Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = freshwater forested wetlands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1956 KiB  
Article
Discovery of an Intact Quaternary Paleosol, Georgia Bight, USA
by Ervan G. Garrison, Matthew A. Newton, Benjamin Prueitt, Emily Carter Jones and Debra A. Willard
Appl. Sci. 2025, 15(12), 6859; https://doi.org/10.3390/app15126859 - 18 Jun 2025
Viewed by 440
Abstract
A previously buried paleosol was found on the continental shelf during a study of sea floor scour, nucleated by large artificial reef structures such as vessel hulks, barges, train cars, military vehicles, etc., called “scour nuclei”. It is a relic paleo-land surface of [...] Read more.
A previously buried paleosol was found on the continental shelf during a study of sea floor scour, nucleated by large artificial reef structures such as vessel hulks, barges, train cars, military vehicles, etc., called “scour nuclei”. It is a relic paleo-land surface of sapling-sized tree stumps, root systems, and fossil animal bone exhumed by scour processes active adjacent to the artificial reef structure. Over the span of five research cruises to the site in 2022–2024, soil samples were taken using hand excavation, PONAR grab samplers, split spoon, hollow tube auger, and a modified Shelby-style push box. High-definition (HD) video was taken using a Remotely Operated Vehicle (ROV) and diver-held cameras. Radiocarbon dating of wood samples returned ages of 42,015–43,417 calibrated years before present (cal yrBP). Pollen studies, together with the recovered macrobotanical remains, support our interpretation of the site as a freshwater forested wetland whose keystone tree species was Taxodium distichum—bald cypress. The paleosol was identified as an Aquult, a sub-order of Ultisols where water tables are at or near the surface year-round. A deep (0.25 m+) argillic horizon comprised the bulk of the preserved soil. Comparable Ultisols found in Georgia wetlands include Typic Paleaquult (Grady and Bayboro series) soils. Full article
(This article belongs to the Special Issue Development and Challenges in Marine Geology)
Show Figures

Figure 1

28 pages, 6220 KiB  
Article
Linking Antibiotic Residues and Antibiotic Resistance Genes to Water Quality Parameters in Urban Reservoirs: A Seasonal Perspective
by Sihan Li, Raphinos Tackmore Murava, Qiyue Zhang, Tong Zhou, Armstrong Ighodalo Omoregie, Adharsh Rajasekar and Tariq Ouahbi
Environments 2025, 12(3), 96; https://doi.org/10.3390/environments12030096 - 18 Mar 2025
Cited by 2 | Viewed by 1533
Abstract
The interaction between antibiotics and antibiotic resistance genes (ARGs) in freshwater ecosystems has become a critical environmental concern. This study investigates seasonal variations of sulfonamide and tetracycline antibiotics and their relationship with ARGs in three urban reservoirs in Nanjing, China: Pingshan Forest Park, [...] Read more.
The interaction between antibiotics and antibiotic resistance genes (ARGs) in freshwater ecosystems has become a critical environmental concern. This study investigates seasonal variations of sulfonamide and tetracycline antibiotics and their relationship with ARGs in three urban reservoirs in Nanjing, China: Pingshan Forest Park, Shanhu Lake Wetland Park, and Zhaoqiao Reservoir. Sampling was conducted in May and September 2023 to assess water quality, antibiotic concentrations, and ARG abundance. A total of 30 water samples were analyzed in regard to their physicochemical parameters, heavy metals, and antibiotics. A quantitative PCR assay was used to measure the ARG abundance relative to the 16S rRNA gene. Sulfonamide concentrations ranged from 30 to 120 ng/L, while the concentrations of tetracyclines were 50–160 ng/L. Notably, sulfamethazine decreased significantly in two reservoirs (Shanhu and Zhaoqiao, p < 0.05), while other antibiotics showed minimal variation, indicating persistent contamination from agricultural runoff and wastewater discharge. ARG abundance was lower in May than in September, with sulfonamide resistance genes being lower cumulatively than tetracycline resistance genes. Strong correlations (r > 0.7) were observed between ARGs and parameters like dissolved oxygen and pH. High antibiotic levels were observed in areas without nearby hospitals or pharmaceutical companies, implicating agriculture as a major pollution source. By analyzing sulfonamide and tetracycline antibiotics and their resistance genes across three eutrophic reservoirs in Nanjing, China, we highlight critical environmental drivers of ARG proliferation and propose targeted mitigation strategies. Full article
(This article belongs to the Special Issue Environmental Pollution Risk Assessment)
Show Figures

