Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (150)

Search Parameters:
Keywords = fresh-cut food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2431 KiB  
Article
Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement
by Nieves García-Lorca, José Ángel Salas-Millán and Encarna Aguayo
Foods 2025, 14(14), 2476; https://doi.org/10.3390/foods14142476 - 15 Jul 2025
Viewed by 279
Abstract
Broccoli stalks are considered an agro-industrial by-product that, in the context of fresh consumption, is undervalued, as only broccoli florets are typically marketed. This study evaluated the up-cycling of broccoli stalks into a value-added fresh-cut product through postharvest preservation strategies. Stalks were peeled, [...] Read more.
Broccoli stalks are considered an agro-industrial by-product that, in the context of fresh consumption, is undervalued, as only broccoli florets are typically marketed. This study evaluated the up-cycling of broccoli stalks into a value-added fresh-cut product through postharvest preservation strategies. Stalks were peeled, cut into sticks (8 × 8 mm × 50–100 mm), sanitised, packaged under modified atmosphere conditions, and stored at 5 °C. Treatments included (a) calcium ascorbate (CaAsc, 1% w/v), (b) trehalose (TREH, 5% w/v), (c) hot water treatment (HWT, 55 °C, 1 min), and several combinations of them. HWT alone was highly effective in reducing browning, a key factor for achieving an extended shelf-life, controlling microbial growth and respiration, and obtaining the highest sensory scores (appearance = 7.3 on day 11). However, it was less effective in preserving bioactive compounds. The HWT + CaAsc treatment proved to be the most effective at optimising quality and retaining health-promoting compounds. It increased vitamin C retention by 78%, antioxidant capacity by 68%, and total phenolic content by 65% compared to the control on day 11. This synergistic effect was attributed to the antioxidant action of ascorbic acid in CaAsc. TREH alone showed no preservative effect, inducing browning, elevated respiration, and microbial proliferation. Overall, combining mild thermal and antioxidant treatments offers a promising strategy to valorise broccoli stalks as fresh-cut snacks. An 11-day shelf-life at 5 °C was achieved, with increased content of health-promoting bioactive compounds, while supporting circular economy principles and contributing to food loss mitigation. Full article
Show Figures

Graphical abstract

18 pages, 1752 KiB  
Article
Effects of Different Trehalose and Sorbitol Impregnation Methods on Freeze–Thaw Damage to Potato Slices
by Wenfang Xuan, Yiyang Qi, Xueqian Wan, Xuemei Gao, Haiou Wang and Huichang Wu
Foods 2025, 14(13), 2389; https://doi.org/10.3390/foods14132389 - 6 Jul 2025
Viewed by 436
Abstract
Fresh-cut potato slices are prone to browning. Although freezing is an effective method of preserving food, freezing and thawing cause inevitable damage to potato tissues. This study explored the freeze-protective effects of trehalose and sorbitol under atmospheric pressure impregnation and vacuum impregnation by [...] Read more.
Fresh-cut potato slices are prone to browning. Although freezing is an effective method of preserving food, freezing and thawing cause inevitable damage to potato tissues. This study explored the freeze-protective effects of trehalose and sorbitol under atmospheric pressure impregnation and vacuum impregnation by analyzing their influences on the cell structural and textural characteristics of frozen–thawed potato slices. The results showed that both trehalose and sorbitol can significantly improve the quality of frozen–thawed potato slices. Vacuum impregnation resulted in a higher total sugar content in the impregnated potato slices than atmospheric pressure impregnation (p < 0.05). Sorbitol impregnation significantly reduced cell damage and nutrient loss of frozen–thawed potato slices; specifically, under vacuum impregnation conditions, the juice loss rate and relative electrical conductivity decreased to 7.58 ± 0.47% and 32.90 ± 1.83 mS/cm, respectively. Texture analysis showed that sorbitol impregnation resulted in significantly higher puncture hardness and TPA hardness in frozen–thawed potato slices than trehalose impregnation. Furthermore, observations of cell activity and transmission electron microscopy of potato tissues verified sorbitol’s advantages in maintaining cell structure integrity and reducing ice crystal damage. Hence, sorbitol vacuum impregnation is highly recommended as a pretreatment in potato quick freezing processes. This study provides a theoretical basis and technical support for the improvement of the quality of quick-frozen potato products, and for the later processing and manufacturing of frozen potato slices. Full article
Show Figures

