Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = frequency-domain airborne EM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 17436 KiB  
Article
Airborne Natural Total Field Broadband Electromagnetics—Configurations, Capabilities, and Advantages
by Alexander Prikhodko, Andrei Bagrianski and Petr Kuzmin
Minerals 2024, 14(7), 704; https://doi.org/10.3390/min14070704 - 11 Jul 2024
Cited by 2 | Viewed by 1836
Abstract
The airborne electromagnetic system MobileMT exploits natural fields in a broadband frequency range with offset measurements of magnetic and electric field variations. It was introduced in 2018 and has since been developed in various configurations, each tailored to meet the demands of different [...] Read more.
The airborne electromagnetic system MobileMT exploits natural fields in a broadband frequency range with offset measurements of magnetic and electric field variations. It was introduced in 2018 and has since been developed in various configurations, each tailored to meet the demands of different exploration tasks, varied terrains, and geoelectrical conditions and support time-domain data with controlled primary field sources. There are four distinct airborne systems: the original MobileMT; the lighter configuration, MobileMTm; the configuration for a drone carrier, MobileMTd; and the innovative time-domain AFMAG hybrid, TargetEM. The paper describes the technical features of each system, their differences and inherent strengths, the optimal usage conditions, and insights into their applications under different conditions across various exploration tasks. Several field case studies are provided to support the natural field electromagnetics capabilities of recovering geological structures in a wide depth range, beginning from the near surface, and address the impact of parasitic IP effects on time-domain data. Full article
Show Figures

Graphical abstract

18 pages, 35994 KiB  
Article
A Case History of Graphite Exploration in North Norway Integrating Various Geophysical Surveys
by Vikas Chand Baranwal, Jan Steinar Rønning, Bjørn Eskil Larsen, Yang Su, Bo Zhang, Yunhe Liu, Xiuyan Ren, Håvard Gautneb and Jomar Gellein
Minerals 2024, 14(3), 266; https://doi.org/10.3390/min14030266 - 2 Mar 2024
Cited by 5 | Viewed by 3132
Abstract
Graphite is considered to be one of Europe’s most critical minerals. It is necessary for the transition from hydrocarbon fuel to electricity due to its use in batteries that power electronic devices and electric transport. In the past, high-quality exposed graphite was found [...] Read more.
Graphite is considered to be one of Europe’s most critical minerals. It is necessary for the transition from hydrocarbon fuel to electricity due to its use in batteries that power electronic devices and electric transport. In the past, high-quality exposed graphite was found in Norway without today’s advanced geophysical and geological methods. Norway is a key destination in Europe for graphite production. With an increasing demand for graphite, there have been efforts to systematically survey the country using modern geophysical and geological methods to find hidden graphite deposits. Among the various geophysical survey methods, electrical and electromagnetic (EM) methods are the first choice for the exploration of graphite due to the material’s high electrical conductivity. Airborne surveys are often used to cover a large area for a regional reconnaissance survey to locate the sites with potential mineral deposits before performing ground geophysical and geological surveys. Therefore, frequency-domain helicopter EM (HEM) and airborne magnetic surveys were performed in Northern Norway to locate interesting anomalies which were followed by ground surveys such as electrical resistivity tomography (ERT), charged-potential (CP), self-potential (SP), ground EM, and geological surveys. Some locations were also investigated with drilling and petrophysical core-sample analysis. In this paper, we present helicopter EM and magnetic data, 3D inversion of HEM data, and a successful ground follow-up survey result from the Vesterålen district in Northern Norway. The HEM survey identified previously known and new graphite occurrences, both partially exposed or buried, which were confirmed using ground surveys, drilling, and laboratory analysis of the samples. Full article
Show Figures

Graphical abstract

17 pages, 4834 KiB  
Article
3D Airborne EM Forward Modeling Based on Finite-Element Method with Goal-Oriented Adaptive Octree Mesh
by Xue Han, Jianfu Ni, Changchun Yin, Bo Zhang, Xin Huang, Jiao Zhu, Yunhe Liu, Xiuyan Ren and Yang Su
Remote Sens. 2023, 15(11), 2816; https://doi.org/10.3390/rs15112816 - 29 May 2023
Cited by 2 | Viewed by 1923
Abstract
The finite-element (FE) method for three-dimensional (3D) airborne electromagnetic (AEM) modeling can flexibly simulate complex geological structures at high accuracy. However, it has low efficiency and high computational requirements. To solve these problems, one needs to generate meshes more reasonably. In view of [...] Read more.
The finite-element (FE) method for three-dimensional (3D) airborne electromagnetic (AEM) modeling can flexibly simulate complex geological structures at high accuracy. However, it has low efficiency and high computational requirements. To solve these problems, one needs to generate meshes more reasonably. In view of this, we develop an adaptive octree meshing scheme for frequency-domain AEM modeling. The octree meshes have the characteristics of regularity and flexibility, while the adaptive algorithm can effectively refine the mesh locally. In our adaptive mesh generation, the posterior errors and weighted coefficients are used to construct the final weighted posterior errors. We verify the accuracy of our method by comparing its results with semi-analytical solutions for a half-space model. Furthermore, we use the spectral-element (SE) method and our method to calculate EM responses for an abnormal block model and compare their computational costs. The results show that our adaptive scheme has obviously technical advantages over SE method for AEM modeling with multiple frequencies and multiple survey stations. Finally, we calculate a model with complex geological structures to verify the feasibility of our algorithm in complex geological circumstances. Full article
(This article belongs to the Special Issue Multi-Scale Remote Sensed Imagery for Mineral Exploration)
Show Figures