Figure 1

13 pages, 20019 KiB  
Article
Determination of Microtopography of Low-Relief Tidal Freshwater Forested Wetlands Using LiDAR
by Tarini Shukla, Wenwu Tang, Carl C. Trettin, Shen-En Chen and Craig Allan
Remote Sens. 2024, 16(18), 3463; https://doi.org/10.3390/rs16183463 - 18 Sep 2024
Cited by 1 | Viewed by 916
Abstract
The microtopography of tidal freshwater forested wetlands (TFFWs) impacts biogeochemical processes affecting the carbon and nitrogen dynamics, ecological parameters, and habitat diversity. However, it is challenging to quantify low-relief microtopographic features that might only vary by a few tens of centimeters. We assess [...] Read more.
The microtopography of tidal freshwater forested wetlands (TFFWs) impacts biogeochemical processes affecting the carbon and nitrogen dynamics, ecological parameters, and habitat diversity. However, it is challenging to quantify low-relief microtopographic features that might only vary by a few tens of centimeters. We assess the high-resolution fine-scale microtopographic features of a TFFW with terrestrial LiDAR and aerial LiDAR to test a method appropriate to quantify microtopography in low-relief forested wetlands. Our method uses a combination of water-level and elevation thresholding (WALET) to delineate hollows in terrestrial and aerial LiDAR data. Close-range remote sensing technologies can be used for microtopography in forested regions. However, the aerial and terrestrial LiDAR technologies have not been used to analyze or compare microtopographic features in TFFW ecosystems. Therefore, the objectives of this study were (1) to characterize and assess the microtopography of low-relief tidal freshwater forested wetlands and (2) to identify optimal elevation thresholds for widely available aerial LiDAR data to characterize low-relief microtopography. Our results suggest that the WALET method can correctly characterize the microtopography in this area of low-relief topography. The microtopography characterization method described here provides a basis for advanced applications and scaling mechanistic models. Full article
Show Figures

Figure 1

29 pages, 8791 KiB  
Article
Leaf Physiological Responses and Early Senescence Are Linked to Reflectance Spectra in Salt-Sensitive Coastal Tree Species
by Steven M. Anderson, Emily S. Bernhardt, Jean-Christophe Domec, Emily A. Ury, Ryan E. Emanuel, Justin P. Wright and Marcelo Ardón
Forests 2024, 15(9), 1638; https://doi.org/10.3390/f15091638 - 17 Sep 2024
Viewed by 1244
Abstract
Salt-sensitive trees in coastal wetlands are dying as forests transition to marsh and open water at a rapid pace. Forested wetlands are experiencing repeated saltwater exposure due to the frequency and severity of climatic events, sea-level rise, and human infrastructure expansion. Understanding the [...] Read more.
Salt-sensitive trees in coastal wetlands are dying as forests transition to marsh and open water at a rapid pace. Forested wetlands are experiencing repeated saltwater exposure due to the frequency and severity of climatic events, sea-level rise, and human infrastructure expansion. Understanding the diverse responses of trees to saltwater exposure can help identify taxa that may provide early warning signals of salinity stress in forests at broader scales. To isolate the impacts of saltwater exposure on trees, we performed an experiment to investigate the leaf-level physiology of six tree species when exposed to oligohaline and mesohaline treatments. We found that species exposed to 3–6 parts per thousand (ppt) salinity had idiosyncratic responses of plant performance that were species-specific. Saltwater exposure impacted leaf photochemistry and caused early senescence in Acer rubrum, the most salt-sensitive species tested, but did not cause any impacts on plant water use in treatments with <6 ppt. Interestingly, leaf spectral reflectance was correlated with the operating efficiency of photosystem II (PSII) photochemistry in A. rubrum leaves before leaf physiological processes were impacted by salinity treatments. Our results suggest that the timing and frequency of saltwater intrusion events are likely to be more detrimental to wetland tree performance than salinity concentrations. Full article
(This article belongs to the Special Issue Coastal Forest Dynamics and Coastline Erosion, 2nd Edition)
Show Figures

