Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = freestanding GaN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4556 KiB  
Article
Microporous Adsorbent-Based Mixed Matrix Membranes for CO2/N2 Separation
by Suboohi Shervani, Lara P. Tansug and F. Handan Tezel
Energies 2024, 17(8), 1927; https://doi.org/10.3390/en17081927 - 18 Apr 2024
Cited by 5 | Viewed by 1674
Abstract
As the atmospheric carbon dioxide (CO2) concentration rapidly rises, carbon capture, utilization, and storage (CCUS) is an emerging field for climate change mitigation. Various carbon capture technologies are in development with the help of adsorbents, membranes, solvent-based systems, etc. One of [...] Read more.
As the atmospheric carbon dioxide (CO2) concentration rapidly rises, carbon capture, utilization, and storage (CCUS) is an emerging field for climate change mitigation. Various carbon capture technologies are in development with the help of adsorbents, membranes, solvent-based systems, etc. One of the main challenges in this field is the removal of CO2 from nitrogen (N2) gas. This paper focuses on mixed matrix membrane technology, for which the CO2/N2 separation performance is based on differences in gas permeations. Membrane separation and purification technologies are widely studied for carbon capture. Microporous adsorbents such as zeolites and metal organic frameworks (MOFs) for carbon capture have been attracting researchers’ attention due to their highly porous structures, high selectivity values, and tunable porosities. Utilizing microporous adsorbents dispersed within a novel, blended polymer matrix, fourteen membranes were prepared with the commercial MOF ZIF-8, zeolite 13X, and kaolin, with methyl cellulose (MC) and polyvinyl alcohol (PVA), which were tested using a single gas permeation setup in this study. The addition of polyallylamine (PAH) as a chemisorbent was also investigated. These membranes were synthesized both with and without a polyacrylonitrile (PAN) support to compare their performances. MC was found to be an ideal polymeric matrix component to develop free-standing MMMs. At 24 °C and a relatively low feed pressure of 2.36 atm, a free-standing zeolite-13X-based membrane (MC/PAH/13X/PVA) exhibited the highest N2/CO2 selectivity of 2.8, with a very high N2 permeability of 6.9 × 107 Barrer. Upon the optimization of active layer thickness and filler weight percentages, this easily fabricated free-standing MMM made of readily available materials is a promising candidate for CO2 purification through nitrogen removal. Full article
(This article belongs to the Special Issue Green Technologies in Environment and Energy)
Show Figures

Figure 1

9 pages, 1995 KiB  
Article
Effective Chemical Lift-Off for Air-Tunnel GaN on a Trapezoid-Patterned Sapphire Substrate
by Min-joo Ahn, Kyu-yeon Shim, Woo-seop Jeong, Seongho Kang, Hwayoung Kim, Seunghee Cho and Dongjin Byun
Micromachines 2023, 14(4), 753; https://doi.org/10.3390/mi14040753 - 29 Mar 2023
Cited by 2 | Viewed by 2941
Abstract
We fabricated an air-tunnel structure between a gallium nitride (GaN) layer and trapezoid-patterned sapphire substrate (TPSS) through the in situ carbonization of a photoresist layer to enable rapid chemical lift-off (CLO). A trapezoid-shaped PSS was used, which is advantageous for epitaxial growth on [...] Read more.
We fabricated an air-tunnel structure between a gallium nitride (GaN) layer and trapezoid-patterned sapphire substrate (TPSS) through the in situ carbonization of a photoresist layer to enable rapid chemical lift-off (CLO). A trapezoid-shaped PSS was used, which is advantageous for epitaxial growth on the upper c-plane when forming an air tunnel between the substrate and GaN layer. The upper c-plane of the TPSS was exposed during carbonization. This was followed by selective GaN epitaxial lateral overgrowth using a homemade metal organic chemical vapor deposition system. The air tunnel maintained its structure under the GaN layer, whereas the photoresist layer between the GaN layer and TPSS disappeared. The crystalline structures of GaN (0002) and (0004) were investigated using X-ray diffraction. The photoluminescence spectra of the GaN templates with and without the air tunnel showed an intense peak at 364 nm. The Raman spectroscopy results for the GaN templates with and without the air tunnel were redshifted relative to the results for free-standing GaN. The CLO process using potassium hydroxide solution neatly separated the GaN template with the air tunnel from the TPSS. Full article
(This article belongs to the Special Issue Thin Film Deposition: From Fundamental Research to Applications)
Show Figures