Figure 1

46 pages, 2741 KiB  
Review
Innovative Technologies Reshaping Meat Industrialization: Challenges and Opportunities in the Intelligent Era
by Qing Sun, Yanan Yuan, Baoguo Xu, Shipeng Gao, Xiaodong Zhai, Feiyue Xu and Jiyong Shi
Foods 2025, 14(13), 2230; https://doi.org/10.3390/foods14132230 - 24 Jun 2025
Viewed by 1053
Abstract
The Fourth Industrial Revolution and artificial intelligence (AI) technology are driving the transformation of the meat industry from mechanization and automation to intelligence and digitization. This paper provides a systematic review of key technological innovations in this field, including physical technologies (such as [...] Read more.
The Fourth Industrial Revolution and artificial intelligence (AI) technology are driving the transformation of the meat industry from mechanization and automation to intelligence and digitization. This paper provides a systematic review of key technological innovations in this field, including physical technologies (such as smart cutting precision improved to the millimeter level, pulse electric field sterilization efficiency exceeding 90%, ultrasonic-assisted marinating time reduced by 12 h, and ultra-high-pressure processing extending shelf life) and digital technologies (IoT real-time monitoring, blockchain-enhanced traceability transparency, and AI-optimized production decision-making). Additionally, it explores the potential of alternative meat production technologies (cell-cultured meat and 3D bioprinting) to disrupt traditional models. In application scenarios such as central kitchen efficiency improvements (e.g., food companies leveraging the “S2B2C” model to apply AI agents, supply chain management, and intelligent control systems, resulting in a 26.98% increase in overall profits), end-to-end temperature control in cold chain logistics (e.g., using multi-array sensors for real-time monitoring of meat spoilage), intelligent freshness recognition of products (based on deep learning or sensors), and personalized customization (e.g., 3D-printed customized nutritional meat products), these technologies have significantly improved production efficiency, product quality, and safety. However, large-scale application still faces key challenges, including high costs (such as the high investment in cell-cultured meat bioreactors), lack of standardization (such as the absence of unified standards for non-thermal technology parameters), and consumer acceptance (surveys indicate that approximately 41% of consumers are concerned about contracting illnesses from consuming cultured meat, and only 25% are willing to try it). These challenges constrain the economic viability and market promotion of the aforementioned technologies. Future efforts should focus on collaborative innovation to establish a truly intelligent and sustainable meat production system. Full article
Show Figures

Figure 1

14 pages, 1479 KiB  
Article
Innovative Preservation of Fresh-Cut Potatoes: Synergistic Effects of Antimicrobial Edible Coatings, Ohmic Heating–Osmotic Dehydration, and MAP on Quality and Shelf Life
by Alexandra Mari, Christina Drosou, Konstantina Theodora Laina, Christoforos Vasileiou and Magdalini Krokida
Coatings 2025, 15(6), 726; https://doi.org/10.3390/coatings15060726 - 18 Jun 2025
Viewed by 969
Abstract
Fresh-cut potatoes are highly perishable, requiring effective preservation strategies to maintain quality and extend shelf life. This study evaluated the use of edible coatings and the combination of osmotic dehydration and ohmic heating (OH-OD), both integrated with modified atmosphere packaging (MAP), to enhance [...] Read more.
Fresh-cut potatoes are highly perishable, requiring effective preservation strategies to maintain quality and extend shelf life. This study evaluated the use of edible coatings and the combination of osmotic dehydration and ohmic heating (OH-OD), both integrated with modified atmosphere packaging (MAP), to enhance microbial stability and reduce quality deterioration. Key quality parameters—including color stability, browning index, weight loss, microbial activity, and sensory attributes—were assessed. Results showed that coated samples (E-FP) had the lowest browning index (59.71) by day 8, compared to a value of 62.69 in control samples (C-FP). OH-OD-treated samples exhibited the least weight loss (6.73%) versus 17.75% in C-FP. Microbial analysis showed that E-FP samples maintained the lowest total viable count by day 8 (3.98 ± 0.02 log CFU/g), compared to OH-OD-FP (4.43 ± 0.13 log CFU/g) and C-FP (4.79 ± 0.06 log CFU/g), confirming the antimicrobial efficacy of the edible coating enriched with rosemary essential oil and ascorbic acid. Sensory evaluation further confirmed that coated samples retained superior sensory qualities, receiving the highest overall acceptance score of 8.86 ± 0.80, compared to values of 7.80 ± 0.98 for control samples (C-FP) and 2.80 ± 0.69 for OH-OD-FP samples, highlighting their enhanced consumer appeal. These findings highlight that combining advanced preservation techniques with MAP can significantly reduce moisture loss and microbial spoilage while maintaining freshness and sensory appeal. This integrated approach offers a promising solution for extending shelf life, reducing food waste, and supporting sustainability in response to consumer demand for minimally processed, high-quality fresh products. Full article
(This article belongs to the Special Issue Advanced Materials for Safe and Smart Food Packaging)
Show Figures