Figure 1

16 pages, 5051 KiB  
Article
Aboveground Carbon Stocks across a Hydrological Gradient: Ghost Forests to Non-Tidal Freshwater Forested Wetlands
by Christopher J. Shipway, Jamie A. Duberstein, William H. Conner, Ken W. Krauss, Gregory B. Noe and Stefanie L. Whitmire
Forests 2024, 15(9), 1502; https://doi.org/10.3390/f15091502 - 28 Aug 2024
Viewed by 1094
Abstract
Upper estuarine forested wetlands (UEFWs) play an important role in the sequestration of atmospheric carbon (C), which is facilitated by their position at the boundary of terrestrial and maritime environments but threatened by sea level rise. This study assessed the change in aboveground [...] Read more.
Upper estuarine forested wetlands (UEFWs) play an important role in the sequestration of atmospheric carbon (C), which is facilitated by their position at the boundary of terrestrial and maritime environments but threatened by sea level rise. This study assessed the change in aboveground C stocks along the estuarine–riverine hydrogeomorphic gradient spanning salt-impacted freshwater tidal forested wetlands to freshwater forested wetlands in seasonally tidal and nontidal landscape positions. Standing stocks of C in forested wetlands were measured along two major coastal river systems, the Winyah Bay in South Carolina and the Savannah River in Georgia (USA), replicating and expanding a previous study to allow the assessment of change over time. Aboveground C stocks on these systems averaged 172.9 Mg C ha−1, comparable to those found in UEFWs across the globe and distinct from the terrestrial forested ecosystems they are often considered to be a part of during large-scale C inventory efforts. Groundwater salinity conditions as low as 1.3 ppt were observed in conjunction with losses of aboveground C. When viewed in context alongside expected sea level rise and corresponding saltwater intrusion estimates, these data suggest a marked decrease in aboveground C stocks in forested wetlands situated in and around tidal estuaries. Full article
(This article belongs to the Special Issue Coastal Forest Dynamics and Coastline Erosion, 2nd Edition)
Show Figures

Figure 1

21 pages, 4944 KiB  
Article
Tidal Freshwater Forested Wetlands in the Mobile-Tensaw River Delta along the Northern Gulf of Mexico
by Andrew Balder, Christopher J. Anderson and Nedret Billor
Forests 2024, 15(8), 1359; https://doi.org/10.3390/f15081359 - 3 Aug 2024
Viewed by 1962
Abstract
Tidal freshwater forested wetlands (TFFWs) typically occur at the interface between upriver non-tidal forests and downstream tidal marshes. Due to their location, these forests are susceptible to estuarine and riverine influences, notably periodic saltwater intrusion events. The Mobile-Tensaw (MT) River Delta, one of [...] Read more.
Tidal freshwater forested wetlands (TFFWs) typically occur at the interface between upriver non-tidal forests and downstream tidal marshes. Due to their location, these forests are susceptible to estuarine and riverine influences, notably periodic saltwater intrusion events. The Mobile-Tensaw (MT) River Delta, one of the largest river deltas in the United States, features TFFWs that are understudied but threatened by sea level rise and human impacts. We surveyed 47 TFFW stands across a tidal gradient previously determined using nine stations to collect continuous water level and salinity data. Forest data were collected from 400 m2 circular plots of canopy and midstory species composition, canopy tree diameter and basal area, stem density, and tree condition. Multivariate hierarchical clustering identified five distinct canopy communities (p = 0.001): Mixed Forest, Swamp Tupelo, Water Tupelo, Bald Cypress, and Bald Cypress and Mixed Tupelo. Environmental factors, such as river distance (p = 0.001) and plot elevation (p = 0.06), were related to community composition. Similar to other TFFWs along the northern Gulf of Mexico, forests closest to Mobile Bay exhibited lower basal areas, species density, diversity, and a higher proportion of visually stressed individual canopy trees compared to those in the upper tidal reach. Results indicate a strong tidal influence on forest composition, structure, and community-level responses. Full article
(This article belongs to the Special Issue Coastal Forest Dynamics and Coastline Erosion, 2nd Edition)
Show Figures