Figure 1

10 pages, 2840 KiB  
Article
Detach GaN-Based Film to Realize a Monolithic Bifunctional Device for Both Lighting and Detection
by Pan Dai, Ziwei Xu, Min Zhou, Min Jiang, Yukun Zhao, Wenxian Yang and Shulong Lu
Nanomaterials 2023, 13(2), 359; https://doi.org/10.3390/nano13020359 - 16 Jan 2023
Cited by 3 | Viewed by 2120
Abstract
Due to the emerging requirements of miniaturization and multifunctionality, monolithic devices with both functions of lighting and detection are essential for next-generation optoelectronic devices. In this work, based on freestanding (In,Ga)N films, we demonstrate a monolithic device with two functions of lighting and [...] Read more.
Due to the emerging requirements of miniaturization and multifunctionality, monolithic devices with both functions of lighting and detection are essential for next-generation optoelectronic devices. In this work, based on freestanding (In,Ga)N films, we demonstrate a monolithic device with two functions of lighting and self-powered detection successfully. The freestanding (In,Ga)N film is detached from the epitaxial silicon (Si) substrate by a cost-effective and fast method of electrochemical etching. Due to the stress release and the lightening of the quantum-confined Stark effect (QCSE), the wavelength blueshift of electroluminescent (EL) peak is very small (<1 nm) when increasing the injection current, leading to quite stable EL spectra. On the other hand, the proposed monolithic bifunctional device can have a high ultraviolet/visible reject ratio (Q = 821) for self-powered detection, leading to the excellent detection selectivity. The main reason can be attributed to the removal of Si by the lift-off process, which can limit the response to visible light. This work paves an effective way to develop new monolithic multifunctional devices for both detection and display. Full article
Show Figures

Figure 1

23 pages, 7139 KiB  
Review
Characterization of Defects in GaN: Optical and Magnetic Resonance Techniques
by Jaime A. Freitas, James C. Culbertson and Evan R. Glaser
Crystals 2022, 12(9), 1294; https://doi.org/10.3390/cryst12091294 - 14 Sep 2022
Cited by 3 | Viewed by 3825
Abstract
GaN and its alloys with InN and AlN are of technological importance for a variety of optical, electronic, and optoelectronic devices due to its high thermal conductivity, wide band gap, high breakdown voltage and high saturation velocity. GaN-based devices now provide superior performance [...] Read more.
GaN and its alloys with InN and AlN are of technological importance for a variety of optical, electronic, and optoelectronic devices due to its high thermal conductivity, wide band gap, high breakdown voltage and high saturation velocity. GaN-based devices now provide superior performance for a variety of high power, high frequency, high temperature, and optical applications. The major roadblock for the full realization of Nitride semiconductor potential is still the availability of affordable large-area and high-quality native substrates with controlled electrical properties. Despite the impressive accomplishments recently achieved by techniques such as hydride vapor phase epitaxy and ammonothermal for GaN growth, much more must be attained before establishing a fully satisfactory bulk growth method for this material. Recent results suggest that ammonothermal GaN wafers can be successfully used as seeds to grow thick freestanding GaN wafers by hydride vapor phase epitaxy. A brief review of defect-sensitive optical and paramagnetic spectroscopy techniques employed to evaluate structural, optical, and electronic properties of the state-of-the-art bulk and thick-film (quasi-bulk) Nitride substrates and homoepitaxial films is presented. Defects control the performance of devices and feeding back knowledge of defects to growth efforts is key to advancing technology. Full article
(This article belongs to the Special Issue Research in GaN-based Materials and Devices)
Show Figures

