Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = freeze–thaw period

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10408 KiB  
Article
Complementary Relationship-Based Validation and Analysis of Evapotranspiration in the Permafrost Region of the Qinghai–Tibetan Plateau
by Wenjun Yu, Yining Xie, Yanzhong Li, Amit Kumar, Wei Shao and Yonghua Zhao
Atmosphere 2025, 16(8), 932; https://doi.org/10.3390/atmos16080932 (registering DOI) - 1 Aug 2025
Viewed by 72
Abstract
The Complementary Relationship (CR) principle of evapotranspiration provides an efficient approach for estimating actual evapotranspiration (ETa), owing to its simplified computation and effectiveness in utilizing meteorological factors. Accurate estimation of actual evapotranspiration (ETa) is crucial for understanding surface energy [...] Read more.
The Complementary Relationship (CR) principle of evapotranspiration provides an efficient approach for estimating actual evapotranspiration (ETa), owing to its simplified computation and effectiveness in utilizing meteorological factors. Accurate estimation of actual evapotranspiration (ETa) is crucial for understanding surface energy and water cycles, especially in permafrost regions. This study aims to evaluate the applicability of two Complementary Relationship (CR)-based methods—Bouchet’s in 1963 and Brutsaert’s in 2015—for estimating ETa on the Qinghai–Tibetan Plateau (QTP), using observations from Eddy Covariance (EC) systems. The potential evapotranspiration (ETp) was calculated using the Penman equation with two wind functions: the Rome wind function and the Monin–Obukhov Similarity Theory (MOST). The comparison revealed that Bouchet’s method underestimated ETa during frozen soil periods and overestimated it during thawed periods. In contrast, Brutsaert’s method combined with the MOST yielded the lowest RMSE values (0.67–0.70 mm/day) and the highest correlation coefficients (r > 0.85), indicating superior performance. Sensitivity analysis showed that net radiation (Rn) had the strongest influence on ETa, with a daily sensitivity coefficient of up to 1.35. This study highlights the improved accuracy and reliability of Brutsaert’s CR method in cold alpine environments, underscoring the importance of considering freeze–thaw dynamics in ET modeling. Future research should incorporate seasonal calibration of key parameters (e.g., ε) to further reduce uncertainty. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 4007 KiB  
Article
Variations in Soil Salt Ions and Salinization Degree in Shallow Groundwater Areas During the Freeze–Thaw Period
by Chao Han, Qiang Meng, Junfeng Chen, Lihong Cui, Jing Xue, Hongwu Liu and Rong Yan
Water 2025, 17(15), 2234; https://doi.org/10.3390/w17152234 - 26 Jul 2025
Viewed by 461
Abstract
In shallow groundwater areas, the freeze–thaw process can easily exacerbate soil salinization. The variations and migrations of Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 at the depth [...] Read more.
In shallow groundwater areas, the freeze–thaw process can easily exacerbate soil salinization. The variations and migrations of Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 at the depth of 0–100 cm under shallow groundwater depth (2.63–2.87 m) during the freeze–thaw period were analyzed. And a multi-index comprehensive evaluation method based on factor analysis was employed to investigate the soil salinization degree. The results show that K+, Mg2+, and HCO3 exhibited surface enrichment during the freeze–thaw period, while Na+, Cl, and SO42− accumulated in the frozen layer during the freezing stage. However, there is no surface enrichment of Ca2+. During the freezing stage, Mg2+ and Cl exhibited the strongest migration capabilities among cations and anions, respectively. During the thawing stage, K+ and HCO3 were the cation and anion with the highest ionic migration capabilities, respectively. Total salinity (TS), Cl, SO42−, HCO3, Na+, K+, Mg2+, and residual sodium carbonate (RSC) were identified as the dominant factors influencing the salinization degree during the freeze–thaw period. During the freezing stage, soil salt ions predominantly migrated from the unfrozen to the frozen layer, and the salinization degree in the frozen layer increased with the development of the frozen layer. In the thawing stage, soil salt ions migrated upward from the thawing front, and the salinization degree at the depth of 0–30 cm increased. This study provides insights for the prevention and control of soil salinization in arid regions. Full article
(This article belongs to the Special Issue Advances in Soil Water Dynamics Research)
Show Figures

