including energy harvesting, monitoring, soft robotics, medical devices, and micro- and nano-devices. Full article
Show Figures

Figure 1

15 pages, 4124 KiB  
Article
IoT-Based Heartbeat Rate-Monitoring Device Powered by Harvested Kinetic Energy
by Olivier Djakou Nekui, Wei Wang, Cheng Liu, Zhixia Wang and Bei Ding
Sensors 2024, 24(13), 4249; https://doi.org/10.3390/s24134249 - 29 Jun 2024
Cited by 3 | Viewed by 3390
Abstract
Remote patient-monitoring systems are helpful since they can provide timely and effective healthcare facilities. Such online telemedicine is usually achieved with the help of sophisticated and advanced wearable sensor technologies. The modern type of wearable connected devices enable the monitoring of vital sign [...] Read more.
Remote patient-monitoring systems are helpful since they can provide timely and effective healthcare facilities. Such online telemedicine is usually achieved with the help of sophisticated and advanced wearable sensor technologies. The modern type of wearable connected devices enable the monitoring of vital sign parameters such as: heart rate variability (HRV) also known as electrocardiogram (ECG), blood pressure (BLP), Respiratory rate and body temperature, blood pressure (BLP), respiratory rate, and body temperature. The ubiquitous problem of wearable devices is their power demand for signal transmission; such devices require frequent battery charging, which causes serious limitations to the continuous monitoring of vital data. To overcome this, the current study provides a primary report on collecting kinetic energy from daily human activities for monitoring vital human signs. The harvested energy is used to sustain the battery autonomy of wearable devices, which allows for a longer monitoring time of vital data. This study proposes a novel type of stress- or exercise-monitoring ECG device based on a microcontroller (PIC18F4550) and a Wi-Fi device (ESP8266), which is cost-effective and enables real-time monitoring of heart rate in the cloud during normal daily activities. In order to achieve both portability and maximum power, the harvester has a small structure and low friction. Neodymium magnets were chosen for their high magnetic strength, versatility, and compact size. Due to the non-linear magnetic force interaction of the magnets, the non-linear part of the dynamic equation has an inverse quadratic form. Electromechanical damping is considered in this study, and the quadratic non-linearity is approximated using MacLaurin expansion, which enables us to find the law of motion for general case studies using classical methods for dynamic equations and the suitable parameters for the harvester. The oscillations are enabled by applying an initial force, and there is a loss of energy due to the electromechanical damping. A typical numerical application is computed with Matlab 2015 software, and an ODE45 solver is used to verify the accuracy of the method. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

12 pages, 4795 KiB  
Article
Portable Multi-Layer Capsule-Shaped Triboelectric Generator for Human Motion Energy Harvesting
by Xinglin Yang, Da Huo, Jianye Su and Zhouyu He
Micromachines 2024, 15(7), 852; https://doi.org/10.3390/mi15070852 - 29 Jun 2024
Cited by 2 | Viewed by 1222
Abstract
This paper introduces a novel portable multi-layer capsule-shaped triboelectric generator (CP-TEG), aimed at optimizing the performance of triboelectric generator technology in terms of miniaturization, modularity, and efficient energy collection. The CP-TEG utilizes a unique multi-layer, stacked structure and an elliptical cylindrical design to [...] Read more.
This paper introduces a novel portable multi-layer capsule-shaped triboelectric generator (CP-TEG), aimed at optimizing the performance of triboelectric generator technology in terms of miniaturization, modularity, and efficient energy collection. The CP-TEG utilizes a unique multi-layer, stacked structure and an elliptical cylindrical design to increase the effective frictional area and enhance power generation efficiency. Its portable design allows for flexible application in various environments and scenarios. Experimental results demonstrate that the CP-TEG can maintain stable and efficient electrical output under various motion amplitudes and frequencies, and it shows good adaptability to the direction of motion excitation. With a motion amplitude of 7 cm and a frequency of 1.94 Hz, the CP-TEG can charge a 220 μF capacitor to 1.3 V within 100 s. The power generation unit’s output voltage and current are more than three times higher than that of traditional single-layer contact-separation mode triboelectric devices. Particularly, its performance in harvesting energy from human motion underscores its effectiveness as a renewable energy solution for wearable devices. Through its innovative structural design and optimized working mechanism, the CP-TEG demonstrates excellent energy collection efficiency and application potential, offering new options for sustainable energy solutions and development. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