Figure 1

16 pages, 2776 KiB  
Article
Tuning the Gas Separation Performances of Smectic Liquid Crystalline Polymer Membranes by Molecular Engineering
by Joey Kloos, Menno Houben, Johan Lub, Kitty Nijmeijer, Albert P. H. J. Schenning and Zandrie Borneman
Membranes 2022, 12(8), 805; https://doi.org/10.3390/membranes12080805 - 20 Aug 2022
Cited by 6 | Viewed by 2565
Abstract
The effect of layer spacing and halogenation on the gas separation performances of free-standing smectic LC polymer membranes is being investigated by molecular engineering. LC membranes with various layer spacings and halogenated LCs were fabricated while having a planar aligned smectic morphology. Single [...] Read more.
The effect of layer spacing and halogenation on the gas separation performances of free-standing smectic LC polymer membranes is being investigated by molecular engineering. LC membranes with various layer spacings and halogenated LCs were fabricated while having a planar aligned smectic morphology. Single permeation and sorption data show a correlation between gas diffusion and layer spacing, which results in increasing gas permeabilities with increasing layer spacing while the ideal gas selectivity of He over CO2 or He over N2 decreases. The calculated diffusion coefficients show a 6-fold increase when going from membranes with a layer spacing of 31.9 Å to membranes with a layer spacing of 45.2 Å, demonstrating that the layer spacing in smectic LC membranes mainly affects the diffusion of gasses rather than their solubility. A comparison of gas sorption and permeation performances of smectic LC membranes with and without halogenated LCs shows only a limited effect of LC halogenation by a slight increase in both solubility and diffusion coefficients for the membranes with halogenated LCs, resulting in a slightly higher gas permeation and increased ideal gas selectivities towards CO2. These results show that layer spacing plays an important role in the gas separation performances of smectic LC polymer membranes. Full article
(This article belongs to the Special Issue Elucidating Mass Transfer Processes in Membranes for Gas Separation)
Show Figures

Graphical abstract

7 pages, 1430 KiB  
Communication
Size-Dependent Electrical Transport Properties in Conducting Diamond Nanostripes
by Andrew F. Zhou, Elluz Pacheco, Badi Zhou and Peter X. Feng
Nanomaterials 2021, 11(7), 1765; https://doi.org/10.3390/nano11071765 - 6 Jul 2021
Cited by 4 | Viewed by 2054
Abstract
With the advances in nanofabrication technology, horizontally aligned and well-defined nitrogen-doped ultrananocrystalline diamond nanostripes can be fabricated with widths in the order of tens of nanometers. The study of the size-dependent electron transport properties of these nanostructures is crucial to novel electronic and [...] Read more.
With the advances in nanofabrication technology, horizontally aligned and well-defined nitrogen-doped ultrananocrystalline diamond nanostripes can be fabricated with widths in the order of tens of nanometers. The study of the size-dependent electron transport properties of these nanostructures is crucial to novel electronic and electrochemical applications. In this paper, 100 nm thick n-type ultrananocrystalline diamond thin films were synthesized by microwave plasma-enhanced chemical vapor deposition method with 5% N2 gas in the plasma during the growth process. Then the nanostripes were fabricated using standard electron beam lithography and reactive ion etching techniques. The electrical transport properties of the free-standing single nanostripes of different widths from 75 to 150 nm and lengths from 1 to 128 μm were investigated. The study showed that the electrical resistivity of the n-type ultrananocrystalline diamond nanostripes increased dramatically with the decrease in the nanostripe width. The nanostripe resistivity was nearly doubted when the width was reduced from 150 nm to 75 nm. The size-dependent variability in conductivity could originate from the imposed diffusive scattering of the nanostripe surfaces which had a further compounding effect to reinforce the grain boundary scattering. Full article
(This article belongs to the Special Issue Transport Properties of Nanowires)
Show Figures