Figure 1

26 pages, 6787 KiB  
Article
Frost Resistance Prediction of Concrete Based on Dynamic Multi-Stage Optimisation Algorithm
by Xuwei Dong, Jiashuo Yuan and Jinpeng Dai
Algorithms 2025, 18(7), 441; https://doi.org/10.3390/a18070441 - 18 Jul 2025
Viewed by 224
Abstract
Concrete in cold areas is often subjected to a freeze–thaw cycle period, and a harsh environment will seriously damage the structure of concrete and shorten its life. The frost resistance of concrete is primarily evaluated by relative dynamic elastic modulus and mass loss [...] Read more.
Concrete in cold areas is often subjected to a freeze–thaw cycle period, and a harsh environment will seriously damage the structure of concrete and shorten its life. The frost resistance of concrete is primarily evaluated by relative dynamic elastic modulus and mass loss rate. To predict the frost resistance of concrete more accurately, based on the four ensemble learning models of random forest (RF), adaptive boosting (AdaBoost), categorical boosting (CatBoost), and extreme gradient boosting (XGBoost), this paper optimises the ensemble learning models by using a dynamic multi-stage optimisation algorithm (DMSOA). These models are trained using 7090 datasets, which use nine features as input variables; relative dynamic elastic modulus (RDEM) and mass loss rate (MLR) as prediction indices; and six indices of the coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (CC), and standard deviation ratio (SDR) are selected to evaluate the models. The results show that the DMSOA-CatBoost model exhibits the best prediction performance. The R2 of RDEM and MLR are 0.864 and 0.885, respectively, which are 6.40% and 11.15% higher than those of the original CatBoost model. Moreover, the model performs better in error control, with significantly lower MSE, RMSE, and MAE and stronger generalization ability. Additionally, compared with the two mainstream optimisation algorithms (SCA and AOA), DMSOA-CatBoost also has obvious advantages in prediction accuracy and stability. Related work in this paper has a certain significance for improving the durability and quality of concrete, which is conducive to predicting the performance of concrete in cold conditions faster and more accurately to optimise the concrete mix ratio whilst saving on engineering cost. Full article
Show Figures

Figure 1

32 pages, 20641 KiB  
Article
Mechanical Properties and Failure Mechanisms of Sandstone Under Combined Action of Cyclic Loading and Freeze–Thaw
by Taoying Liu, Huaheng Li, Longjun Dong and Ping Cao
Appl. Sci. 2025, 15(14), 7942; https://doi.org/10.3390/app15147942 - 16 Jul 2025
Viewed by 288
Abstract
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their [...] Read more.
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their support properties. This paper investigates the mechanism of strength deterioration of sandstone containing prefabricated cracks under cyclic loading and unloading after experiencing freeze–thaw. Sandstone specimens containing prefabricated cracks were prepared and subjected to 0, 20, 40, 60, and 80 freeze–thaw cycle tests. The strength changes were tested, and the crack extension process was analyzed using numerical simulation techniques. The study results show the following: 1. The wave propagation speed within the sandstone is more sensitive to changes in the number of freeze–thaw cycles. In contrast, mass damage shows significant changes only when more freeze–thaw cycles are experienced. 2. As the number of freeze–thaw cycles increases, the frequency of energy release from the numerical model accelerates. 3. The trend of the Cumulative Strain Difference (εc) reflects that the plastic strain difference between numerical simulation and actual measurement gradually decreases with increasing stress cycle level. 4. With the increase in freeze–thaw cycles, the damage morphology of the specimen undergoes a noticeable change, which is gradually transformed from monoclinic shear damage to X-shaped conjugate surface shear damage. 5. The number of tensile cracks dominated throughout the cyclic loading and unloading process, but with the increase in freeze–thaw cycles, the percentage of shear cracks increased. As the freeze–thaw cycles increase, sandstones are more inclined to undergo shear damage. These findings are important guidelines for road design and maintenance in alpine mining areas. Full article
Show Figures