Figure 1

18 pages, 2325 KiB  
Article
Post-Cutting Hot Water Treatment of Pepper Fruit: Impact on Quality During Short-Term Storage
by Maria Grzegorzewska and Aleksandra Machlańska
Agronomy 2025, 15(6), 1406; https://doi.org/10.3390/agronomy15061406 - 6 Jun 2025
Viewed by 519
Abstract
Fresh-cut vegetables are gaining economic importance around the world. They are highly perishable products, and in the context of global food waste challenges, any new solutions to reduce losses are in line with the expectations of producers, traders, and consumers. The aim of [...] Read more.
Fresh-cut vegetables are gaining economic importance around the world. They are highly perishable products, and in the context of global food waste challenges, any new solutions to reduce losses are in line with the expectations of producers, traders, and consumers. The aim of this study was to evaluate the effect of hot water treatment (HWT) on the quality and durability of two varieties of fresh-cut peppers at three storage temperatures: 3, 5, and 8 °C. Microscopic observations revealed changes in the tissue structure of the pepper sticks. During the storage of red-fruit “Yecla” peppers, the HWT samples retained better firmness. The peppers treated at 55 °C for 12 s maintained the best quality during storage. Cream-fruit “Blondy” peppers softened during storage, but the browning of the cut surface contributed the most to the reduction in quality. HWT at 53 °C for 3 min or 50 °C for 5 min effectively inhibited the development of destructive changes during storage. HWT is beneficial for fresh-cut peppers, but the temperature and duration of operation should be properly selected given the nature of the cultivar. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 342 KiB  
Article
Association of Food-Specific Glycemic Load and Distinct Dietary Components with Gestational Diabetes Mellitus Within a Mediterranean Dietary Pattern: A Prospective Cohort Study
by Antigoni Tranidou, Antonios Siargkas, Emmanouela Magriplis, Ioannis Tsakiridis, Panagiota Kripouri, Aikaterini Apostolopoulou, Michail Chourdakis and Themistoklis Dagklis
Nutrients 2025, 17(11), 1917; https://doi.org/10.3390/nu17111917 - 3 Jun 2025
Viewed by 687
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) is a major pregnancy complication with rising global prevalence. The Mediterranean Diet (MD) has shown metabolic benefits, but total adherence scores may obscure meaningful variation in dietary quality. This study aimed to investigate whether specific dietary patterns, [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) is a major pregnancy complication with rising global prevalence. The Mediterranean Diet (MD) has shown metabolic benefits, but total adherence scores may obscure meaningful variation in dietary quality. This study aimed to investigate whether specific dietary patterns, identified within the MD framework, and their glycemic load (GL) are associated with GDM risk. Methods: This prospective cohort is part of the BORN2020 longitudinal study on pregnant women in Greece; dietary intake was assessed using a validated food frequency questionnaire (FFQ) at two time points (pre-pregnancy and during pregnancy). MD adherence was categorized by Trichopoulou score tertiles. GL was calculated for food groups using glycemic index (GI) reference values and carbohydrate content. Dietary patterns were identified using factor analysis. Logistic regression models estimated adjusted odds ratios (aORs) for GDM risk, stratified by MD adherence and time period, controlling for maternal, lifestyle, and clinical confounders. Results: In total, 797 pregnant women were included. Total MD adherence was not significantly associated with GDM risk. However, both food-specific GLs and dietary patterns with distinct dominant foods were predictive. GL from boiled greens/salads was consistently protective (aOR range: 0.09–0.19, p < 0.05). Patterns high in tea, coffee, and herbal infusions before pregnancy were linked to increased GDM risk (aOR = 1.96, 95% CI: 1.31–3.02, p = 0.001), as were patterns rich in fresh juice, vegetables, fruits, legumes, and olive oil during pregnancy (aOR = 2.91, 95% CI: 1.50–6.24, p = 0.003). A pattern dominated by sugary sweets, cold cuts, animal fats, and refined products was inversely associated with GDM (aOR = 0.34, 95% CI: 0.17–0.64, p = 0.001). A pattern characterized by sugar alternatives was associated with higher risk for GDM (aOR = 4.94, 95% CI: 1.48–19.36, p = 0.014). These associations were supported by high statistical power (power = 1). Conclusions: Within the context of the MD, evaluating both the glycemic impact of specific food groups and identifying risk-associated dietary patterns provides greater insight into GDM risk than overall MD adherence scores alone. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

