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Abstract: We present a wavelet finite-element method (WFEM) based on B-spline wavelets on
the interval (BSWI) for three-dimensional (3D) frequency-domain airborne EM modeling using a
secondary coupled-potential formulation. The BSWI, which is constructed on the interval (0, 1)
by joining piecewise B-spline polynomials between nodes together, has proved to have excellent
numerical properties of multiresolution and sparsity and thus is utilized as the basis function in our
WFEM. Compared to conventional basis functions, the BSWI is able to provide higher interpolating
accuracy and boundary stability. Furthermore, due to the sparsity of the wavelet, the coefficient
matrix obtained by BSWI-based WFEM is sparser than that formed by general FEM, which can lead
to shorter solution time for the linear equations system. To verify the accuracy and efficiency of our
proposed method, we ran numerical experiments on a half-space model and a layered model and
compared the results with one-dimensional (1D) semi-analytic solutions and those obtained from
conventional FEM. We then studied a synthetic 3D model using different meshes and BSWI basis at
different scales. The results show that our method depends less on the mesh, and the accuracy can be
improved by both mesh refinement and scale enhancement.

Keywords: frequency-domain airborne EM; 3D modeling; coupled-potential formulation; wavelet
finite-element method; B-spline wavelet on the interval

1. Introduction

Airborne electromagnetic method (AEM) is an efficient and low-cost tool for geo-
physical exploration. It is very suitable for explorations in areas with complex terrains
such as mountains, deserts, swamps and forest-covered areas. Its applications cover min-
eral explorations, oil and gas, groundwater detections, environmental and engineering
investigations, geological disaster monitoring, etc. [1–7]. In recent years, the computer
science and numerical simulation algorithms have made remarkable progress, hence, 3D
forward modeling and inversions has attracted more and more attention. However, efficient
and accurate modeling algorithms are still a great challenge. The existing algorithms for
frequency-domain airborne EM modeling includes integral equation (IE), finite-difference
(FD), and finite-element (FE) methods [8–12]. The IE method is one of the earliest numerical
methods used in 3D EM forward modeling. It needs only to discretize the anomalous
areas. Therefore, the coefficient matrix is normally smaller, which is beneficial to memory
consumption and a fast solution. However, the coefficient matrix is asymmetric and dense,
which makes the IE method limited to simple models. The FD method is normally con-
structed on hexahedral staggered grids [13]. It is simple in theory and easy to implement.
However, most applications based on the FD method are still limited to structured grids, al-
though scientists have also paid attention to the unstructured grid. As a result, this method
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depends heavily on the mesh for improving the accuracy, especially for complex models.
The FE method divides the model into a series of non-overlapping meshes and uses basis
functions to approximate the unknown field variation in each element. Compared to other
numerical methods, the FE method has received more attention in geophysical EM forward
modeling in the last decades. This is mainly because the FE method has more flexibility
and higher accuracy, as one can work on unstructured meshes for complicated models
such as terrain.

However, there exist disadvantages with the conventional FE method, in that the
modeling accuracy depends heavily on the mesh [14,15]. One needs to refine the mesh for
higher accuracy, which can lead to the rapid growth of unknowns, especially for the hexa-
hedral mesh that will be discussed in this paper. High-order FEM can improve the accuracy
by enhancing the order of interpolation basis functions [15,16], but the matrix will become
much denser when higher-order basis functions are used, and the time consumption rises
dramatically. Additionally, strong oscillations are likely to occur in the results when the
order of polynomial interpolation is high. This is called the Runge phenomenon [17]. In this
paper, we introduce the WFEM to ameliorate the deficiencies in our airborne EM modeling.

Wavelet is a useful mathematical tool to approximate functions. Different from the
common interpolation based on polynomials, the wavelet theory constructs a multiresolu-
tion framework. By combining the wavelets at different scales together, a given function
can theoretically be approximated at any resolution. The initial research on wavelet theory
began in many different disciplines in the 20th century [18–23]. Subsequently, more and
more attention has been paid to the excellent properties of wavelets. Currently, it has been
widely applied to image processing, signal processing and many other fields [24,25]. As
for geophysics, the applications of wavelet cover geophysical inversions [26–28], modeling
of seismic wave propagation [29], geophysical data processing [30], and so on. Meanwhile,
in the field of numerical simulation, the wavelet-related algorithms have also been de-
veloped for years, such as wavelet finite-difference, wavelet finite-volume, and wavelet
finite-element methods [31,32]. Among these methods, the WFEM has gained more pref-
erence and developed fast. The WFEM uses wavelet functions or scaling functions as
the basis function in order to obtain a nested multi-level solution with high accuracy and
efficiency. Among different wavelet basis, the DB wavelet is the most commonly used one
in WFEM [22]. Sarkar and Adve (1994) applied WFEM to solve the Maxwell’s equations
for two-dimensional (2D) waveguide problems [33]; Castro and Barbosa (2006) introduced
the DB wavelet for 2D structure analysis using WFEM [34]. In geophysics, Zhang et al.
(2005) proposed a DB-based WFEM for solving 2D wave equation in the fluid-saturated
porous media [35]; Feng et al. (2016) applied the DB-based WFEM to solve the 2D wave
equation for ground penetrating radar (GPR) [36]; Hussain et al. (2016, 2017) introduced
a WFEM using DB wavelet to solve 1D and 2D marine controlled-source EM forward
problem [37,38]; Chen and Li (2019) proposed a WFEM for 3D marine controlled-source
electromagnetic modeling in anisotropic medium using DB wavelet [39]. Additionally, the
WFEM based on other wavelet bases such as polynomial wavelet and second-generation
wavelet has also made remarkable progress [40,41], which we do not address in detail here.