Figure 1

23 pages, 8675 KiB  
Article
Research on the Deterioration Mechanism of PPF Mortar-Masonry Stone Structures Under Freeze–Thaw Conditions
by Jie Dong, Hongfeng Zhang, Zhenhuan Jiao, Zhao Yang, Shaohui Chu, Jinfei Chai, Song Zhang, Lunkai Gong and Hongyu Cui
Buildings 2025, 15(14), 2468; https://doi.org/10.3390/buildings15142468 - 14 Jul 2025
Viewed by 293
Abstract
Significant progress has been made in the low-temperature toughness and crack resistance of polypropylene fiber-reinforced composites. However, there is still a gap in the research on damage evolution under freeze–thaw cycles and complex stress ratios. To solve the problem of durability degradation of [...] Read more.
Significant progress has been made in the low-temperature toughness and crack resistance of polypropylene fiber-reinforced composites. However, there is still a gap in the research on damage evolution under freeze–thaw cycles and complex stress ratios. To solve the problem of durability degradation of traditional rubble masonry in cold regions, this paper focuses on the study of polypropylene fiber-mortar-masonry blocks with different fiber contents. Using acoustic emission and digital image technology, the paper conducts a series of tests on the scaled-down polypropylene fiber-mortar-masonry structure, including uniaxial compressive tests, three-point bending tests, freeze–thaw cycle tests, and tests with different stress ratios. Based on the Kupfer criterion, a biaxial failure criterion for polypropylene fiber mortar-masonry stone (PPF-MMS) was established under different freeze–thaw cycles. A freeze–thaw damage evolution model was also developed under different stress ratios. The failure mechanism of PPF-MMS structures was analyzed using normalized average deviation (NAD), RA-AF, and other parameters. The results show that when the dosage of PPF is 0.9–1.1 kg/m3, it is the optimal content. The vertical stress shows a trend of increasing first and then decreasing with the increase in the stress ratio, and when α = 0.5, the degree of strength increase reaches the maximum. However, the freeze–thaw cycle has an adverse effect on the internal structure of the specimens. Under the same number of freeze–thaw cycles, the strength of the specimens without fiber addition decreases more rapidly than that with fiber addition. The NAD evolution rate exhibits significant fluctuations during the middle loading period and near the damage failure, which can be considered precursors to specimen cracking and failure. RA-AF results showed that the specimens mainly exhibited tensile failure, but the occurrence of tensile failure gradually decreased as the stress ratio increased. Full article
Show Figures

Figure 1

26 pages, 8827 KiB  
Article
Three-Dimensional Refined Numerical Modeling of Artificial Ground Freezing in Metro Cross-Passage Construction: Thermo-Mechanical Coupling Analysis and Field Validation
by Qingzi Luo, Junsheng Li, Wei Huang, Wanying Wang and Bingxiang Yuan
Buildings 2025, 15(13), 2356; https://doi.org/10.3390/buildings15132356 - 4 Jul 2025
Viewed by 283
Abstract
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus [...] Read more.
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus on analyzing the soil’s thermo-mechanical behavior and assessing safety performance throughout the construction process. A combined approach integrating field monitoring and refined three-dimensional numerical simulation using FLAC3D is adopted, considering critical factors, such as freezing pipe inclination, thermo-mechanical coupling, and ice–water phase transitions. Both field data and simulation results demonstrate that increasing the density of freezing pipes accelerates temperature reduction and intensifies frost heave-induced displacements near the pipes. After 45 days of active freezing, the freezing curtain reaches a thickness of 3.7 m with an average temperature below −10 °C. Extending the freezing duration beyond this period yields negligible improvement in curtain performance. Frost heave deformation develops rapidly during the initial phase and stabilizes after approximately 25 days, with maximum vertical displacements reaching 12 cm. Significant stress concentrations occur in the soil adjacent to the freezing pipes, with shield tunnel segments experiencing up to 5 MPa of stress. Thaw settlement is primarily concentrated in areas previously affected by frost heave, with a maximum settlement of 3 cm. Even after 45 days of natural thawing, a frozen curtain approximately 3.3 m thick remains intact, maintaining sufficient structural strength. The refined numerical model accurately captures the mechanical response of soil during the freezing and thawing processes under realistic engineering conditions, with field monitoring data validating its effectiveness. This research provides valuable guidance for managing construction risks and ensuring safety in similar cross-passage and cross-river tunnel projects, with broader implications for underground engineering requiring precise control of frost heave and thaw settlement. Full article
Show Figures