15 pages, 2526 KiB  
Article
Ultrasound-Enhanced Ionotropic Gelation of Pectin for Lemon Essential Oil Encapsulation: Morphological Characterization and Application in Fresh-Cut Apple Preservation
by Rofia Djerri, Salah Merniz, Maria D’Elia, Nadjwa Aissani, Aicha Khemili, Mohamed Abou Mustapha, Luca Rastrelli and Louiza Himed
Foods 2025, 14(11), 1968; https://doi.org/10.3390/foods14111968 - 31 May 2025
Cited by 1 | Viewed by 590
Abstract
The growing demand for natural preservatives in the food industry has highlighted the importance of essential oils (EOs), despite their limitations related to volatility and oxidative instability. This study addresses these challenges by developing pectin-based microcapsules for encapsulating lemon essential oil (LEO) using [...] Read more.
The growing demand for natural preservatives in the food industry has highlighted the importance of essential oils (EOs), despite their limitations related to volatility and oxidative instability. This study addresses these challenges by developing pectin-based microcapsules for encapsulating lemon essential oil (LEO) using ultrasound-assisted ionotropic gelation. The EO, extracted from Citrus limon (Eureka variety), exhibited a high limonene content (56.18%) and demonstrated significant antioxidant (DPPH IC50: 28.43 ± 0.14 µg/mL; ABTS IC50: 35.01 ± 0.11 µg/mL) and antifungal activities, particularly against A. niger and Botrytis spp. Encapsulation efficiency improved to 82.3% with ultrasound pretreatment, and SEM imaging confirmed spherical, uniform capsules. When applied to fresh-cut apples, LEO-loaded capsules significantly reduced browning (browning score: 1.2 ± 0.3 vs. 2.8 ± 0.2 in control), microbial load (4.9 ± 0.2 vs. 6.5 ± 0.4 log CFU/g), and weight loss (4.2% vs. 6.4%) after 10 days of storage at 4 °C. These results underscore the potential of ultrasound-enhanced pectin encapsulation for improving EO stability and efficacy in food preservation systems. Full article
Show Figures