Figure 1

19 pages, 3213 KiB  
Article
Forest Fuel Bed Variation in Tropical Coastal Freshwater Forested Wetlands Disturbed by Fire
by Romeo de Jesús Barrios-Calderón, Dulce Infante Mata, José Germán Flores Garnica and Jony R. Torres
Forests 2024, 15(1), 158; https://doi.org/10.3390/f15010158 - 12 Jan 2024
Cited by 2 | Viewed by 2119
Abstract
Tropical coastal freshwater forested wetlands in coastal regions are rapidly disappearing as a result of various disturbance agents, mainly wildfires caused by high accumulations of forest fuels. The objective of this study was to characterize the structure and composition of fuel beds in [...] Read more.
Tropical coastal freshwater forested wetlands in coastal regions are rapidly disappearing as a result of various disturbance agents, mainly wildfires caused by high accumulations of forest fuels. The objective of this study was to characterize the structure and composition of fuel beds in tropical coastal freshwater forested wetlands with three levels of disturbance at El Castaño, La Encrucijada Biosphere Reserve. Seventeen sampling units were used to describe the structure of the forest’s fuel beds (canopy, sub-canopy, and understory). Fallen woody material and litter (surface and fermented) were characterized using the planar intersection technique. Diversity comprised eight species of trees, two shrubs, five lianas, and two herbaceous species. The vertical strata were dominated by trees between 2 and 22 m in height. The horizontal structure had a higher percentage of trees with normal diameter between 2.5 and 7.5 cm (61.4%) of the total. Sites with low disturbance had the highest arboreal density (2686 ind. ha−1). Diversity of species showed that the Fisher, Margalef, Shannon, and Simpson α indices were higher in the low disturbance sites. The Berger–Parker index exhibited greater dominance in the sites with high disturbance. Pachira aquatica Aubl. Showed the highest importance value index and was the largest contributor to fuel beds. Sites with the highest disturbance had the highest dead fuel load (222.18 ± 33.62 Mg ha−1), with woody fuels of classes 1, 10, and 1000 h (rotten) being the most representative. This study contributes to defining areas prone to fire in these ecosystems and designing prevention strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 690 KiB  
Article
Biodiversity of Fungi in Freshwater Ecosystems of Italy
by Giulia Mirabile, Valeria Ferraro, Francesco Paolo Mancuso, Lorenzo Pecoraro and Fortunato Cirlincione
J. Fungi 2023, 9(10), 993; https://doi.org/10.3390/jof9100993 - 7 Oct 2023
Cited by 5 | Viewed by 2850
Abstract
Fungal biodiversity is still mostly unknown and their presence in particular ecosystems such as freshwater habitats is often underestimated. The ecological role that these fungi play in freshwater environments mainly concerns their activity as decomposers of litter and plant material. At present, it [...] Read more.
Fungal biodiversity is still mostly unknown and their presence in particular ecosystems such as freshwater habitats is often underestimated. The ecological role that these fungi play in freshwater environments mainly concerns their activity as decomposers of litter and plant material. At present, it is estimated that 3870 species belong to the ecological group of freshwater fungi (13 phyla and 45 classes). In this survey, we provide an overview of the Italian freshwater fungal diversity on the basis of the field and literature data. In the literature, data on freshwater fungi are fragmentary and not updated, focusing mainly on northern Italy where the most important lakes and rivers are present, while data from central and southern Italy (including Sicily and Sardinia) are almost completely ineffective. In particular, Ascomycota are reported in only 14 publications, most of which concern the freshwater environments of Lombardia, Piemonte, and Veneto. Only one publication explores the biodiversity of freshwater Basidiomycota in the wetlands of the Cansiglio forest (Veneto). The field observation allowed for us to identify 38 species of Basidiomycota growing in riparian forest of Italy. However, the number of fungi in freshwater habitats of Italy is strongly underestimated and many species are still completely unknown. Full article
(This article belongs to the Special Issue Fungal Diversity in Europe, 2nd Edition)
Show Figures