Figure 1

34 pages, 8670 KiB  
Article
Assessing Climate Impact on Heritage Buildings in Trentino—South Tyrol with High-Resolution Projections
by Camille Luna Stella Blavier, Elena Maines, Piero Campalani, Harold Enrique Huerto-Cardenas, Claudio Del Pero and Fabrizio Leonforte
Atmosphere 2025, 16(7), 799; https://doi.org/10.3390/atmos16070799 - 1 Jul 2025
Viewed by 502
Abstract
Climate variations impact the preservation of heritage buildings, necessitating a strategic understanding of potential effects to effectively guide preservation efforts. This study analyzes temperature- and precipitation-dependent climate-heritage indices in Trentino–South Tyrol using EURO-CORDEX regional climate models for the period 1971–2100 under RCP 4.5 [...] Read more.
Climate variations impact the preservation of heritage buildings, necessitating a strategic understanding of potential effects to effectively guide preservation efforts. This study analyzes temperature- and precipitation-dependent climate-heritage indices in Trentino–South Tyrol using EURO-CORDEX regional climate models for the period 1971–2100 under RCP 4.5 and RCP 8.5 scenarios. The selected indices were calculated with climdex-kit and relied on bias-adjusted temperature and precipitation data with a 1 km spatial resolution. The obtained results indicate a geographically punctuated increase in biomass accumulation on horizontal surfaces, a slight decreasing trend in freeze–thaw events, an increase in growing degree days indicating a small, heightened insect activity, and a rise in heavy precipitation days. The Scheffer Index shows a significantly increased potential for wood degradation, particularly under the RCP 8.5 scenario, while the Wet-Frost Index remains consistently low. Finally, according to each identified hazard, adaptive solutions are suggested. These findings provide critical insights into future climate impacts on heritage buildings in the region, aiding stakeholders in planning targeted interventions. The study emphasizes the crucial role of integrating detailed climate data into heritage preservation strategies, advocating for the inclusion of future risk analysis in the “knowledge path” in order to enhance the resilience of buildings. Full article
(This article belongs to the Special Issue Climate Change Challenges for Heritage Architecture)
Show Figures

Figure 1

29 pages, 4333 KiB  
Article
Characterization of Bricks from Baroque Monuments in Northeastern Poland: A Comparative Study of Hygric Behavior and Microstructural Properties for Restoration Applications
by Joanna Misiewicz, Maria Tunkiewicz, Gergő Ballai and Ákos Kukovecz
Materials 2025, 18(13), 3023; https://doi.org/10.3390/ma18133023 - 26 Jun 2025
Viewed by 361
Abstract
This study presents a comprehensive material characterization, including physical, hygric, and mechanical properties, of historical ceramic bricks to enhance the understanding of heritage masonry structures and support the effective planning of conservation interventions. The primary objective is to systematize the knowledge of constituent [...] Read more.
This study presents a comprehensive material characterization, including physical, hygric, and mechanical properties, of historical ceramic bricks to enhance the understanding of heritage masonry structures and support the effective planning of conservation interventions. The primary objective is to systematize the knowledge of constituent materials in brick walls from different historical periods and to evaluate the compatibility of modern repair materials with the original fabric. To this end, a comprehensive experimental protocol was employed, which included the determination of fundamental physical properties such as density, water absorption, and sorptivity. Additionally, chemical and thermogravimetric analyses were performed, followed by freeze–thaw resistance testing and compressive strength measurements. Microstructural analysis was conducted using mercury intrusion porosimetry. The results identified the pore size ranges most susceptible to frost-induced degradation and revealed correlations between the physical, hygric, and mechanical properties of the tested ceramic materials. These findings provide essential data on the physico-mechanical characteristics of historical bricks, establishing a basis for the informed selection of compatible materials in conservation practice. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