Graphical abstract

24 pages, 1096 KiB  
Review
Edible Coatings to Prolong the Shelf Life and Improve the Quality of Subtropical Fresh/Fresh-Cut Fruits: A Review
by Farid Moradinezhad, Atman Adiba, Azam Ranjbar and Maryam Dorostkar
Horticulturae 2025, 11(6), 577; https://doi.org/10.3390/horticulturae11060577 - 23 May 2025
Viewed by 2549
Abstract
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of [...] Read more.
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of fruits postharvest. Edible coatings have emerged as a sustainable solution to extending the shelf life of fruits and decreasing postharvest losses. The precise composition and application of these coatings are crucial in determining their effectiveness in preventing microbial growth and preserving the sensory attributes of fruits. Furthermore, the integration of nanotechnology into edible coatings has the potential to enhance their functionalities, including improved barrier properties, the controlled release of active substances, and increased antimicrobial capabilities. Recent advancements highlighting the impact of edible coatings are underscored in this review, showcasing how they help in prolonging shelf life, preserving quality, and minimizing postharvest losses of subtropical fresh fruits worldwide. The utilization of edible coatings presents challenges in terms of production, storage, and large-scale application, all while ensuring consumer acceptance, food safety, nutritional value, and extended shelf life. Edible coatings based on polysaccharides and proteins encounter difficulties due to inadequate water and gas barrier properties, necessitating the incorporation of plasticizers, emulsifiers, and other additives to enhance their mechanical and thermal durability. Moreover, high levels of biopolymers and active components like essential oils and plant extracts could potentially impact the taste of the produce, directly influencing consumer satisfaction. Therefore, ongoing research and innovation in this field show great potential for reducing postharvest losses and strengthening food security. This paper presents a comprehensive overview of the latest advancements in the application of edible coatings and their influence on extending the postharvest longevity of main subtropical fruits, emphasizing the importance of maintaining the quality of fresh and fresh-cut subtropical fruits, prolonging their shelf life, and protecting them from deterioration through innovative techniques. Full article
Show Figures

Figure 1

17 pages, 4767 KiB  
Article
The Microbiome Characterization of Edible Visceral Organs and Fresh Meat During Production in a Pig Processing Facility in Thailand
by Jutamat Klinsoda, Alongkot Boonsoongnern, Narut Thanantong, Tanyanant Kaminsonsakul, Khemmapas Treesuwan, Sudsai Trevanich and Barbara U. Metzler-Zebeli
Pathogens 2025, 14(5), 475; https://doi.org/10.3390/pathogens14050475 - 14 May 2025
Viewed by 1182
Abstract
Besides meat, pig organs are traditionally consumed in Asia. However, they can be a source of food poisoning. Less is known about the microbiome associated with different organ meats and the inter-animal variation in the microbiomes of organs. The aim of this pilot [...] Read more.
Besides meat, pig organs are traditionally consumed in Asia. However, they can be a source of food poisoning. Less is known about the microbiome associated with different organ meats and the inter-animal variation in the microbiomes of organs. The aim of this pilot study was to characterize and compare the bacterial composition in fresh pig meat and organs (i.e., tonsils, lungs, and spleen) and blood from several carcasses using 16S rRNA amplicon sequencing as a screening method. We also investigated how closely the bacterial composition of the meat and organ samples was related to the gut bacterial community and the bacterial communities on the hands of the workers at different positions during meat processing. Meat, organ, blood, and gut (cecum and feces) samples were collected from 12 carcasses in two batches (n = 6/batch), along with swab samples (n = 4/batch) from the hands of the workers at different positions along the processing chain, from which DNA was extracted. The results for the bacterial diversity showed that each sample type (meat, organ, and blood) comprised a unique taxonomic composition (p < 0.05). Moreover, the data confirmed great inter-animal and batch variation for the meat, organs, and blood, which is helpful information for implementing strategies to enhance hygiene measures at pig farms and slaughterhouses, and hence food safety and quality. The genera associated with food safety and spoilage, such as Anoxybacillus, Acinetobacter, Pseudomonas, Campylobacter, and Streptococcus, were also different between the meat, organs, and blood. The bacterial communities in the gut samples distinctly clustered from communities in the pig organs and meat, whereas some overlaps in community clusters between lung, meat, and hand samples existed. This study demonstrates that the spleen, tonsils, and lungs contained more bacterial genera that comprise pathogenic strains than meat cuts, supporting the need to monitor their microbiome composition as potential contamination sources for food safety and spoilage reasons. Full article
Show Figures