However, there exists important factors that prevent the DB wavelet from continuously
developing. One such factor is that the DB wavelet does not have explicit expressions.
Thus, it is a challenge to calculate its integration or derivative. The second is that the
DB wavelet often needs to be truncated in WFEM because it is defined on the whole
real axis. Numerical instability is hard to avoid if one uses the truncated DB wavelet to
approximate the unknown functions in a finite range. These two factors affect both the
applicability and accuracy of the DB wavelet in WFEM. In this paper, we select the wavelet
basis, called the B-spline wavelet on the interval (BSWI) that was first proposed by Chui
and Quak [42]. Its construction is derived from the B-spline function. The B-spline function
is defined by piecewise polynomials between nodes [43]. The B-spline interpolation has
proved to have better characteristics than polynomial interpolating because they are able
to avoid the Runge phenomenon as the order increases. Meanwhile, the low-order B-spline
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interpolation is likely to produce the same effect as high-order polynomial interpolation.
Based on the B-spline functions, the BSWI is established by combining B-spline functions
between nodes on the interval (0, 1). It inherits all the excellent properties of wavelet and
B-spline function. Compared to the DB wavelet, the BSWI is more suitable for WFEM
for two reasons. Firstly, the BSWI basis has explicit expression. Thus, its integration
and derivative can be easily executed. Secondly, the BSWI uses special functions at the
boundary to approximate the field near the boundary so that no truncation is needed.
Goswami et al. (1995) applied the BSWI to numerical computation for the first time to
make the matrix in IE sparser [44]; Xiang et al. (2006) proposed a BSWI-based WFEM to
solve plane elastomechanics and moderately thick plate problems [45]; Shen et al. (2020)
used the BSWI for FEM to study the 2D elastic wave propagation [46]; Feng et al. (2019)
proposed a BSWI-based WFEM for 2D GPR modeling to study the EM responses of porous
media, which is so far the only research on BSWI-based FEM in geophysics [47].

Normally, the EM forward problems can be solved in terms of the electric or magnetic
field or the coupled vector-scalar potentials [48,49]. For the first case, the nodal-based FEM
is not able to guarantee the normal discontinuity and tangential continuity of the electric
field at the surfaces [50]. Furthermore, it fails to satisfy the zero-divergence condition.
Therefore, spurious modes may exist. Instead, the edge-based finite-element method pro-
posed by Nédéléc (1980) uses vector basis functions defined along the edges to approximate
the electric field [50]. This guarantees the continuity of the tangential field component
while allowing the discontinuity of the normal component at the same time. Moreover,
it can avoid the spurious modes because the construction of vector basis functions sat-
isfies the divergence-free condition of the electric field in a source-free mesh. Thus, the
edge-based FEM has obtained more applications in EM modeling. For the second case,
the magnetic vector potential and the electric scalar potential are in nature continuous
at surfaces, thus, the nodal-based FEM is able to solve it properly. In order to assure the
uniqueness of the solution, a Coulomb or Lorentz gauge needs to be applied [51]. In this
paper, we enforce a Coulomb gauge to avoid the spurious modes as well as to form a
symmetric coefficient matrix [52]. The coupled-potential formulation has been applied to
the modeling of global geomagnetic induction, MT, and the controlled-source EM [53–56].
In this paper, we present a secondary coupled-potential formulation and their WFEM
solutions. The paper is organized as follows. We first derive the governing equations of 3D
frequency-domain AEM forward modeling based on coupled potentials. After introducing
the theory of BSWI and BSWI-based WFEM, we illustrate how to construct and solve the
linear system using WFEM. We then verify the accuracy and demonstrate the advantages
of our method via 3D numerical experiments.

2. Methodology
2.1. Governing Equations

In this paper, the frequency-domain forward problem is solved in terms of coupled
vector-scalar potentials. Assuming a time dependence of eiωt, the diffusive Maxwell’s
equation after ignoring the displacement current can be written as

∇× E = −iωµ0H (1)

∇×H = Js + σE (2)

where ω is the angular frequency, µ0 represents the magnetic permeability in the free-space,
σ is the conductivity, while Js denotes the source current distribution. The electric field E
and magnetic field H can be represented in terms of the magnetic vector potential A and
the electric scalar potential Ψ, i.e.,

H =
1

µ0
∇×A (3)

E = −iω(A +∇Ψ) (4)
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Inserting Equations (3) and (4) into (1) and (2), we obtain the following curl-curl
equation for the potentials:

∇×∇×A + iωµ0σ(A +∇Ψ) = µ0Js (5)

Equation (5) is likely to cause spurious modes, because the divergence of the vector
potential is not uniquely defined. To guarantee the uniqueness of the solution to the vector
potential A and to form a symmetric matrix, we introduce the Coulomb gauge ∇ ·A = 0
into Equation (5). Expanding the first term in Equation (5) and taking into account the
vector identity ∇×∇×A−∇(∇ ·A) = −∇2A and the Coulomb gauge, we can get the
following equation:

∇2A− iωµ0σ(A +∇Ψ) = −µ0Js (6a)

To satisfy the divergence-free condition of the current density ∇ · J = 0, we add an
auxiliary equation in our model solutions, namely

∇ · [iωµ0σ(A +∇Ψ)] = −∇ · (µ0Js) (6b)

In the following, we utilize a secondary potential formulation to avoid the singularities
near the source. The secondary potentials are defined by

A = Ap + As (7a)

Ψ = Ψp + Ψs (7b)

where Ap, Ψp are, respectively, the primary vector potential and scalar potential, while
As and Ψs are the secondary potentials. Substituting Equation (7a,b) into Equation (6a,b),
we get

∇2As − iωµ0σ(As +∇Ψs) = −iωµ0∆σ
(
Ap +∇Ψp

)
(8a)

∇ · [iωµ0σ(As +∇Ψs)] = ∇ ·
[
iωµ0∆σ

(
Ap +∇Ψp

)]
(8b)

where ∆σ = σ−σp. From Equation (4) it is seen that the primary potentials (Ap, Ψp) can be
replaced by the primary electric field Ep. Thus, Equation (8a,b) can be simplified as

∇2As − iωµ0σ(As +∇Ψs) = −µ0∆σEp (9a)

∇ · [iωµ0σ(As +∇Ψs)] = ∇ ·
(
µ0∆σEp

)
(9b)

where Ep denotes the responses of a dipole in a free-space.
Since the EM fields are very small at a great distance from the source, we impose a

Dirichlet boundary condition at the outer boundary Γ, i.e.,

(As, Ψs)Γ = (0, 0) (10)

In summary, the governing Equation (9a,b) and the boundary condition of Equation (10)
together constitute the coupled-potential system for solving frequency-domain airborne
EM forward problems.