Figure 1

21 pages, 2933 KiB  
Article
Environmental Heterogeneity and Salinity Gradient Impacted the Alpha and Beta Diversities of Diatom Assemblages in a Coastal Delta Wetland
by Nurhayat Dalkıran and Burcu Zünbülgil-Ünsal
Water 2023, 15(19), 3414; https://doi.org/10.3390/w15193414 - 28 Sep 2023
Cited by 3 | Viewed by 1890
Abstract
The coastal deltas are ecologically diverse and complex ecosystems that can contain different habitat types. The effect of environmental heterogeneity on diatom beta diversity is a poorly understood research topic. Freshwater (floodplain forest, river) and brackish (three lagoons) water bodies in the study [...] Read more.
The coastal deltas are ecologically diverse and complex ecosystems that can contain different habitat types. The effect of environmental heterogeneity on diatom beta diversity is a poorly understood research topic. Freshwater (floodplain forest, river) and brackish (three lagoons) water bodies in the study area construct distinct environmental heterogeneity at a small spatial scale. The connection of the lagoons with an inland sea caused a high salinity gradient. All water bodies in the wetland were determined as hypereutrophic. CCA, Cluster, ANOSIM, and SIMPER analysis clearly explained the distribution of diatom assemblages according to salinity gradient and environmental heterogeneity. The environmental heterogeneity resulted in the presence of freshwater, brackish, and marine diatom species in the studied wetland. Diatom assemblages generally consist of freshwater species with euryhaline character adapted to wide salinity gradients. We determined the rapid replacement and richness difference in diatom assemblages due to environmental heterogeneity and salinity gradient causes high overall alpha, beta, and gamma diversity. Unlike many other studies, the high beta diversity mainly consists of the richness difference rather than species replacement. The high overall beta diversity showed low similarity between the habitats, while high overall alpha diversity exposed high species diversity at the local scale in the study area. Full article
Show Figures

Graphical abstract

32 pages, 6796 KiB  
Article
Determination of Environmental Flows in Data-Poor Estuaries—Wami River Estuary in Saadani National Park, Tanzania
by Amartya K. Saha, Japhet Kashaigili, Fredrick Mashingia, Halima Kiwango, Mercy Asha Mohamed, Michael Kimaro, Mathias Msafiri Igulu, Patroba Matiku, Rosemary Masikini, Rashid Tamatamah, Ismail Omary, Tumaini Magesa, Pendo Hyera, Roman Evarist and Maria C. Donoso
Hydrology 2023, 10(2), 33; https://doi.org/10.3390/hydrology10020033 - 23 Jan 2023
Cited by 5 | Viewed by 3448
Abstract
Land use changes and mounting water demands reduce freshwater inflows into estuaries, impairing estuarine ecosystems and accelerating coastal seawater intrusion. However, determining minimum river inflows for management guidelines is hampered by a lack of ecosystem-flow link data. This study describes the development of [...] Read more.
Land use changes and mounting water demands reduce freshwater inflows into estuaries, impairing estuarine ecosystems and accelerating coastal seawater intrusion. However, determining minimum river inflows for management guidelines is hampered by a lack of ecosystem-flow link data. This study describes the development of freshwater inflow guidelines for the Wami Estuary, combining scarce river flow data, hydrological modeling, inferring natural salinity regime from vegetation zonation and investigating freshwater requirements of people/wildlife. By adopting the Building Blocks Methodology, a detailed Environmental Flows Assessment was performed to know the minimum water depth/quality seasonal requirements for vegetation, terrestrial/aquatic wildlife and human communities. Water depth requirements were assessed for drought and normal rainfall years; corresponding discharges were obtained by a hydrological model (HEC-RAS) developed for the river channel upstream of estuary. Recommended flows were well within historically occurring flows. However, given the rapidly increasing water demand coupled with reduction in basin water storage due to deforestation/wetland loss, it is critical to ensure these minimum flows are present, without which essential ecosystem services (fisheries, water quality, mangrove forest resources and wildlife/tourism) will be jeopardized. The EFA process is described in painstaking detail to provide a reference for undertaking similar studies in data-poor regions worldwide. Full article
(This article belongs to the Special Issue Aquatic Ecosystems and Water Resources)
Show Figures