Figure 1

22 pages, 1494 KiB  
Article
The Shelf Life of Ready-to-Cook Sweet Potato Varieties Using the Combined Effect of Vacuum-Packaging, Refrigeration, Fruit Pomace Extracts, and Organic Acids
by Mónika Máté, Brigitta Molnár-Kleiber, Julianna Kereszturi, Azin Omid Jeivan, Krisztina Takács and Ágnes Belák
Appl. Sci. 2025, 15(10), 5445; https://doi.org/10.3390/app15105445 - 13 May 2025
Viewed by 690
Abstract
Sweet potatoes play an important role in the global food supply, as they are rich in bioactive components and have numerous health benefits. Their minimally processed, ready-to-eat form is increasingly popular among consumers; however, discoloration and microbiological problems threaten the safety of these [...] Read more.
Sweet potatoes play an important role in the global food supply, as they are rich in bioactive components and have numerous health benefits. Their minimally processed, ready-to-eat form is increasingly popular among consumers; however, discoloration and microbiological problems threaten the safety of these products. The aim of this study is to investigate the shelf life of cleaned, cut, ready-to-eat, vacuum-packed, and refrigerated Bonita (white) and Covington (orange) varieties of sweet potatoes after soaking in apple and chokeberry pomace extracts and treatment with citric and ascorbic acids. A series of microbiological and analytical tests was conducted during the storage period. The microbiological tests included the enumeration of cells of mesophilic aerobic and facultative anaerobic microbes, as well as lactobacilli, lactococci, Enterobacteriaceae, yeasts, and moulds. The analytical tests encompassed the determination of the total phenolic content, antioxidant capacity, water-soluble solid content, and pH value. The prevalent microbial groups detected in the examined sweet potato varieties were lactic acid bacteria, which were present in both fresh samples and following storage. This study established that low-temperature refrigeration (5 °C), vacuum packaging, and organic acid treatment can effectively control lactic acid bacteria, which are pivotal to spoilage. The combination of preservation steps is of particular significance for ready-to-cook sweet potatoes, as this approach effectively extends the shelf life of these products. Full article
(This article belongs to the Special Issue Novel Analyses of Hazards and Risks in Food Safety)
Show Figures

Figure 1

29 pages, 8284 KiB  
Review
A Review on Replacing Food Packaging Plastics with Nature-Inspired Bio-Based Materials
by Shengsi Hu, Lu Han, Chenfeng Yu, Leiqing Pan and Kang Tu
Foods 2025, 14(10), 1661; https://doi.org/10.3390/foods14101661 - 8 May 2025
Cited by 1 | Viewed by 1352
Abstract
Food packaging is critical to delaying food spoilage, maintaining food quality, reducing food waste, and ensuring food safety. However, the environmental problems associated with petroleum-based packaging materials have led to a search for sustainable alternatives. Bio-based materials are emerging as such alternatives, but [...] Read more.
Food packaging is critical to delaying food spoilage, maintaining food quality, reducing food waste, and ensuring food safety. However, the environmental problems associated with petroleum-based packaging materials have led to a search for sustainable alternatives. Bio-based materials are emerging as such alternatives, but they have limitations such as low mechanical strength and poor moisture resistance. Fortunately, nature’s insights guide solutions to these challenges, propelling the evolution of high-performance bio-based packaging. These new food packaging materials are characterized by impact resistance, superhydrophobicity, self-healing capabilities, dynamic controlled release, high mechanical strength, and real-time freshness monitoring. Nature-inspired strategies not only focus on enhancing material performance but also introduce innovative design concepts that effectively avoid the homogenization of food packaging and inspire researchers to develop diverse, cutting-edge solutions. Overcoming the existing problems of bio-based materials and endowing them with breakthrough properties are key drivers for their replacement of food packaging plastics. This review provides insights into the application of biomimetics in enhancing the functionality of bio-based materials and clearly articulates the key drivers for the replacement of plastic food packaging by bio-based materials. By systematically integrating existing research findings, this paper identifies the challenges facing nature-inspired food packaging innovations and points the way to their future development. Full article
Show Figures