2.2. B-Spline Wavelet on the Interval

The wavelet provides a multiresolution framework for representing functions. In
general, if a function w(x) satisfies

∫ ∞
−∞ w(x)dx = 0, it can be defined as a wavelet. By

stretching and translation, a set of functions can be created from w(x), i.e.,

wj,k(x) = 2
j
2 w
(

2jx− k
)

(11)
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where j, k ∈ Z. Note that this set of functions can form a basis on L2(R). Any function f (x)
from L2(R) can be represented as

f (x) = ∑
j

∑
k

dj,kwj,k(x) (12)

where dj,k denotes the wavelet coefficients. In this way, the wavelet basis at each scale can
construct a wavelet space Wj, and L2(R) is the direct sum of all these wavelet spaces. This
can be simply represented as

W j := closL2(R)

{
wj,k(x) : k ∈ Z

}
, j ∈ Z (13)

L2(R) = ∑
j∈Z

W j = · · ·+ W−1 + W0 + W1 + · · · (14)

where clos{} denotes the closure operator. More specifically, wj0,k(x) for a given j0 is a set
that contains all wavelets at scale j0. These wavelets together can form the enclosure space
Wj0 . Thus, any function in this space can be represented as a linear combination of the
wavelets in Wj0 . Furthermore, all the functions in L2(R) can then be represented as a linear
combination of wavelets in all wavelet spaces.

From Equation (13), we can further construct the space Vj by

Vj = · · ·+ Wj−2 + Wj−1, j ∈ Z (15)

It is clear that
Vj = Vj−1 + Wj−1 (16)

Equations (15) and (16) show that {Vj} forms a multiresolution nested space (see
Figure 1) that satisfies the following relationship:

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R) (17)

Figure 1. Multiresolution nested space.

According to wavelet theory, similar to wavelet functions and wavelet spaces, there
also exist scaling functions sj,k(x) that can construct space Vj, so that any function can be
decomposed, namely

f (x) =
j=j0

∑
k

cj0,ksj0,k(x) (18)
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Furthermore, Equation (18) can also be written as

f (x) =
j=j0−1

∑
k

cj,ksj,k(x)+
j=j0−1

∑
k

dj,kwj,k(x)

=
j=j0−Z

∑
k

cj,ksj,k(x)+
j=j0−1

∑
j=j0−Z

∑
k

dj,kwj,k(x)
(19)

where Z can be any positive integer. In this way, a function on L2(R) can be represented
by scaling functions and wavelet functions at any resolution. More specifically, scaling
functions approximate the general information, while wavelet functions describe details at
certain scales. In this paper, we utilize scaling functions as the basis function in our finite-
element method for two reasons. The first is that BSWI scaling functions can accurately
hold the general information at a given scale, which means that the unknown field inside
each element can be well approximated. The second is that the space {Vj} constructed by
scaling functions is a set of nested multiresolution spaces, so that it is natural and direct for
us to enhance the scale of the basis functions and we can approximate the unknown field
at a detailed resolution.

The B-spline wavelet on the interval is normally defined on a knot sequence on the
reference interval (0, 1) and any function f (x) on the interval (a, b) can be mapped to the
interval (0, 1) by a simple transformation formula ξ = (x− a)/(b− a). In general, for a
given scale j (j ∈ Z+) and order m, the interval (0, 1) is divided into 2j segments, then m−1
knots are added to each endpoint as virtual multi-knots to describe the information at the

boundary. In this way, the knot sequence
{

ξ
j
k

}2j+m−1

k=m+1
with a total number of 2j + 2m−1

is obtained. B-spline polynomials are then formed between these knots. Subsequently,
BSWI can be constructed by joining these B-spline polynomials together. Note that to
avoid confusing BSWI with the electric scalar potential Ψ, we use s and w in this paper to
represent the scaling functions and wavelet functions of BSWI, respectively.

The BSWI basis at different scales can be transformed into each other because they
satisfy a recursive relationship [42]. Taken as an example, Goswami et al. (1995) gave the
expressions of the BSWI basis at 0th scale and mth order [44]. Thus, the jth scale and mth
order of BSWI (simply denoted as BSWImj) scaling functions sj

m,k(ξ) and the corresponding

wavelet functions wj
m,k(ξ) can be evaluated by the following equations:

sj
m,k(ξ) =


sl

m,k

(
2j−lξ

)
, k = −m + 1, . . . ,−1 (0− boundary)

sl
m,2j−m−k

(
1− 2j−lξ

)
, k = 2j −m + 1, . . . , 2j − 1 (1− boundary)

sl
m,0

(
2j−lξ − 2−lk

)
, k = 0, . . . , 2j −m (inner)

(20a)

wj
m,k(ξ) =


wl

m,k

(
2j−lξ

)
, k = −m + 1, . . . ,−1 (0− boundary)

wl
m,2j−2m−k+1

(
1− 2j−lξ

)
, k = 2j −m + 2, . . . , 2j −m (1− boundary)

wl
m,0

(
2j−lξ − 2−lk

)
, k = 0, . . . , 2j − 2m + 1 (inner)

(20b)

In this paper, we set j = 1 to be the initial scale. The scaling functions and wavelet
functions at all scales can be calculated according to Equation (20a,b). There are m−1
0-boundary and 1-boundary scaling functions and wavelet functions, and 2j−m + 1 inner
scaling functions and 2j−2m + 2 wavelet functions (only wavelet functions at the 1st scale
do not satisfy the index in Equation (20b), because they do not contain any inner wavelet
functions). After we have obtained the BSWImj basis, the scaling functions and the wavelet
functions on (0, 1) can be written in vector format as

s =
{

sj
m,−m+1(ξ), sj

m,−m+2(ξ), · · · , sj
m,2j−1

(ξ)
}

(21a)
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w =
{

wj
m,−m+1(ξ), wj

m,−m+2(ξ), · · · , wj
m,2j−m

(ξ)
}

(21b)

It must be pointed out that the boundary BSWI basis are different from the inner
ones, so that the truncated boundary can be properly described. Meanwhile, the BSWI
basis has local support, which means that each scaling function or wavelet function can
only affect a part of the interval (0, 1). The advantage is that the boundary can be well
approximated no matter how high the scale increases. On the contrary, the conventional
FEM interpolation that uses polynomials defined on the whole interval can cause a strong
oscillation as the order of polynomials keeps increasing. Thus, our method can avoid the
so-called Runge phenomenon.