Figure 1

23 pages, 48585 KiB  
Article
3D Wavelet Finite-Element Modeling of Frequency-Domain Airborne EM Data Based on B-Spline Wavelet on the Interval Using Potentials
by Lingqi Gao, Changchun Yin, Ning Wang, Jiao Zhu, Yunhe Liu, Xiuyan Ren, Bo Zhang and Bin Xiong
Remote Sens. 2021, 13(17), 3463; https://doi.org/10.3390/rs13173463 - 1 Sep 2021
Cited by 2 | Viewed by 2664
Abstract
We present a wavelet finite-element method (WFEM) based on B-spline wavelets on the interval (BSWI) for three-dimensional (3D) frequency-domain airborne EM modeling using a secondary coupled-potential formulation. The BSWI, which is constructed on the interval (0, 1) by joining piecewise B-spline polynomials between [...] Read more.
We present a wavelet finite-element method (WFEM) based on B-spline wavelets on the interval (BSWI) for three-dimensional (3D) frequency-domain airborne EM modeling using a secondary coupled-potential formulation. The BSWI, which is constructed on the interval (0, 1) by joining piecewise B-spline polynomials between nodes together, has proved to have excellent numerical properties of multiresolution and sparsity and thus is utilized as the basis function in our WFEM. Compared to conventional basis functions, the BSWI is able to provide higher interpolating accuracy and boundary stability. Furthermore, due to the sparsity of the wavelet, the coefficient matrix obtained by BSWI-based WFEM is sparser than that formed by general FEM, which can lead to shorter solution time for the linear equations system. To verify the accuracy and efficiency of our proposed method, we ran numerical experiments on a half-space model and a layered model and compared the results with one-dimensional (1D) semi-analytic solutions and those obtained from conventional FEM. We then studied a synthetic 3D model using different meshes and BSWI basis at different scales. The results show that our method depends less on the mesh, and the accuracy can be improved by both mesh refinement and scale enhancement. Full article
(This article belongs to the Special Issue Airborne Electromagnetic Surveys)
Show Figures

Figure 1

17 pages, 12235 KiB  
Article
Three-Dimensional Anisotropic Inversions for Time-Domain Airborne Electromagnetic Data
by Yang Su, Changchun Yin, Yunhe Liu, Xiuyan Ren, Bo Zhang and Bin Xiong
Minerals 2021, 11(2), 218; https://doi.org/10.3390/min11020218 - 20 Feb 2021
Cited by 4 | Viewed by 2880
Abstract
Rocks and ores in nature usually appear macro-anisotropic, especially in sedimentary areas with strong layering. This anisotropy will lead to false interpretation of electromagnetic (EM) data when inverted under the assumption of an isotropic earth. However, the time-domain (TD) airborne EM (AEM) inversion [...] Read more.
Rocks and ores in nature usually appear macro-anisotropic, especially in sedimentary areas with strong layering. This anisotropy will lead to false interpretation of electromagnetic (EM) data when inverted under the assumption of an isotropic earth. However, the time-domain (TD) airborne EM (AEM) inversion for an anisotropic model has not attracted much attention. To get reasonable inversion results from TD AEM data, we present in this paper the forward modeling and inversion methods based on a triaxial anisotropic model. We apply three-dimensional (3D) finite-difference on the secondary scattered electric field equation to calculate the frequency-domain (FD) EM responses, then we use the inverse Fourier transform and waveform convolution to obtain TD responses. For the regularized inversion, we calculate directly the sensitivities with respect to three diagonal conductivities and then use the Gauss–Newton (GN) optimization scheme to recover model parameters. To speed up the computation and to reduce the memory requirement, we adopt the moving footprint concept and separate the whole model into a series of small sub-models for the inversion. Finally, we compare our anisotropic inversion scheme with the isotropic one using both synthetic and field data. Numerical experiments show that the anisotropic inversion has inherent advantages over the isotropic ones, we can get more reasonable results for the anisotropic earth structures. Full article
(This article belongs to the Special Issue 3D-Modelling of Crustal Structures and Mineral Deposit Systems)
Show Figures