Figure 1

10 pages, 2154 KiB  
Article
Stretchable Transparent Light-Emitting Diodes Based on InGaN/GaN Quantum Well Microwires and Carbon Nanotube Films
by Fedor M. Kochetkov, Vladimir Neplokh, Viktoria A. Mastalieva, Sungat Mukhangali, Aleksandr A. Vorob’ev, Aleksandr V. Uvarov, Filipp E. Komissarenko, Dmitry M. Mitin, Akanksha Kapoor, Joel Eymery, Nuño Amador-Mendez, Christophe Durand, Dmitry Krasnikov, Albert G. Nasibulin, Maria Tchernycheva and Ivan S. Mukhin
Nanomaterials 2021, 11(6), 1503; https://doi.org/10.3390/nano11061503 - 7 Jun 2021
Cited by 13 | Viewed by 4712
Abstract
We propose and demonstrate both flexible and stretchable blue light-emitting diodes based on core/shell InGaN/GaN quantum well microwires embedded in polydimethylsiloxane membranes with strain-insensitive transparent electrodes involving single-walled carbon nanotubes. InGaN/GaN core-shell microwires were grown by metal-organic vapor phase epitaxy, encapsulated into a [...] Read more.
We propose and demonstrate both flexible and stretchable blue light-emitting diodes based on core/shell InGaN/GaN quantum well microwires embedded in polydimethylsiloxane membranes with strain-insensitive transparent electrodes involving single-walled carbon nanotubes. InGaN/GaN core-shell microwires were grown by metal-organic vapor phase epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films can stand up to 20% stretching while maintaining efficient operation. Membrane-based LEDs show less than 15% degradation of electroluminescence intensity after 20 cycles of stretching thus opening an avenue for highly deformable inorganic devices. Full article
Show Figures

Graphical abstract

8 pages, 3680 KiB  
Article
Effect of Graded-Indium-Content Superlattice on the Optical and Structural Properties of Yellow-Emitting InGaN/GaN Quantum Wells
by Xuan Li, Jianping Liu, Xujun Su, Siyi Huang, Aiqin Tian, Wei Zhou, Lingrong Jiang, Masao Ikeda and Hui Yang
Materials 2021, 14(8), 1877; https://doi.org/10.3390/ma14081877 - 9 Apr 2021
Cited by 6 | Viewed by 2690
Abstract
We have improved the material quality of the high indium composition InGaN/GaN multiple quantum wells (MQWs) grown on free-standing GaN substrates using the graded-indium-content superlattice. We found that by adopting a graded-indium-content superlattice structure, the spectral FWHM of the yellow emitting InGaN/GaN MQW [...] Read more.
We have improved the material quality of the high indium composition InGaN/GaN multiple quantum wells (MQWs) grown on free-standing GaN substrates using the graded-indium-content superlattice. We found that by adopting a graded-indium-content superlattice structure, the spectral FWHM of the yellow emitting InGaN/GaN MQW was reduced from 181 meV to 160 meV, and the non-radiative recombination lifetime increased from 13 ns to 44 ns. Besides, the graded-indium-content superlattice can mitigate strain relaxation in high indium composition MQWs as shown by the TEM diffraction patterns. Full article
(This article belongs to the Special Issue Growth and Characteristics of Nitride Semiconductor Layers)
Show Figures

Figure 1

20 pages, 5537 KiB  
Article
Simultaneous Synthesis and Nitrogen Doping of Free-Standing Graphene Applying Microwave Plasma
by D. Tsyganov, N. Bundaleska, J. Henriques, E. Felizardo, A. Dias, M. Abrashev, J. Kissovski, A. M. Botelho do Rego, A. M. Ferraria and E. Tatarova
Materials 2020, 13(18), 4213; https://doi.org/10.3390/ma13184213 - 22 Sep 2020
Cited by 20 | Viewed by 3871
Abstract
An experimental and theoretical investigation on microwave plasma-based synthesis of free-standing N-graphene, i.e., nitrogen-doped graphene, was further extended using ethanol and nitrogen gas as precursors. The in situ assembly of N-graphene is a single-step method, based on the introduction of N-containing precursor together [...] Read more.
An experimental and theoretical investigation on microwave plasma-based synthesis of free-standing N-graphene, i.e., nitrogen-doped graphene, was further extended using ethanol and nitrogen gas as precursors. The in situ assembly of N-graphene is a single-step method, based on the introduction of N-containing precursor together with carbon precursor in the reactive microwave plasma environment at atmospheric pressure conditions. A previously developed theoretical model was updated to account for the new reactor geometry and the nitrogen precursor employed. The theoretical predictions of the model are in good agreement with all experimental data and assist in deeper understanding of the complicated physical and chemical process in microwave plasma. Optical Emission Spectroscopy was used to detect the emission of plasma-generated ‘‘building units’’ and to determine the gas temperature. The outlet gas was analyzed by Fourier-Transform Infrared Spectroscopy to detect the generated gaseous by-products. The synthesized N-graphene was characterized by Scanning Electron Microscopy, Raman, and X-ray photoelectron spectroscopies. Full article
(This article belongs to the Special Issue Atmospheric Pressure Plasmas in Material Science)
Show Figures