Figure 1

20 pages, 3835 KiB  
Article
Control of Persistent Listeria monocytogenes in the Meat Industry: From Detection to Prevention
by Belén Romero de Castilla López, Diego Gómez Lozano, Antonio Herrera Marteache, Pilar Conchello Moreno and Carmen Rota García
Foods 2025, 14(9), 1519; https://doi.org/10.3390/foods14091519 - 26 Apr 2025
Viewed by 819
Abstract
Listeria monocytogenes poses a significant food safety risk, particularly in ready-to-eat (RTE) products, due to its persistence in food processing environments. This study aimed to assess the significance of L. monocytogenes contamination routes, persistence, and monitoring and control in two Spanish food industries: [...] Read more.
Listeria monocytogenes poses a significant food safety risk, particularly in ready-to-eat (RTE) products, due to its persistence in food processing environments. This study aimed to assess the significance of L. monocytogenes contamination routes, persistence, and monitoring and control in two Spanish food industries: a fresh pork-cutting industry (Industry A) and an RTE food production industry (Industry B). A total of 698 samples from raw materials, final products, food contact surfaces (FCSs), and non-food contact surfaces (NFCSs) were analyzed using impedanciometry, isolation and identification on chromogenic agars, and molecular typing using serotyping and pulsed-field gel electrophoresis. In Industry A, L. monocytogenes contamination increased from 16.7% in raw materials to 53.3% in final products, with four persistent strains detected mainly on FCSs, pointing to their role in pathogen dissemination. In Industry B, the presence of L. monocytogenes decreased from 21.2% in raw materials to undetectable levels in the final products. Only one persistent strain was identified, mainly on NFCSs. Serotype 1/2a predominated in both environments. These findings emphasize the importance of robust monitoring, including contamination characterization, for L. monocytogenes prevention and control. Strengthening control measures in fresh meat processing and enhancing facility and equipment designs could improve overall hygiene and reduce the persistence of L. monocytogenes. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

25 pages, 3057 KiB  
Article
Use of Coffee Roasting By-Products (Coffee Silverskin) as Natural Preservative for Fresh-Cut Fennel Slices
by Miriam Arianna Boninsegna, Alessandra De Bruno, Corinne Giacondino, Amalia Piscopo, Giuseppe Crea, Valerio Chinè and Marco Poiana
Foods 2025, 14(9), 1493; https://doi.org/10.3390/foods14091493 - 24 Apr 2025
Viewed by 620
Abstract
The coffee roasting by-product, coffee silverskin, represents a serious problem in environmental pollution. Still, it is also an interesting source of chemical compounds that can be recovered and used in the food industry to improve the physical, chemical, and sensory properties of a [...] Read more.
The coffee roasting by-product, coffee silverskin, represents a serious problem in environmental pollution. Still, it is also an interesting source of chemical compounds that can be recovered and used in the food industry to improve the physical, chemical, and sensory properties of a wide range of food products. This study aimed to evaluate, for the first time, the effect of the coffee silverskin extract (CSE), applied as a dipping treatment, in preserving the storage and the qualitative decay of fresh-cut fennel slices during 14 days of storage at 4 °C. The experimental plan evaluated two dipping solutions (5% and 10%) with coffee silverskin extract and compared them with a conventional dipping in 2% ascorbic acid and a control (water). The use of CSE in the dipping of fresh-cut fennel permitted an increase in the phenolic (chlorogenic and caffeic acids) content for up to 14 days, with good sensory acceptability and physico-chemical and microbiological characteristics. To date, no applications of CSE in this form have been reported, nor has any food by-product extract been investigated for the preservation of fresh-cut fennel, which makes this study a novel contribution to the development of sustainable treatments for minimally processed vegetables. Full article
Show Figures