Figure 1

25 pages, 8252 KiB  
Article
Spectral Induced Polarization Survey with Distributed Array System for Mineral Exploration: Case Study in Saudi Arabia
by Fouzan A. Alfouzan, Abdulrahman M. Alotaibi, Leif H. Cox and Michael S. Zhdanov
Minerals 2020, 10(9), 769; https://doi.org/10.3390/min10090769 - 30 Aug 2020
Cited by 15 | Viewed by 5076
Abstract
The Saudi Arabian Glass Earth Pilot Project is a geophysical exploration program to explore the upper crust of the Kingdom for minerals, groundwater, and geothermal resources as well as strictly academic investigations. The project began with over 8000 km2 of green-field area. [...] Read more.
The Saudi Arabian Glass Earth Pilot Project is a geophysical exploration program to explore the upper crust of the Kingdom for minerals, groundwater, and geothermal resources as well as strictly academic investigations. The project began with over 8000 km2 of green-field area. Airborne geophysics including electromagnetic (EM), magnetics, and gravity were used to develop several high priority targets for ground follow-up. Based on the results of airborne survey, a spectral induced polarization (SIP) survey was completed over one of the prospective targets. The field data were collected with a distributed array system, which has the potential for strong inductive coupling. This was examined in a synthetic study, and it was determined that with the geometries and conductivities in the field survey, the inductive coupling effect may be visible in the data. In this study, we also confirmed that time domain is vastly superior to frequency domain for avoiding inductive coupling, that measuring decays from 50 ms to 2 s allow discrimination of time constants from 1 ms to 5 s, and the relaxation parameter C is strongly coupled to intrinsic chargeability. We developed a method to fully include all 3D EM effects in the inversion of induced polarization (IP) data. The field SIP data were inverted using the generalized effective-medium theory of induced polarization (GEMTIP) in conjunction with an integral equation-based modeling and inversion methods. These methods can replicate all inductive coupling and EM effects, which removes one significant barrier to inversion of large bandwidth spectral IP data. The results of this inversion were interpreted and compared with results of drill hole set up in the survey area. The drill hole intersected significant mineralization which is currently being further investigated. The project can be considered a technical success, validating the methods and effective-medium inversion technique used for the project. Full article
(This article belongs to the Special Issue Geophysics for Mineral Exploration)
Show Figures

Figure 1

21 pages, 17220 KiB  
Article
Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea
by Sébastien Angelliaume, Xavier Ceamanos, Françoise Viallefont-Robinet, Rémi Baqué, Philippe Déliot and Véronique Miegebielle
Sensors 2017, 17(8), 1772; https://doi.org/10.3390/s17081772 - 2 Aug 2017
Cited by 50 | Viewed by 6128
Abstract
Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is [...] Read more.
Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface. Full article
(This article belongs to the Special Issue Sensors for Oil Applications)
Show Figures

Figure 1

14 pages, 4037 KiB  
Article
In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR
by Christian N. Koyama, Hai Liu, Kazunori Takahashi, Masanobu Shimada, Manabu Watanabe, Tseedulam Khuut and Motoyuki Sato
Remote Sens. 2017, 9(6), 580; https://doi.org/10.3390/rs9060580 - 9 Jun 2017
Cited by 37 | Viewed by 9130
Abstract
At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR) probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of [...] Read more.
At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR) probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of soil water contents at various depths by classical methods are cumbersome and usually highly invasive. We propose an improved method for the estimation of vertical soil moisture profiles from multi-offset ground penetrating radar (GPR) data. A semi-automated data acquisition technique allows for very fast and robust measurements in the field. Advanced common mid-point (CMP) processing is applied to obtain quantitative estimates of the permittivity and depth of the reflecting soil layers. The method is validated against TDR measurements using data acquired in different environments. Depth and soil moisture contents of the reflecting layers were estimated with root mean square errors (RMSE) on the order of 5 cm and 1.9 Vol.-%, respectively. Application of the proposed technique for the validation of synthetic aperture radar (SAR) soil moisture estimates is demonstrated based on a case study using airborne L-band data and ground-based P-band data. For the L-band case we found good agreement between the near-surface GPR estimates and extended integral equation model (I2EM) based SAR retrievals, comparable to those obtained by TDR. At the P-band, the GPR based method significantly outperformed the TDR method when using soil moisture estimates at depths below 30 cm. Full article
(This article belongs to the Special Issue Calibration and Validation of Synthetic Aperture Radar)
Show Figures

Graphical abstract

Back to TopTop