43 pages, 15788 KiB  
Article
Mechanisms Driving the Nonlinear Relationship Between Soil Freeze–Thaw Cycles and NDVI from Remotely Sensed Data in the Eastern Tibetan Plateau
by Yixuan Wang, Quanzhi Yuan and Ping Ren
Remote Sens. 2025, 17(13), 2192; https://doi.org/10.3390/rs17132192 - 25 Jun 2025
Viewed by 355
Abstract
Climate warming leads to earlier onset and shortened duration of the freeze–thaw period in the eastern Tibetan Plateau, which has complex effects on vegetation growth. We assessed the spatiotemporal changes in the freeze–thaw period, evaluated its relationship with Normalized Difference Vegetation Index (NDVI [...] Read more.
Climate warming leads to earlier onset and shortened duration of the freeze–thaw period in the eastern Tibetan Plateau, which has complex effects on vegetation growth. We assessed the spatiotemporal changes in the freeze–thaw period, evaluated its relationship with Normalized Difference Vegetation Index (NDVI from remotely sensed data), used the Panel Smooth Threshold Regression (PSTR) model to quantify the nonlinear impacts and identify critical thresholds, and applied ridge regression to explore the dominant mechanisms under different climatic conditions. The results showed the following: (1) The duration of the freeze–thaw transition period showed strong latitudinal zonality, with stronger spring disturbances than autumn ones. The trend of soil freeze–thaw status in high-altitude areas is the most significant, with a significant increase in the complete thaw period (CTP) and a significant decrease in the complete freeze period (CFP). (2) The earlier onset of the spring freeze–thaw period (SFTTP) and the CTP benefits vegetation growth in both early and late seasons. The delayed autumn freeze–thaw period (AFTTP) benefits early-season vegetation growth but is less favorable for late-season growth. The delayed CFP is beneficial for vegetation growth throughout the year. (3) The CTP’s boost to NDVI collapses at an onset date of 110 days and duration of 190 days. The AFTTP’s benefit peaks at an onset date of 300 days. (4) Temperature and the CTP are key drivers of NDVI changes, especially in the mid-to-late growing season. Arid areas respond strongly to freeze–thaw disturbances, while moderate precipitation areas are less affected. This study is the first to quantitatively analyze the nonlinear mechanism of the freeze–thaw–vegetation relationship, offering a new theoretical basis. Full article
Show Figures