Figure 2 shows the linear (i.e., m = 2) scaling functions and the wavelet functions at 1st
scale and 2nd scale. We use the linear scaling functions in this paper as the basis functions
in WFEM to approximate the unknown fields and to make the coefficient matrix sparse. We
define n = 2j + m−1, which means the number of BSWI nodes for a given order and scale.

Figure 2. Linear (m = 2) scaling functions and wavelet functions of BSWI: (a) scaling functions at scale j = 1; (b) scaling
functions at scale j = 2; (c) wavelet functions at scale j = 1; (d) wavelet functions at scale j = 2.

Tensor product is a simple and direct way to construct BSWI basis on higher dimen-
sions. Higher-dimensional BSWI basis naturally inherits all the characteristics from 1D
BSWI basis. Moreover, this strategy can also form a nested multiresolution framework
on higher dimension as the scale j varies (same as that shown in Figure 1). The scaling
function s and the tensor product subspace Fj for 3D cases can be written as

s = s1 ⊗ s2 ⊗ s3 (22a)

Fj = V1
j ⊗V2

j ⊗V3
j (22b)
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where s1 =
{

sj
m,−m+1(ξ), sj

m,−m+2(ξ), · · · , sj
m,2j−1

(ξ)
}

denotes the vector combined by
scaling functions on ξ axis, while s2 and s3 are defined on η and ζ axis, and ⊗ denotes the
Kronecker symbol.

Based on this discussion, 2D and 3D scaling functions are shown in Figures 3 and 4.
To avoid confusion, we renumbered them from 1 to n2 for 2D case and from 1 to n3 for
3D case. Figure 3 shows the 2D BSWI scaling functions at the corner (Figure 3a,d), inside
(Figure 3b,e), and on the edge (Figure 3c,e) at scale j = 1 and j = 2. Figure 4 shows the 3D
BSWI scaling functions at the corner (Figure 4a,e), on the edge (Figure 4b,f), on the surface
(Figure 4c,g) and inside (Figure 4d,h) at scale j = 1 and j = 2.

Figure 3. 2D linear BSWI basis at 1st scale (the upper row) and 2nd scale (the under row): (a) s1
2,1(ξ, η) ; (b) s1

2,5(ξ, η);
(c) s1

2,8(ξ, η); (d) s2
2,1(ξ, η); (e) s2

2,9(ξ, η); (f) s2
2,23(ξ, η).

Figure 4. 3D linear BSWI basis at 1st scale (the upper row) and 2nd scale (the under row): (a) s1
2,19(ξ, η, ζ); (b) s1

2,22(ξ, η, ζ);
(c) s1

2,23(ξ, η, ζ); (d) s1
2,14(ξ, η, ζ); (e) s2

2,101(ξ, η, ζ); (f) s2
2,106(ξ, η, ζ); (g) s2

2,107(ξ, η, ζ); (h) s2
2,63(ξ, η, ζ).
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2.3. BSWI Based Wavelet Finite-Element Method

In traditional finite-element method, the basis functions (also known as shape func-
tions) are normally used to describe the unknown field function u(x, y, z) in each ele-
ment, i.e.,

u(x, y, z) = Nue (23)

where N denotes the basis function vector, while ue is a column vector that denotes the
physical degree of freedom (DOF).

As for the WFEM, according to Equation (18), any unknown function in a given
hexahedral element can be mapped into a reference mesh and approximated by 3D scaling
functions at scale j, namely

u(x, y, z)→ u(ξ, η, ζ) = sae (24)

where u(ξ, η, ζ) represents the unknown function in the reference hexahedral domain,
while ae = {a1, a2, · · · , an, · · · , an2 , · · · , an3}T denotes the wavelet coefficients column
vector. In order to convert the modeling problem from wavelet domain to physical domain,
which can be understood as a bridge between Equations (23) and (24), we introduce the
following transformation matrix:

T = R−1 (25)

R = R1 ⊗R2 ⊗R3 (26)

where T is the transformation matrix, R can be calculated from the following equations:
R1 =

{
sT

1 (ξ1), sT
1 (ξ2), · · ·, sT

1 (ξn)
}T

R2 =
{

sT
2 (ξ1), sT

2 (ξ2), · · ·, sT
2 (ξn)

}T

R3 =
{

sT
3 (ξ1), sT

3 (ξ2), · · ·, sT
3 (ξn)

}T
(27)

Note that the transformation matrix describes the value of scaling functions on each
node in the reference mesh that can be simply taken as a wavelet transform. Thus, we have

ae = Tue (28)

The above procedure constructs the connection between the DOFs in physical space
and the wavelet coefficients in the wavelet space. Equation (24) can be further expressed as

u(x, y, z)→ u(ξ, η, ζ) = sTue = Nue (29)

where N = sT is the basis function vector in WFEM.
So far, we have established the basis function of the BSWI-based WFEM method. The

following parts of WFEM are similar to conventional FEM, and will be discussed it in the
next section.

Figure 5a shows the layout and corresponding local index of nodes in the reference
mesh for scale j and order m, while Figure 5b,c shows the BSWI21 and BSWI22 elements.
Note that the layout of nodes is the same as that in the 3D BSWI basis, however, the
basis functions are not exactly the same as the 3D BSWI basis functions because of the
transformation matrix.
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Figure 5. Layout of 3D BSWI elements: (a) BSWImj element; (b) BSWI21 element; (c) BSWI22 element.

2.4. WFEM Analysis

In this section, we expand the vector potential A in the governing Equation (9a,b) into
x, y, z components and obtain the following equations:

∇2Asx − iωµ0σ

(
Asx +

∂Ψs

∂x

)
= −µ0∆σEpx (30a)

∇2Asy − iωµ0σ

(
Asy +

∂Ψs

∂x

)
= −µ0∆σEpy (30b)

∇2Asz − iωµ0σ

(
Asz +

∂Ψs

∂x

)
= −µ0∆σEpz (30c)

iωµ0σ

[(
∂Asx

∂x
+

∂Asy

∂y
+

∂Asz

∂z

)
+∇ · (∇Ψs)

]
= −∇ ·

(
µ0∆σEp

)
(30d)

and we discretize by presenting them in weak format as

−
(
∇NT,∇Asx

)
Ω
− iωµ0σ

(
NT, Asx +

∂Ψs

∂x

)
Ω
= −µ0∆σ

(
NT, Epx

)
Ω

(31a)