Figure 1

34 pages, 1224 KiB  
Review
An Overview of Starch-Based Materials for Sustainable Food Packaging: Recent Advances, Limitations, and Perspectives
by Tarsila Rodrigues Arruda, Gabriela de Oliveira Machado, Clara Suprani Marques, Amanda Lelis de Souza, Franciele Maria Pelissari, Taíla Veloso de Oliveira and Rafael Resende Assis Silva
Macromol 2025, 5(2), 19; https://doi.org/10.3390/macromol5020019 - 15 Apr 2025
Cited by 2 | Viewed by 3565
Abstract
As the global plastic pollution crisis intensifies, the development of sustainable food packaging materials has become a priority. Starch-based films present a viable, biodegradable alternative to petroleum-derived plastics but face challenges such as poor moisture resistance and mechanical fragility. This review comprehensively examines [...] Read more.
As the global plastic pollution crisis intensifies, the development of sustainable food packaging materials has become a priority. Starch-based films present a viable, biodegradable alternative to petroleum-derived plastics but face challenges such as poor moisture resistance and mechanical fragility. This review comprehensively examines state-of-the-art advancements in starch-based packaging, including polymer modifications, bio-nanocomposite incorporation, and innovative processing techniques that enhance functionality. Furthermore, the role of advanced analytical tools in elucidating the structure–performance relationships of starch films is highlighted. In particular, we provide an in-depth exploration of advanced characterization techniques, not only to assess starch-based food packaging but also to monitor starch retrogradation, including Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and iodine binding (Blue Value). We also explore cutting-edge developments in active and intelligent packaging, where starch films are functionalized with bioactive compounds for antimicrobial protection and freshness monitoring. While substantial progress has been made, critical challenges remain in upscaling these technologies for industrial production. This review provides a roadmap for future research and the industrial adoption of starch-derived packaging solutions. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

26 pages, 3340 KiB  
Article
Antimicrobial Efficacy of Nanochitosan and Chitosan Edible Coatings: Application for Enhancing the Safety of Fresh-Cut Nectarines
by Virginia Prieto-Santiago, Marcela Miranda, Ingrid Aguiló-Aguayo, Neus Teixidó, Jordi Ortiz-Solà and Maribel Abadias
Coatings 2025, 15(3), 296; https://doi.org/10.3390/coatings15030296 - 3 Mar 2025
Cited by 2 | Viewed by 1977
Abstract
The growing demand for fresh foods, as well as the rise in ready-to-eat foods, is leading the food industry to study edible coatings to maintain the quality of fresh-cut fruit. The objective of this work was, first, to determine the antimicrobial activity of [...] Read more.
The growing demand for fresh foods, as well as the rise in ready-to-eat foods, is leading the food industry to study edible coatings to maintain the quality of fresh-cut fruit. The objective of this work was, first, to determine the antimicrobial activity of a commercial anti-browning solution (A), chitosan (CH), and nanochitosan (NCH) both in vitro and in vivo and, secondly, to assess the effects of those coatings on the quality of fresh-cut nectarines. Antimicrobial activity was studied against Listeria monocytogenes and Saccharomyces cerevisiae, which were used as models of a foodborne pathogen and a spoilage microorganism, respectively. After evaluating their effect against both microorganisms, including in nectarines (Prunus persica L. cv Nectagala), the fruit was treated with commercial anti-browning alone (A), anti-browning with chitosan (A + CH), and anti-browning with nanochitosan (A + NCH). The slices were then sealed in polyethylene plastic trays and stored at 5 °C for 6 days. pH, titratable acidity, soluble solids content, firmness, color, visual acceptance, and microbiological evolution were assessed. Total color difference (TCD) results demonstrated higher value in the fresh-cut fruit without coating. The chitosan coating controlled microbial growth during cold storage without causing significant alterations to the fruit’s quality, while it had the highest overall visual acceptance of the final product. Chitosan demonstrated clear advantages as an edible biocoating for fresh-cut nectarines, whereas nanochitosan did not perform as effectively as expected, indicating the need for further optimization to realize its potential benefits. The combination of chitosan and anti-browning agents presents a sustainable method for enhancing the quality and safety of fresh-cut nectarines, which may contribute to the extension of their shelf life Full article
Show Figures

Graphical abstract

Back to TopTop