Figure 1

12 pages, 3829 KiB  
Article
The Study of High Breakdown Voltage Vertical GaN-on-GaN p-i-n Diode with Modified Mesa Structure
by Wen-Chieh Ho, Yao-Hsing Liu, Wen-Hsuan Wu, Sung-Wen Huang Chen, Jerry Tzou, Hao-Chung Kuo and Chia-Wei Sun
Crystals 2020, 10(8), 712; https://doi.org/10.3390/cryst10080712 - 18 Aug 2020
Cited by 7 | Viewed by 6364
Abstract
In this paper, we fabricated Gallium Nitride (GaN) vertical p-i-n diodes grown on free-standing GaN (FS-GaN) substrates. This homogeneous epitaxy led to thicker GaN epi-layers grown on the FS-GaN substrate, but a high crystalline quality was maintained. The vertical [...] Read more.
In this paper, we fabricated Gallium Nitride (GaN) vertical p-i-n diodes grown on free-standing GaN (FS-GaN) substrates. This homogeneous epitaxy led to thicker GaN epi-layers grown on the FS-GaN substrate, but a high crystalline quality was maintained. The vertical GaN p-i-n diode showed a low specific on-resistance of 0.85 mΩ-cm2 and high breakdown voltage (BV) of 2.98 kV. The high breakdown voltage can be attributed to the thick GaN epi-layer and corresponds to the mesa structure. Improvement of the device characteristics by the mesa structure was investigated using device simulations. We proved that a deeper mesa depth is able to decrease the electric field at the bottom of the mesa structure. Furthermore, a smaller mesa bevel angle will assist the BV up to 2.98 kV at a 60° bevel angle. Our approach demonstrates structural optimization of GaN vertical p-i-n diodes is useful to improve the device performance. Full article
(This article belongs to the Special Issue GaN-Based Optoelectronic Materials and Light Emitting Devices)
Show Figures

Figure 1

21 pages, 8089 KiB  
Review
Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors
by Abhinay Sandupatla, Subramaniam Arulkumaran, Ng Geok Ing, Shugo Nitta, John Kennedy and Hiroshi Amano
Micromachines 2020, 11(5), 519; https://doi.org/10.3390/mi11050519 - 20 May 2020
Cited by 24 | Viewed by 6233
Abstract
Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of [...] Read more.
Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of GaN as an α-particle detector. Work in developing GaN-based radiation sensors are still evolving and GaN sensors have successfully detected α-particles, neutrons, ultraviolet rays, x-rays, electrons and γ-rays. This review elaborates on the design of a good radiation detector along with the state-of-the-art α-particle detectors using GaN. Successful improvement in the growth of GaN drift layers (DL) with 2 order of magnitude lower in charge carrier density (CCD) (7.6 × 1014/cm3) on low threading dislocation density (3.1 × 106/cm2) hydride vapor phase epitaxy (HVPE) grown free-standing GaN substrate, which helped ~3 orders of magnitude lower reverse leakage current (IR) with 3-times increase of reverse breakdown voltages. The highest reverse breakdown voltage of −2400 V was also realized from Schottky barrier diodes (SBDs) on a free-standing GaN substrate with 30 μm DL. The formation of thick depletion width (DW) with low CCD resulted in improving high-energy (5.48 MeV) α-particle detection with the charge collection efficiency (CCE) of 62% even at lower bias voltages (−20 V). The detectors also detected 5.48 MeV α-particle with CCE of 100% from SBDs with 30-μm DL at −750 V. Full article
(This article belongs to the Special Issue Wide Bandgap Based Devices: Design, Fabrication and Applications)
Show Figures