−
(
∇NT,∇Asy

)
Ω
− iωµ0σ

(
NT, Asy +

∂Ψs

∂y

)
Ω
= −µ0∆σ

(
NT, Epy

)
Ω

(31b)

−
(
∇NT,∇Asz

)
Ω
− iωµ0σ

(
NT, Asz +

∂Ψs

∂z

)
Ω
= −µ0∆σ

(
NT, Epz

)
Ω

(31c)

− iωµ0σ
(
∇NT, As

)
Ω
− iωµ0σ

(
∇NT,∇Ψs

)
Ω
= −µ0∆σ

(
NT,∇ · Ep

)
Ω

(31d)

where (u, v)Ω =
∫

Ω uvdΩ. Then, we use the basis function of WFEM in Equations (24)
and (29) to present the unknown potentials. For each mesh containing n3 nodes, the
weak format can be represented as a linear equation Keue = be, where Ke is a complex
symmetric matrix:

Ke =


K11 0 0 K14

0 K22 0 K24

0 0 K33 K34

K41 K42 K43 K44

 (32)

where the elements can be written as

K11 = K22 = K33 =
y

Ω

[
−
(

∂NT

∂x
∂N
∂x

+
∂NT

∂y
∂N
∂y

+
∂NT

∂z
∂N
∂z

)
− iωµ0σNTN

]
dΩ (33a)
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K44 = −iωµ0σ
y

Ω

(
∂NT

∂x
∂N
∂x

+
∂NT

∂y
∂N
∂y

+
∂NT

∂z
∂N
∂z

)
dΩ (33b)

K14 = −iωµ0σ
y

Ω

(
NT ∂N

∂x

)
dΩ (33c)

K24 = −iωµ0σ
y

Ω

(
NT ∂N

∂y

)
dΩ (33d)

K34 = −iωµ0σ
y

Ω

(
NT ∂N

∂z

)
dΩ (33e)

K41 = −iωµ0σ
y

Ω

(
∂NT

∂x
N

)
dΩ (33f)

K42 = −iωµ0σ
y

Ω

(
∂NT

∂y
N

)
dΩ (33g)

K43 = −iωµ0σ
y

Ω

(
∂NT

∂z
N

)
dΩ (33h)

while the right-hand side can be written as

be = −µ0∆σ

( (
NT, N

)
ΩEpx,

(
NT, N

)
ΩEpy,

(
NT, N

)
ΩEpz,(

∂NT

∂x , N
)

Ω
Epx +

(
∂NT

∂y , N
)

Ω
Epy +

(
∂NT

∂z , N
)

Ω
Epz

)T

(34)

where Epx, Epy, Epz are the primary electrical field column vector in x, y, and z directions.
As mentioned before, we assume the primary field to be excited by a transmitting source in
the free-air space, so we have for a vertical magnetic dipole (VMD) the electrical field:

Epx =
iωµ0m
4πr2 (ik0r + 1)e−ik0r y

r
(35a)

Epy = − iωµ0m
4πr2 (ik0r + 1)e−ik0r x

r
(35b)

Epz = 0 (35c)

where m denotes the dipole moment, k =
√

iωµ0σ + ω2µ0ε0, x, y, z are the relative distances
between the source and the receiver at the x-, y-, and z- axis, r =

√
x2 + y2 + z2.

In the above equations, the 3D integrations of the basis function can reduce to the
tensor product of 1D integrations of the BSWI basis in the reference domain because the
scaling functions in different directions are orthogonal to each other. We take the first term
in Equation (33a) as example to illustrate this process. In fact, from Equation (33a), we can
expand the first term as

t
Ω

∂NT

∂x
∂N
∂x dΩ =

ly lz
lx

∫ 1
0

∫ 1
0

∫ 1
0

∂NT

∂ξ
∂N
∂ξ dξdηdζ =

ly lz
lx

TT∫ 1
0

∫ 1
0

∫ 1
0

∂sT

∂ξ
∂s
∂ξ dξdηdζT

=
ly lz
lx

TT∫ 1
0

∫ 1
0

∫ 1
0

(
∂sT

1
∂ξ ⊗ sT

2 ⊗ sT
3

)(
∂s1
∂ξ ⊗ s2 ⊗ s3

)
dξdηdζT

=
ly lz
lx

TT∫ 1
0

(
∂sT

1
∂ξ

∂s1
∂ξ

)
dξ ⊗

∫ 1
0

(
sT

2 s2
)
dη ⊗

∫ 1
0

(
sT

3 s3
)
dζT

(36a)

where lx, ly, lz are the mesh sizes in physical space at x-, y-, z-axis. Similarly, the other
integrations shown in Equation (33a–h) can also be written as

y

Ω

NTNdΩ = lxlylzTT
∫ 1

0

(
sT

1 s1

)
dξ ⊗

∫ 1

0

(
sT

2 s2

)
dη ⊗

∫ 1

0

(
sT

3 s3

)
dζT (36b)
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y

Ω

(
NT ∂N

∂x

)
dΩ = lylzTT

∫ 1

0

(
sT

1
s1

∂ξ

)
dξ ⊗

∫ 1

0

(
sT

2 s2

)
dη ⊗

∫ 1

0

(
sT

3 s3

)
dζT (36c)

The 1D integration of scaling functions, wavelet functions or their derivatives in
WFEM is normally called connection coefficients. We use Λ

p,q
d to represent these connection

coefficients, where p and q denote the order of the derivate of the scaling functions, while d
represents the axis. In this paper, the following four connection coefficients are used (only
those on ξ axis are shown as examples).

Λ0,0
1 =

∫ 1

0

(
sT

1 s1

)
dξ (37a)

Λ1,1
1 =

∫ 1

0

(
∂sT

1
∂ξ

∂s1

∂ξ

)
dξ (37b)

Λ1,0
1 =

∫ 1

0

(
∂sT

1
∂ξ

s1

)
dξ (37c)

Λ0,1 =
∫ 1

0

(
sT

1
∂s1

∂ξ

)
dξ (37d)

In much existing research on WFEM that apply wavelets (e.g., the DB wavelet) as
the basis functions, the calculation of connection coefficients can be a challenging prob-
lem [57,58]. The definition on the whole real axis and the lack of explicit expressions, as
mentioned above, are the most important issues. In this paper, due to the explicit expres-
sion and the definition on the interval (0, 1) of BSWI, we can easily obtain the explicit
solutions of connection coefficients. In Appendix A, we have given the expressions of
connection coefficients for m = 2, j = 1 and m = 2, j = 2.