Figure 1

29 pages, 17376 KiB  
Article
A Study on the Thermal and Moisture Transfer Characteristics of Prefabricated Building Wall Joints in the Inner Mongolia Region
by Liting He and Dezhi Zou
Buildings 2025, 15(13), 2197; https://doi.org/10.3390/buildings15132197 - 23 Jun 2025
Viewed by 221
Abstract
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection [...] Read more.
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection interfaces during winter significantly exacerbates freeze–thaw damage due to persistent thermal gradients. A coupled heat–moisture transfer model incorporating gas–liquid–solid phase transitions was developed, with the liquid moisture content and temperature gradient as dual driving forces. A validation against internationally recognized BS EN 15026:2007 benchmark cases confirmed the model robustness. The prefabricated sandwich insulation walls reconstructed with region-specific volcanic ash materials underwent a comparative evaluation of temperature and relative humidity distributions under varied winter conditions. Furthermore, we analyze and assess the potential for freezing at connection points and identify the specific areas at risk. Synergistic effects between assembly gaps and indoor–outdoor environmental interactions on wall performance degradation were systematically assessed. The results indicated that, across all working conditions, both the temperature and relative humidity at each wall measurement point underwent periodic variations influenced by the outdoor environment. These fluctuations decreased in amplitude from the exterior to the interior, accompanied by a noticeable delay effect. Specifically, at Section 2, the wall temperatures at points B2–B8 were higher compared to those at A2–A8 of Section 1. The relative humidity gradient remained relatively stable at each measurement point, while the temperature fluctuation amplitude was smaller by 2.58 ± 0.3 °C compared to Section 1. Under subfreezing conditions, Section 1 demonstrates a marked reduction in relative humidity (Cases 1-3 and 2-3) compared to reference cases, which is indicative of internal ice crystallization. Conversely, Section 2 maintains higher relative humidity values under identical therma. These findings suggest that prefabricated building joints significantly impact indoor and outdoor wall temperatures, potentially increasing the indoor heat loss and accelerating temperature transfer during winter. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 4183 KiB  
Article
Physical, Mechanical, and Durability Performance of Olive Pomace Ash in Eco-Friendly Mortars
by Besma Belaidi, Abderraouf Messai, Cherif Belebchouche, Mourad Boutlikht, Kamel Hebbache, Abdellah Douadi and Laura Moretti
Materials 2025, 18(11), 2667; https://doi.org/10.3390/ma18112667 - 5 Jun 2025
Viewed by 594
Abstract
The cement industry is a major contributor to global CO2 emissions, driving the research for sustainable alternatives. Olive biomass ash (OBA), a byproduct from burning all types of biomass from the olive tree, has emerged as a potential supplementary cementitious material (SCM). [...] Read more.
The cement industry is a major contributor to global CO2 emissions, driving the research for sustainable alternatives. Olive biomass ash (OBA), a byproduct from burning all types of biomass from the olive tree, has emerged as a potential supplementary cementitious material (SCM). This study investigates the effects of incorporating olive pomace ash (OPA) as a partial cement substitute (0% to 50% by weight) on mortar properties over extended curing periods. Workability, compressive and flexural strengths, water absorption, and freeze–thaw resistance were evaluated. Up to 20% OPA replacement improved workability while maintaining acceptable strength and durability. Beyond this level, mechanical properties and frost resistance decreased significantly. Correlation analyses revealed strong relationships between flow time and wet bulk density (R2 = 0.93), an exponential relationship between 28-day compressive strength and water absorption (R2 = 0.87), and linear correlations between pre- and post-freeze–thaw mechanical properties (R2 ≥ 0.99 for both compressive and flexural strengths). The results demonstrate that optimal OPA incorporation enhances mortar performance without compromising structural integrity and provides a viable strategy for valorizing agricultural waste. Full article
Show Figures

Figure 1

23 pages, 4214 KiB  
Article
The Impacts of Ethanol and Freeze–Thaw Cycling on Arsenic Mobility in a Contaminated Boreal Wetland
by Joseph Radford, Kimber E. Munford, Nadia Mykytczuk and Susan Glasauer
Soil Syst. 2025, 9(2), 37; https://doi.org/10.3390/soilsystems9020037 - 21 Apr 2025
Viewed by 503
Abstract
Pyrite-bearing waste rock from legacy gold mines is a source of elevated arsenic, sulfate, and iron in the surrounding environments due to leaching. Waste rock in environments that experience cold winters is of particular concern because freeze–thaw cycling may mobilize elements through degradation [...] Read more.
Pyrite-bearing waste rock from legacy gold mines is a source of elevated arsenic, sulfate, and iron in the surrounding environments due to leaching. Waste rock in environments that experience cold winters is of particular concern because freeze–thaw cycling may mobilize elements through degradation and release of organic matter and accelerated mineral weathering. In boreal zones, wetlands are common recipients of mine-waste run-off, and microbial processes in wetland soil may promote the retention of mobilized elements, such as arsenic. We investigated the impacts of freeze–thaw cycling and ethanol amendment on soil from an arsenic-contaminated wetland in anoxic microcosms. Ethanol-amended microcosms exhibited enhanced microbial sulfate reduction, leading to sulfide precipitation and increased retention of arsenic in the soil. Sequential extraction studies indicated a shift of arsenic into more stable sulfide-bound fractions. The addition of ethanol significantly increased the growth of Geobacter spp. and other select sulfate-reducing bacteria. Freeze–thaw cycling increased dissolved arsenic over short time periods only and had no detectable impacts on microbial activity. These findings suggest that the use of ethanol as an amendment to wetlands during spring thaw may enhance arsenic sequestration in mining-impacted soils and may provide a viable remediation strategy for cold-climate environments, where seasonal freeze–thaw cycling could otherwise contribute to arsenic mobilization. Full article
(This article belongs to the Special Issue Soil Bioremediation)
Show Figures