13 pages, 5448 KiB  
Article
All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting
by Mengyao Cao, Yanglei Chen, Jie Sha, Yanglei Xu, Sheng Chen and Feng Xu
Polymers 2024, 16(13), 1784; https://doi.org/10.3390/polym16131784 - 24 Jun 2024
Cited by 9 | Viewed by 3002
Abstract
Triboelectric nanogenerators (TENGs) show promising potential in energy harvesting and sensing for various electronic devices in multiple fields. However, the majority of materials currently utilized in TENGs are unrenewable, undegradable, and necessitate complex preparation processes, resulting in restricted performance and durability for practical [...] Read more.
Triboelectric nanogenerators (TENGs) show promising potential in energy harvesting and sensing for various electronic devices in multiple fields. However, the majority of materials currently utilized in TENGs are unrenewable, undegradable, and necessitate complex preparation processes, resulting in restricted performance and durability for practical applications. Here, we propose a strategy that combines straightforward chemical modification and electrospinning techniques to construct all-cellulose nanofiber-based TENGs with substantial power output. By using cellulose acetate (CA) as the raw material, the prepared cellulose membranes (CMs) and fluorinated cellulose membranes (FCMs) with different functional groups and hydrophobic properties are applied as the tribopositive and tribonegative friction layers of FCM/CM-based triboelectric nanogenerators (FC-TENGs), respectively. This approach modulates the microstructure and triboelectric polarity of the friction materials in FC-TENGs, thus enhancing their triboelectric charge densities and contact areas. As a result, the assembled FC-TENGs demonstrate enhanced output performance (94 V, 8.5 µA, and 0.15 W/m2) and exceptional durability in 15,000 cycles. The prepared FC-TENGs with efficient energy harvesting capabilities can be implemented in practical applications to power various electronic devices. Our work strengthens the viability of cellulose-based TENGs for sustainable development and provides novel perspectives on the cost-effective and valuable utilization of cellulose in the future. Full article
(This article belongs to the Special Issue Bio-Based Polymer: Design, Property, and Application)
Show Figures

Figure 1

14 pages, 7186 KiB  
Article
Doped-Cellulose Acetate Membranes as Friction Layers for Triboelectric Nanogenerators: The Influence of Roughness Degree and Surface Potential on Electrical Performance
by Iuri Custodio Montes Candido, Andre Luiz Freire, Carlos Alberto Rodrigues Costa and Helinando Pequeno de Oliveira
Nanoenergy Adv. 2024, 4(2), 196-208; https://doi.org/10.3390/nanoenergyadv4020012 - 20 Jun 2024
Cited by 1 | Viewed by 1433
Abstract
The development of more efficient friction layers for triboelectric nanogenerators is a complex task, requiring a careful balance of various material properties such as morphology, surface roughness, dielectric constant, and surface potential. In this study, we thoroughly investigated the use of cellulose acetate [...] Read more.
The development of more efficient friction layers for triboelectric nanogenerators is a complex task, requiring a careful balance of various material properties such as morphology, surface roughness, dielectric constant, and surface potential. In this study, we thoroughly investigated the use of cellulose acetate modified with different concentrations of zinc oxide and titanium dioxide to enhance energy harvesting for the TENG. The results indicate that the roughness degree is influenced by the homogeneous degree/aggregation level of doping agents in cellulose acetate membranes, leading to the best performance of open circuit voltage of 282.8 V, short-circuit current of 3.42 µA, and power density of 60 µW/cm2 for ZnO-doped cellulose acetate membranes. Full article
Show Figures

Figure 1

Back to TopTop