Finally, the element matrix and right-hand side for each element is formed and inte-
grated together and then the Dirichlet boundary condition is applied, so that we can get
the following global linear system for our forward modeling problem, i.e.,

Ku = b (38)

As we have discussed before, one reason why wavelet is frequently utilized in nu-
merical methods is that it can make the matrix sparse, as does the BSWI basis. The BSWI
has local support, which means that each scaling function can only affect a limited area
in the mesh. This will further create fewer non-zero coefficients in the matrix. Figure 6
shows the sparsity pattern of the element matrix and global matrix formed by BSWI21
and BBSWI22 elements. From the figures it is seen that the BSWI indeed contributes to a
sparser matrix; the non-zero coefficients are concentrated around the diagonal, so that a
lower time consumption can be expected. We will discuss this via numerical experiments
in next section.

Airborne EM modeling is a multi-source problem because the airborne transmitter
keeps moving during the survey. To solve the linear equations system efficiently, we use
the direct solver MUMPS [59,60]. This method needs only to do the factorization once and
replace the source term at the right-hand side for moving transmitters.
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Figure 6. Sparsity pattern of the BSWI-based WFEM: (a) element matrix of BSWI21 elements; (b) ele-
ment matrix of BSWI22 elements; (c) global matrix when using BSWI21 elements; (d) global matrix
when using BSWI22 matrix.

2.5. Moving Least-Squares Interpolation

In this section, we apply a moving least-squares interpolation (MLSI) scheme intro-
duced by Tabbara et al. (1994) to recover EM fields Es and Hs from the secondary potentials
As and Ψs [61]. For this purpose, we assume that each component of the secondary vector
potential As and the scalar potential Ψs can be approximated by a linear function that can
be written as

u∗ = Pa (39)

where u* is the approximate linear function, P = {x, y, z, 1} is the variable vector, while
a = {a1, a2, a3, a4}T is the column vector composed of unknown coefficients. The coeffi-
cients vector is determined by minimizing the weighted differences between u* and the
computed potential u taking the nearest N nodes to the receiver into account, namely

s(a) =
N

∑
i=1

w(Pa−u)2 (40)

where w = e−
d2

h2 is the weighted function, d is the distance from the node to the receiver,
and h = max(d). N is usually set to be 30~50. The MLSI assures that the derivatives are
smooth and accurate so that the EM fields can be well recovered.
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3. Numerical Experiments
3.1. Accuracy Verification

In this section, we first simulate as an example the EM responses of a horizontal
coplanar (HCP) AEM system over a homogeneous half-space model to verify the accuracy
of our method. The Tx-Rx offset is assumed to be 10m. The flight attitude is 30 m. The
earth resistivity is ρ = 100 ohm-m. Here, three mesh discretization cases are considered to
illustrate how the accuracy can be improved when we refine the mesh or enhance the scale.
The model is divided into 10× 10× 10, 14× 14× 14 and 25× 25× 25 elements, labeled as
Case 1, Case 2, and Case 3, in which 6× 6× 6, 10× 10× 10 and 19× 19× 19 elements are
taken as the calculation domain. Meanwhile, the outer boundary is extended 6000 m in each
direction. We calculate 21 logarithmically equal-spaced frequencies ranging from 100 Hz
to 215 kHz. The results are compared to the 1D semi-analytic solutions calculated using
the code from Yin and Fraser [62]. From Figure 7, it is seen that our method obtains high
accuracy with only a small number of meshes. For BSWI21 elements in Case 1, the relative
errors of both the real and the imaginary part are not able to meet our needs. The maximum
relative error can be up to about 15%. This is simply because the mesh discretization is too
rough. After the mesh refinement from Case 1 to Case 2, we can see that the relative error
shows a sharp reduction, with the relative error reduced to less than 5%. Meanwhile, the
time cost is only about 15 s for one frequency (see Table 1). For comparison purposes, we
further refine the mesh to Case 3. The result shows that in this case the relative error of
the real part becomes less than 1% for most frequencies, while the error of the imaginary
part is lower than that of the real part with a maximum value of 1%. This indicates that the
results from our method are very accurate. As for the BSWI22 elements, the relative error
in Case 1 is already under 1% for most frequencies. However, at very high frequencies the
error keeps rising to about 8%. However, after the mesh is refined in Case 2, we can obtain
similar accuracy as that in Case 3 using BSWI21 elements. The maximum relative error of
the real part is about 3% at 215 kHz while that of the imaginary part is under 0.6% at all
frequencies. This indicates again that the accuracy can be improved when the scale of BSWI
basis is increased. From Table 1 it is seen that the BSWI22 elements lead to a system with
more DOFs than BSWI21 elements. As a result, the corresponding time cost becomes higher.
Since the results are accurate enough, we do not continue refining the mesh. From this
example, we can obviously see that the BSWI-based WFEM depends less on meshes so that
one can simulate the EM response with fewer meshes than the conventional FEM. At the
same time, as the high-scale functions can describe the unknown field at high resolutions,
so we can improve the accuracy by increasing the scale. This provides double tracks for
improving the accuracy in our modeling process.

Figure 7. Accuracy verification by comparing our WFEM results with semi-analytical solutions for a homogenous half-space
model: (a) comparison of EM responses; (b) relative error of the real part; (c) relative error of the imaginary part.
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Table 1. BSWI basis selection, mesh subdivision, and time consumption of WFEM for a half-
space model.