Figure 1

17 pages, 2821 KiB  
Article
Response of Macrophyte Diversity in Coastal Lakes to Watershed Land Use and Salinity Gradient
by Mirosław Grzybowski, Paweł Burandt, Katarzyna Glińska-Lewczuk, Sylwia Lew and Krystian Obolewski
Int. J. Environ. Res. Public Health 2022, 19(24), 16620; https://doi.org/10.3390/ijerph192416620 - 10 Dec 2022
Cited by 4 | Viewed by 2648
Abstract
Coastal lakes are subject to multiple stressors, among which land use, hydrological connectivity, and salinity have the greatest effect on their biodiversity. We studied the effects that various land cover types (CORINE) of coastal lake watersheds had on macrophyte diversity in ten coastal [...] Read more.
Coastal lakes are subject to multiple stressors, among which land use, hydrological connectivity, and salinity have the greatest effect on their biodiversity. We studied the effects that various land cover types (CORINE) of coastal lake watersheds had on macrophyte diversity in ten coastal lakes along the southern Baltic coast as characterised by twelve phytocenotic indices: these being a number of communities, Shannon–Wiener diversity, evenness, and indices of taxonomic distinctiveness of plant communities: vegetation coverage; colonisation index; share of the phytolittoral area in the total lake area, as well as shares of nympheides, pondweeds, charophytes, marine, emerged and submerged communities in the total lake area. The effects were checked for three groups of lakes distinguished by differences in salinity–freshwater (F, 5), transitional (T, 4), and brackish (B, 1)—in which a total of 48 macrophyte communities were identified. The most abundant in aquatic phytocoenoses were lakes of T type. A partial least squares regression model (PLS-R) showed a stronger impact of land-use types in immediate vicinities and entire watersheds than the impact of physico-chemical properties of water on phytocenotic indices in the lakes. Macrophyte diversity was relatively low in urban and agricultural catchments and relatively high in forest and wetland areas. Agriculture had a negative impact on the number of macrophyte communities in F lakes and, in T lakes, on the number of macrophyte communities, biodiversity, evenness, and proportion of emerged, submerged, and marine communities. Urban areas contributed to lower values of evenness, vegetation coverage, and share of marine communities in F, but, in T, to lower the number of macrophyte communities, evenness, and proportion of submerged and marine communities. Our results confirm the significant impact of land use on macrophyte diversity in coastal aquatic ecosystems. Combined analysis of anthropogenic and natural descriptors is a prerequisite for analysing human threats to biodiversity in coastal lakes. Macrophyte community-based measures of biodiversity are sensitive indicators of anthropogenic impact on the ecological condition of coastal ecosystems. Full article
(This article belongs to the Special Issue Future and Feature Paper in Environment and Applied Ecology)
Show Figures