Figure 1

18 pages, 3385 KiB  
Article
Influence of Anion Structure on Thermal, Mechanical and CO2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate Iongels
by Ana P. S. Martins, Asier Fdz De Añastro, Jorge L. Olmedo-Martínez, Ana R. Nabais, Luísa A. Neves, David Mecerreyes and Liliana C. Tomé
Membranes 2020, 10(3), 46; https://doi.org/10.3390/membranes10030046 - 17 Mar 2020
Cited by 17 | Viewed by 5095
Abstract
Iongel-based CO2 separation membranes were prepared by fast (< 1 min) UV-initiated polymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence of different ionic liquids (ILs) with the [C2mim]+ cation and anions such as [TFSI], [FSI] [...] Read more.
Iongel-based CO2 separation membranes were prepared by fast (< 1 min) UV-initiated polymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence of different ionic liquids (ILs) with the [C2mim]+ cation and anions such as [TFSI], [FSI], [C(CN)3] and [B(CN)4]. The four ILs were completely miscible with the non-ionic PEGDA network. Transparent and free-standing iongels containing between 60 and 90 %wt of IL were obtained and characterized by diverse techniques (FTIR, TGA, DSC, DMTA, SEM, CO2 solubility and pure gas permeability). The thermal and mechanical stability of the iongels, as well as CO2 solubility, were found to be strictly dependent on the IL content and the anion’s nature. The TGA results indicated that the iongels mostly follow the thermal profile of the respective neat ILs. The DMTA analysis revealed that the iongels based on fluorinated anions have higher storage modulus than those of cyano-functionalized anions. Conversely, the PEGDA–C(CN)3 iongels presented the highest CO2 solubility values ranging from 72 to 80 mmol/g. Single CO2 permeabilities of 583 ± 29 Barrer and ideal CO2/N2 selectivities of 66 ± 3 were obtained with the PEGDA–70 C(CN)3 iongel membrane. This work demonstrates that the combination of PEGDA with high contents of the best performing ILs is a promising and simple strategy, opening up new possibilities in the design of high-performance iongel membranes for CO2 separation. Full article
(This article belongs to the Special Issue Ionic Liquid-based Materials for Membrane Processes)
Show Figures

Graphical abstract

9 pages, 3378 KiB  
Article
Growth of Freestanding Gallium Nitride (GaN) Through Polyporous Interlayer Formed Directly During Successive Hydride Vapor Phase Epitaxy (HVPE) Process
by Haixiao Hu, Baoguo Zhang, Lei Liu, Deqin Xu, Yongliang Shao, Yongzhong Wu and Xiaopeng Hao
Crystals 2020, 10(2), 141; https://doi.org/10.3390/cryst10020141 - 24 Feb 2020
Cited by 11 | Viewed by 4211
Abstract
The progress of nitride technology is widely limited and hindered by the lack of high-quality gallium nitride (GaN) wafers. Therefore, a large number of GaN epitaxial devices are grown on heterogeneous substrates. Although various additional treatments of substrate have been used to promote [...] Read more.
The progress of nitride technology is widely limited and hindered by the lack of high-quality gallium nitride (GaN) wafers. Therefore, a large number of GaN epitaxial devices are grown on heterogeneous substrates. Although various additional treatments of substrate have been used to promote crystal quality, there is still plenty of room for its improvement, in terms of direct and continuous growth based on the hydride vapor phase epitaxy (HVPE) technique. Here, we report a three-step process that can be used to enhance the quality of GaN crystal by tuning V/III rate during successive HVPE process. In the growth, a metal-organic chemical vapor deposition (MOCVD) grown GaN on sapphire (MOCVD-GaN/Al2O3) was employed as substrate, and a high-quality GaN polyporous interlayer, with successful acquisition, without any additional substrate treatment, caused the growth stress to decrease to 0.06 GPa. Meanwhile the quality of GaN improved, and the freestanding GaN was directly obtained during the growth process. Full article
(This article belongs to the Special Issue Semiconductor Heteroepitaxy)
Show Figures