Type of Elements Case Number of Meshes DOFs Time Consumption
(at 100 Hz)

BSWI21 1 10 × 10 × 10 37,044 4.390 s
- 2 14 × 14 × 14 97,556 15.161 s
- 3 25 × 25 × 25 530,604 340.165 s

BSWI22 1 10 × 10 × 10 275,684 100.281 s
- 2 14 × 14 × 14 740,772 673.973 s

In the following discussion, we use a layered earth model to further illustrate the
efficiency and accuracy of our method. The model is shown in Figure 8. The system
parameters are the same as the half-space model in Figure 7. For comparison purposes,
we use two methods of the nodal-based FEM and the edge-based FEM [12] (abbreviated
as nFEM and eFEM in the following figures, respectively). Here, we use the edge-based
FEM to solve the curl-curl equation for the electric field E while we use the nodal-based
FEM to solve the coupled potentials A and Ψ. Note that in our comparison the time
consumption is taken as the total time, including the time for the factorization and solution.
The model used for these three methods is set to be 650 m × 650 m × 550 m with the
Tx-Rx system located at its center. We use 21× 21× 24 BSWI21 meshes to do the forward
modeling. To make the comparison, two mesh subdivision cases are respectively applied
to nodal-based FEM and edge-based FEM. In Case 1, after the mesh subdivision, the DOFs
of the three methods are similar (see Table 2). Figure 9 shows the EM responses. From
Figure 9b,c one sees that the relative error of WFEM to the semi-analytical solutions is
the lowest, which is under 1% at most frequencies for both the real and imaginary parts.
Meanwhile, the time consumption is between that of the nodal-based and edge-based FEM.
The solutions obtained by the edge-based FEM have the lowest accuracy, the relative error
of the imaginary part exceeds 5% at high frequencies. Finally, the nodal-based FEM takes a
longer time than our WFEM to provide a solution at low accuracy, which further indicates
that WFEM can obtain more accurate results with less time than conventional FEM. In
Case 2, we further refine the mesh in Case 1. The details of the mesh subdivision and time
consumption are shown in Table 2. From the result comparison and the relative error in
Figure 9, one can see that the mesh refinement does improve the accuracy. For edge-based
FEM, the accuracy improvement is apparent. However, although the time consumption
has been raised to the same level as that of WFEM, the accuracy is still far lower than
that of WFEM. As for the nodal-based FEM, the mesh refinement near the system does
not contribute much to the accuracy improvement of the real part, but it improves the
imaginary part. Thus, we can conclude that the BSWI basis shows better performance
than the conventional polynomial interpolation as it captures more local details and the
information on the boundaries of meshes. In addition, it contributes to a sparser matrix and
thus speeds up the solution of the linear equations. Although the vector basis functions
can satisfy the divergence condition ∇ · E = 0 in each element, the edge-based FEM still
shows less stability than our nodal-based WFEM using coupled-potential formulation.
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Figure 8. A layered earth model.

Table 2. Mesh subdivision and time consumption of WFEM, edge-based FEM and nodal-based FEM
for the layered earth model in Figure 8.

Method Case Number
of Meshes DOFs Maximum Mesh Size Minimum Mesh Size

Time
Consumption

(at 100 Hz)

WFEM
(BSWI21) 1 21 × 21 × 24 362,404 80 m × 80 m × 80 m 10 m × 10 m × 10 m 162.929 s

Edge-
based FEM 1 48 × 48 × 52 374,164 40 m × 40 m × 40 m 5 m × 5 m × 5 m 83.226 s

- 2 54 × 54 × 58 525,950 20 m × 20 m × 20 m 2.5 m × 2.5 m × 2.5 m 158.505 s
Nodal-

based FEM 1 42 × 42 × 48 362,404 40 m × 40 m × 40 m 5 m × 5 m × 5 m 176.186 s

- 2 42 × 42 × 52 391,988 40 m × 40 m × 40 m 2.5 m × 2.5 m × 2.5 m 184.530 s

Figure 9. Comparison of WFEM, the edge-based and nodal-based FEM for the model in Figure 8: (a) comparison of EM
responses; (b) relative error of the real part; (c) relative error of the imaginary part.

3.2. 3D Synthetic Models

In this section, we first assume a synthetic Example 1 with a 1 ohm-m conductive body
embedded in a 100 ohm-m half-space for our modeling. The size of the conductive body is
80 m × 80 m × 20 m with a top depth of 40 m. The coordinate of its central point is (0 m,
0 m, 50 m). The system parameters are the same as the previous models. We calculate the
HCP system responses for a total of 31 Tx-Rx locations along the survey line y = 0 m ranging
from x = −150 m to 150 m. The transmitting frequencies are 380, 1600, 6300, and 25,000 Hz,
respectively. To illustrate the influence of the BSWI scale and mesh size on the accuracy, we
adopt four different subdivisions to discretize the model domain. We use BSWI21 elements
to divide the model into mesh for Case 1 and 2, while we use BSWI22 elements to divide the
model for Case 3 and 4. In Case 1, the maximum size of 40 m × 40 m × 40 m is assumed.
In Case 2, a mesh refinement is applied to the model without changing the scale of BSWI
basis. In Case 3, the scale is increased to j = 2 while the mesh is still the same as in Case 1.
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In Case 4, the mesh is refined, and the scale is increased. The EM responses are shown
in Figure 10, respectively, while the time consumptions are given in Table 3. For easy
comparison, we also present the EM responses calculated by the spectral element method
(SEM). According to [63], as a high-order numerical algorithm, SEM has proved to be very
accurate. Here, we use the third order of Gauss–Lobatto–Chebyshev (GLC) polynomials
as the basis function of SEM for the mesh size of 20 m × 20 m × 20 m. It is seen from
Figure 10 that the model in Case 1 failed to obtain reasonable results, as a large difference
between Case 1 and SEM can be observed. Table 3 shows the maximum relative errors
between our results and the SEM solutions for four cases. It is seen that the maximum
relative error between these two methods is 17.4% at 25,000 Hz. This means that the results
in Case 1 are not reliable. Meanwhile, the response at high frequencies shows a dramatic
oscillation. This is because as the frequency increases, the EM field varies quickly, so that
it becomes harder for a rough mesh to simulate. To improve the accuracy, we apply in
Case 2 a mesh refinement. Apparently, the results of Case 2 become smoother and closer
to the SEM responses, and the relative error drops at all frequencies with a maximum of
4.01%. Similar results can be observed in Case 3, where we enhance the scale of the basis
function on the bases of Case 1. Using BSWI22 elements, the relative error falls down when
compared to Case 1 and 2 except for the real part of 25,000 Hz (see Figure 11). Among
all frequencies, the maximum relative error is 3.43%. Finally, we apply both the mesh
refinement and scale enhancement to Case 1. It is seen that the accuracy is largely improved.
The maximum relative error between Case 4 and SEM falls to 3.02%. This confirms again
that in our new algorithm, we can improve the modeling accuracy by mesh refinement and
the scale enhancement.