Figure 1

22 pages, 9911 KiB  
Article
Wetland Vulnerability Metrics as a Rapid Indicator in Identifying Nature-Based Solutions to Mitigate Coastal Flooding
by Narcisa Gabriela Pricope and Greer Shivers
Hydrology 2022, 9(12), 218; https://doi.org/10.3390/hydrology9120218 - 2 Dec 2022
Cited by 10 | Viewed by 4542
Abstract
Flood mitigation in low-gradient, tidally-influenced, and rapidly urbanizing coastal locations remains a priority across a range of stakeholders and communities. Wetland ecosystems act as a natural flood buffer for coastal storms and sea level rise (SLR) while simultaneously providing invaluable benefits to urban [...] Read more.
Flood mitigation in low-gradient, tidally-influenced, and rapidly urbanizing coastal locations remains a priority across a range of stakeholders and communities. Wetland ecosystems act as a natural flood buffer for coastal storms and sea level rise (SLR) while simultaneously providing invaluable benefits to urban dwellers. Assessing the vulnerability of wetlands to flood exposure under different SLR scenarios and vegetation responses to climatic variability over time allows for management actions, such as nature-based solutions, to be implemented to preserve wetland ecosystems and the services they provide. Nature-based solutions (NBSs) are a type of green infrastructure that can contribute to flood mitigation through the management and restoration of the ecosystems that provide socio-environmental benefits. However, identifying the flood mitigation potential provided by wetlands and the suitability for NBS implementation depends on the ecological condition and environmental exposure. We propose that wetland vulnerability assessments can be used as a rapid method to quantify changes in ecosystem dynamics and flood exposure and to prioritize potential locations of NBSs implementation. We quantified exposure risk using 100- and 500-year special flood hazard areas, 1–10 ft of sea level rise scenarios, and high-tide flooding and sensitivity using timeseries analyses of Landsat 8-derived multispectral indices as proxies for wetland conditions at subwatershed scales. We posit that wetland areas that are both highly vulnerable to recurrent flooding and degrading over time would make good candidate locations for NBS prioritization, especially when they co-occur on or adjacently to government-owned parcels. In collaboration with local governmental agencies responsible for flood mitigation in the coastal sub-watersheds of the City of New Bern and New Hanover County, North Carolina, we conducted field verification campaigns and leveraged local expert knowledge to identify optimal NBS priority areas. Our results identified several government-owned parcels containing highly vulnerable wetland areas that can be ranked and prioritized for potential NBS implementation. Depending on the biophysical characteristics of the area, NBS candidate wetland types include brackish and freshwater marshes and riverine swamp forests, even though the predominant wetland types by area are managed loblolly pinelands. This study underscores the critical importance of conserving or restoring marshes and swamp forests and provides a transferable framework for conducting scale-invariant assessments of coastal wetland condition and flood exposure as a rapid method of identifying potential priority areas for nature-based solutions to mitigate coastal flooding. Full article
(This article belongs to the Special Issue Modern Developments in Flood Modelling)
Show Figures

Figure 1

12 pages, 13247 KiB  
Article
Reproductive Ecology and Nesting Site Characteristics of Four-Toed Salamanders (Hemidactylium scutatum) in Natural and Constructed Upland-Embedded Wetlands on the Appalachian Plateau, Kentucky
by Susan K. King and Stephen C. Richter
Diversity 2022, 14(11), 995; https://doi.org/10.3390/d14110995 - 18 Nov 2022
Cited by 4 | Viewed by 2243
Abstract
Many forested freshwater wetlands have been altered or destroyed, and wetlands are constructed to offset loss. However, they do not always replace the function of natural wetlands. It is important to understand how features of the habitat differ between types of wetlands and [...] Read more.
Many forested freshwater wetlands have been altered or destroyed, and wetlands are constructed to offset loss. However, they do not always replace the function of natural wetlands. It is important to understand how features of the habitat differ between types of wetlands and whether constructed wetlands provide an adequate habitat for species adapted to natural wetlands. Our objectives were to measure the characteristics of Four-toed Salamanders’ nesting habitat and determine which factors contribute to the abundance of eggs and nests in natural and constructed upland-embedded wetlands within a ridgetop ecosystem in eastern Kentucky. We located and examined characteristics for 207 nests in twelve wetlands and measured variables at the nest level and at the wetland level. The best predictor of the number of eggs and number of nests was amount of moss at the wetland. These measures of reproductive effort were similar between types of wetlands, but the number of eggs per nest was higher in constructed wetlands and inversely related to amount of moss, highlighting a deficit in nesting habitat. Research of embryonic and larval survival is needed but based on data from other amphibian species in this system, we predict that the survival of Four-toed Salamanders’ larvae is low in constructed wetlands with permanent hydrology. Restoration of constructed wetlands should address the need for moss as nesting substrate and drying of the wetland to reduce the abundance and diversity of predators of larvae. Full article
(This article belongs to the Special Issue Amphibian Ecology in Geographically Isolated Wetlands)
Show Figures