Figure 1

7 pages, 1544 KiB  
Article
Current Transport Mechanism in Palladium Schottky Contact on Si-Based Freestanding GaN
by Moonsang Lee, Chang Wan Ahn, Thi Kim Oanh Vu, Hyun Uk Lee, Yesul Jeong, Myung Gwan Hahm, Eun Kyu Kim and Sungsoo Park
Nanomaterials 2020, 10(2), 297; https://doi.org/10.3390/nano10020297 - 10 Feb 2020
Cited by 12 | Viewed by 3158
Abstract
In this study, the charge transport mechanism of Pd/Si-based FS-GaN Schottky diodes was investigated. A temperature-dependent current–voltage analysis revealed that the I-V characteristics of the diodes show a good rectifying behavior with a large ratio of 103–105 at the forward [...] Read more.
In this study, the charge transport mechanism of Pd/Si-based FS-GaN Schottky diodes was investigated. A temperature-dependent current–voltage analysis revealed that the I-V characteristics of the diodes show a good rectifying behavior with a large ratio of 103–105 at the forward to reverse current at ±1 V. The interface states and non-interacting point defect complex between the Pd metal and FS-GaN crystals induced the inhomogeneity of the barrier height and large ideality factors. Furthermore, we revealed that the electronic conduction of the devices prefers the thermionic field emission (TFE) transport, not the thermionic emission (TE) model, over the entire measurement conditions. The investigation on deep level transient spectroscopy (DLTS) suggests that non-interacting point-defect-driven tunneling influences the charge transport. This investigation about charge transport paves the way to achieving next-generation optoelectronic applications using Si-based FS-GaN Schottky diodes. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

11 pages, 3937 KiB  
Article
Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency
by Abhinay Sandupatla, Subramaniam Arulkumaran, Kumud Ranjan, Geok Ing Ng, Peter P. Murmu, John Kennedy, Shugo Nitta, Yoshio Honda, Manato Deki and Hiroshi Amano
Sensors 2019, 19(23), 5107; https://doi.org/10.3390/s19235107 - 21 Nov 2019
Cited by 10 | Viewed by 4463
Abstract
A low voltage (−20 V) operating high-energy (5.48 MeV) α-particle detector with a high charge collection efficiency (CCE) of approximately 65% was observed from the compensated (7.7 × 1014 /cm3) metalorganic vapor phase epitaxy (MOVPE) grown 15 µm thick drift [...] Read more.
A low voltage (−20 V) operating high-energy (5.48 MeV) α-particle detector with a high charge collection efficiency (CCE) of approximately 65% was observed from the compensated (7.7 × 1014 /cm3) metalorganic vapor phase epitaxy (MOVPE) grown 15 µm thick drift layer gallium nitride (GaN) Schottky diodes on free-standing n+-GaN substrate. The observed CCE was 30% higher than the bulk GaN (400 µm)-based Schottky barrier diodes (SBD) at −20 V. This is the first report of α–particle detection at 5.48 MeV with a high CCE at −20 V operation. In addition, the detectors also exhibited a three-times smaller variation in CCE (0.12 %/V) with a change in bias conditions from −120 V to −20 V. The dramatic reduction in CCE variation with voltage and improved CCE was a result of the reduced charge carrier density (CCD) due to the compensation by Mg in the grown drift layer (DL), which resulted in the increased depletion width (DW) of the fabricated GaN SBDs. The SBDs also reached a CCE of approximately 96.7% at −300 V. Full article
(This article belongs to the Special Issue Radiation Sensing: Design and Deployment of Sensors and Detectors)
Show Figures

Figure 1

Back to TopTop