Figure 1

22 pages, 7716 KiB  
Article
Study on the Temporal Variability and Influencing Factors of Baseflow in High-Latitude Cold Region Rivers: A Case Study of the Upper Emuer River
by Minghui Jia, Changlei Dai, Kaiwen Zhang, Hongnan Yang, Juntao Bao, Yunhu Shang and Yi Wu
Water 2025, 17(8), 1132; https://doi.org/10.3390/w17081132 - 10 Apr 2025
Viewed by 524
Abstract
Baseflow is a crucial component of river flow in alpine inland basins, playing an essential role in watershed ecological health and water resource management. In high-latitude cold regions, seasonal freeze-thaw processes make baseflow formation mechanisms particularly complex. However, the dominant factors affecting baseflow [...] Read more.
Baseflow is a crucial component of river flow in alpine inland basins, playing an essential role in watershed ecological health and water resource management. In high-latitude cold regions, seasonal freeze-thaw processes make baseflow formation mechanisms particularly complex. However, the dominant factors affecting baseflow and their relative contributions remain unclear, limiting the accuracy of flow estimation and effective water resource management. This study employed baseflow separation techniques and statistical methods, including the Mann-Kendall test, to investigate temporal trends and abrupt changes in baseflow and the baseflow index (BFI) at multiple time scales (annual, seasonal, and monthly) from 2005 to 2012. Additionally, the timing of snowmelt and its impact on baseflow were examined. Key findings include the following: (1) Baseflow and BFI showed distinct temporal variability with non-significant upward trends across all time scales. Annual BFI ranged from 0.48 to 0.61, contributing approximately 50% of total runoff. (2) At the seasonal scale, baseflow remained relatively stable in spring, increased in autumn, and showed non-significant decreases in summer and winter. Monthly baseflow exhibited an increasing trend. (3) The snowmelt period occurred between April and May, with baseflow during this period strongly correlated with climatic factors in the following order: winter precipitation > positive accumulated temperature > winter air temperature > negative accumulated temperature. The strongest positive correlation was observed between baseflow and winter precipitation (R = 0.724), while negative correlations were found with accumulated temperatures and winter air temperature. These findings offer valuable insights for predicting water resource availability and managing flood and ice-jam risks in cold regions. Full article
Show Figures