Figure 10. EM responses obtained from 4 cases of Example 1 compared to SEM results: (a) real part; (b) imaginary part.

Table 3. Scale of basis function, mesh subdivision, time consumption, and maximum relative error
for 4 cases of Example 1.

Method Case Type
of Elements DOFs Maximum

Mesh Size
Minimum
Mesh Size

Time
Consumption
(at 380 Hz)

Maximum
Relative Error

WFEM 1 BSWI21 89,900 40 m × 40 m × 40 m 40 m × 40 m × 20 m 27.618 s 17.4%
- 2 BSWI21 414,540 20 m × 20 m × 20 m 20 m × 20 m × 20 m 310.479 s 4.01%
- 3 BSWI22 792,756 40 m × 40 m × 40 m 40 m × 40 m × 20 m 811.019 s 3.43%
- 4 BSWI22 968,436 20 m × 40 m × 40 m 20 m × 20 m × 20 m 1281.788 s 3.02%
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Figure 11. The maximum relative errors between WFEM and SEM for Example 1 at different frequencies: (a) real part; (b)
imaginary part.

We then simulate the responses of Example 2 to verify whether our method can handle
high resistivity contrast. The model is the same as that in Example 1 except for that the
resistivity contrast becomes 0.1 ohm-m for the anomalous body to 500 ohm-m for the
half-space. Meanwhile, the same four subdivisions are used to discretize the model and the
result from SEM is used as comparison. Figure 12 shows the EM responses, while Table 4
gives the time consumption. From Figures 12 and 13, one can draw similar conclusions
to the previous example that with the mesh refinement and scale increasing, the relative
errors between our results and the SEM results decrease. The maximum relative error is
reduced from 34.8% in Case 1 to about 6% in Case 2 and 3, and to 4.41% in Case 4. Note
that the relative error in this example is higher than that in the previous example. This is
because when the resistivity contrasts across surfaces become high, the EM field changes
sharply. As a result, the accuracy of numerical algorithms is reduced. Even so, our method
can still obtain reliable results.

Figure 12. EM responses obtained from 4 cases of Example 2 compared to SEM results: (a) real part; (b) imaginary part.
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Table 4. Scale of basis function, mesh subdivision, time consumption, and maximum relative error
for 4 cases of Example 2.

Method Case Type
of Elements DOFs Maximum

Mesh Size
Minimum
Mesh Size

Time
Consumption
(at 380 Hz)

Maximum
Relative Error

WFEM 1 BSWI21 89,900 40 m × 40 m × 40 m 40 m × 40 m × 20 m 25.360 s 34.8%
- 2 BSWI21 414,540 20 m × 20 m × 20 m 20 m × 20 m × 20 m 320.319 s 6.38%
- 3 BSWI22 792,756 40 m × 40 m × 40 m 40 m × 40 m × 20 m 806.477 s 6.34%
- 4 BSWI22 968,436 20 m × 40 m × 40 m 20 m × 20 m × 20 m 1322.695 s 4.41%

Figure 13. The maximum relative errors between WFEM and SEM for Example 2 at different frequencies: (a) real part; (b)
imaginary part.

4. Conclusions

In this paper, we have successfully developed the wavelet finite-element method
based on the B-spline wavelet on the interval for 3D frequency-domain airborne EM
modeling. The BSWI, as the basis function, can better approximate the field variation than
the conventional polynomial basis function. Due to special design on the boundary and
local support, our method can avoid the Runge phenomenon at high scales, since this
method creates a sparser matrix than the traditional FEM method so that the efficiency
can be improved. Comparison with 1D semi-analytical solutions validates our method.
The numerical experiments for typical models demonstrated that our method has higher
accuracy and efficiency than conventional FEM methods. As a high-order numerical
method, our algorithm is more flexible in that it is less dependent on the mesh subdivision.
Moreover, our method can improve the accuracy by either refining the mesh or increasing
the scale of BSWI basis. This obviously offers us more possibilities for accurate numerical
modeling and inversions. More specifically, we can use coarse meshes and low-scale
BSWI basis functions in the early iterations of the inversion process to recover the rough
structure of the underground. With increasing iteration steps, we can use finer meshes
and higher-scale BSWI basis to improve the resolution of the inversion continuously, so
that we can obtain a steady solution. We must point out that the study in this paper is still
preliminary. The structured hexahedral mesh has limitations in fitting the topography or
complex underground structures. An unstructured mesh is without doubt the best choice.
In addition, the p-type adaptive algorithm that allows local scale enhancement and 3D
inversions that adapt to the flexibility of our method are of great attraction to our research.
All these will be our future research focus.
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Appendix A. The Connection Coefficients

Since the BSWI in Equation (20) has explicit expressions, the calculation of connection
coefficients is simple. In this section, we will give the expressions of four types of connection
coefficients at different scales. For BSWI21 elements, all connection coefficients are 3× 3
matrix that can be written as

Λ0,0
1 = Λ0,0

2 = Λ0,0
3 =

1
12

 2 1
1 4 1

1 2

 (A1)

Λ1,1
1 = Λ1,1

2 = Λ1,1
3 =

 2 −2
−2 4 −2

−2 2

 (A2)

Λ1,0
1 = Λ1,0

2 = Λ1,0
3 =

1
2


−1 −1

1 −1

1 1

 (A3)

Λ0,1
1 = Λ0,1

2 = Λ0,1
3 =

1
2

 −1 1
−1 1

−1 1

 (A4)

In the case of BSWI22 elements, the connection coefficients are all 5 × 5 matrix,
which are

Λ0,0
1 = Λ0,0

2 = Λ0,0
3 =

1
24


2 1
1 4 1

1 4 1
1 4 1

1 2

 (A5)

Λ1,1
1 = Λ1,1

2 = Λ1,1
3 =


4 −4
−4 8 −4

−4 8 −4
−4 8 −4

−4 4

 (A6)

Λ1,0
1 = Λ1,0

2 = Λ1,0
3 =

1
2


−1 1
−1 1

−1 1
−1 1

−1 1

 (A7)

Λ0,1
1 = Λ0,1

2 = Λ0,1
3 =

1
2


−1 −1
1 −1

1 −1
1 −1

1 1

. (A8)
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