Figure 1

18 pages, 3625 KiB  
Article
Species Composition, Diversity, and Biomass Estimation in Coastal and Marine Protected Areas of Terengganu, Peninsular Malaysia
by Elizabeth Pesiu, Gaik Ee Lee, Muhammad Razali Salam, Jamilah Mohd Salim, Kah Hoo Lau, Jean Wan Hong Yong and Mohd Tajuddin Abdullah
Agronomy 2022, 12(10), 2380; https://doi.org/10.3390/agronomy12102380 - 1 Oct 2022
Cited by 11 | Viewed by 5014
Abstract
We investigated and compared the tree species composition and diversity of different forest types in Setiu Wetlands and on the three major islands of Terengganu. A total of 24 plots of 25 m × 25 m with four plots in each study site [...] Read more.
We investigated and compared the tree species composition and diversity of different forest types in Setiu Wetlands and on the three major islands of Terengganu. A total of 24 plots of 25 m × 25 m with four plots in each study site were established, viz. Melaleuca swamp forest in Kampung Fikri, freshwater swamp forest in Kampung Gong Batu, mangrove forest in UMT Setiu research station, and the islands, namely Pulau Bidong, Pulau Redang, and Pulau Perhentian. We calculated the basal area, stand density, Importance Value Index, species diversity, and above-ground biomass in the designated study areas. We assessed 139 tree species from 96 genera and 50 families based on a total of 2608 tree samples of 5 cm DBH and above. The freshwater swamp forest harbored the highest number of species with 20 species in Setiu Wetlands, and among the islands, Pulau Redang had the highest with 56 species. Melaleuca cajuputi was the most dominant species in the Melaleuca swamp forest, while Alstonia spatulata and Rhizophora apiculata are expected in the freshwater swamp and mangrove forest, respectively. Pulau Bidong, Pulau Redang, and Pulau Perhentian are mostly represented by Licania splendens, Shorea glauca, and Vatica sp., respectively. All the dominant species but Licania splendens contributed to the highest amount of above-ground biomass. Our current study indicated that different forest types vary in composition and structure, which may contribute to their unique ecological roles within their specific environment. Full article
(This article belongs to the Special Issue Recent Progress in Plant Taxonomy and Floristic Studies)
Show Figures

Figure 1

13 pages, 4825 KiB  
Article
The University of West Florida Campus Ecosystem Study: Spatial and Temporal Variation in Water Quality at Thompson Bayou
by Frank S. Gilliam, Jacob W. Hardin, Jacob A. Williams and Rachel L. Lackaye
Water 2022, 14(18), 2916; https://doi.org/10.3390/w14182916 - 17 Sep 2022
Cited by 2 | Viewed by 3221
Abstract
Much of our understanding of factors influencing stream chemistry comes from studies of montane forests, whereas far less work has focused on streams of coastal areas that integrate a homogeneous, flat topography and interactions with the bodies of water into which they drain, [...] Read more.
Much of our understanding of factors influencing stream chemistry comes from studies of montane forests, whereas far less work has focused on streams of coastal areas that integrate a homogeneous, flat topography and interactions with the bodies of water into which they drain, especially involving tidal fluxes. Fewer still do so in the context of an urban interface, especially that of a college campus. This study assessed the water quality of Thompson Bayou, a freshwater stream entering the University of West Florida campus in a wetland after flowing through the urban property with impacted water quality. We measured temperature, pH, dissolved O2 (DO), and specific conductivity (SC) for one year at eight sites along Thompson Bayou from campus to the Escambia River. All variables, except temperature, varied spatially, with consistent increases in DO and SC toward the river of 10% and 75%, respectively. Variables exhibited temporal patterns of significant seasonal variation, especially temperature, increasing from a January minimum of 14 °C to a summer maximum of 28 °C. These results suggest that, in general, the biogeochemistry of coastal streams such as Thompson Bayou can be influenced by numerous factors, including (1) wetland processes, (2) interactions of the stream channel with forested uplands, and (3) tidal fluxes. Full article
(This article belongs to the Special Issue Water Quality Modeling and Monitoring)
Show Figures

Figure 1

Back to TopTop