Figure 1

17 pages, 8406 KiB  
Article
The Influence of Freeze–Thaw Process on the Dynamic Changes in Body Weight and Metal in Groundwater of Seasonal Frozen Lakes: Experimental Study and Model Simulation
by Hui Zhang, Shengnan Zhao, Xiaohong Shi, Jinda Zhang, Zhimou Cui and Jingyi Wang
Toxics 2025, 13(4), 288; https://doi.org/10.3390/toxics13040288 - 9 Apr 2025
Viewed by 580
Abstract
To investigate the changes in heavy metal content in the sub glacial water during the freezing and thawing process of seasonally frozen lakes, the Wuliangsuhai Lake in northern China was taken as the research object. The ice thickness, water depth, and heavy metal [...] Read more.
To investigate the changes in heavy metal content in the sub glacial water during the freezing and thawing process of seasonally frozen lakes, the Wuliangsuhai Lake in northern China was taken as the research object. The ice thickness, water depth, and heavy metal content at different depths of the lake were measured during the freezing and thawing periods. Based on a large amount of measured lake heavy metal data, MATLAB 2022b software is used to model data fitting and optimization identification, and wavelet analysis and 24 h sliding average method are used for verification analysis to describe the variation process of heavy metal concentration in ice water with depth and time. The results show that during the freezing and thawing periods of lakes, the water level is constantly changing, but the heavy metal content in the water below the ice follows the same distribution with water depth. During the freezing process, the heavy metal content in the water increases with the increase in ice thickness. A new numerical model describing the spatiotemporal distribution of heavy metals under the ice during the freezing period of the lake was obtained through calculation. The overall trend of the simulated contour lines is consistent with the measured values and has a small error. This study provides a reference for predicting the changes in heavy metal content under the ice cover during the freezing period in cold and arid regions. The model can be used to simulate the content values of heavy metals at different depths and times. Full article
Show Figures

Graphical abstract

28 pages, 6226 KiB  
Article
Assessment of Biogenic Healing Capability, Mechanical Properties, and Freeze–Thaw Durability of Bacterial-Based Concrete Using Bacillus subtilis, Bacillus sphaericus, and Bacillus megaterium
by Izhar Ahmad, Mehdi Shokouhian, David Owolabi, Marshell Jenkins and Gabrielle Lynn McLemore
Buildings 2025, 15(6), 943; https://doi.org/10.3390/buildings15060943 - 17 Mar 2025
Cited by 1 | Viewed by 1680
Abstract
Microbial-induced carbonate precipitation technology allows concrete to detect and diagnose cracks autonomously. However, the concrete’s compact structure and alkaline environment necessitate the adoption of a proper carrier material to safeguard microorganisms. In this study, various bacterial strains, including Bacillus subtilis, Bacillus sphaericus, and [...] Read more.
Microbial-induced carbonate precipitation technology allows concrete to detect and diagnose cracks autonomously. However, the concrete’s compact structure and alkaline environment necessitate the adoption of a proper carrier material to safeguard microorganisms. In this study, various bacterial strains, including Bacillus subtilis, Bacillus sphaericus, and Bacillus megaterium, were immobilized in lightweight expanded clay aggregates (LECA) to investigate their effect on the self-healing performance, mechanical strength, and freeze–thaw durability. Self-healing concrete specimens were prepared using immobilized LECA, directly added bacterial spores, polyvinyl acetate (PVA) fibers, and air-entraining admixture (AEA). The pre-cracked prisms were monitored for 224 days to assess self-healing efficiency through ultrasonic pulse velocity (UPV) and surface crack analysis methods. A compressive strength restoration test was conducted by pre-loading the cube specimens with 60% of the failure load and re-testing them after 28 days for strength regain. Additionally, X-ray diffraction and scanning electron microscopy (SEM) were conducted to analyze the precipitate material. The findings revealed that self-healing efficiency improved with the biomineralization activity over the healing period demonstrated by the bacterial strains. Compression and flexural strengths decreased for the bacterial specimens attributed to porous LECA. However, restoration in compression strength and freeze–thaw durability significantly improved for the bacterial mixes compared to control and reference mixes. XRD and SEM analyses confirmed the formation of calcite as a self-healing precipitate. Overall, results indicated the superior performance of Bacillus megaterium followed by Bacillus sphaericus and Bacillus subtilis. The findings of the current study provide important insights for the construction industry, showcasing the potential of bacteria to mitigate the degradation of concrete structures and advocating for a sustainable solution that reduces reliance on manual repairs, especially in inaccessible areas of the structures. Full article
Show Figures

Figure 1

Back to TopTop