Influence of Anion Structure on Thermal, Mechanical and CO2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate Iongels
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of UV-Cross-Linked PEGDA Iongels
2.3. Characterization Methods
2.4. CO2 Solubility Measurements
2.5. Gas Permeability Experiments
3. Results and Discussion
3.1. FTIR Analysis
3.2. Thermal Analysis
3.3. Mechanical Properties
3.4. Morphology
3.5. CO2 Solubility
3.6. CO2/N2 Separation Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
∆Hm | Enthalpy of melting |
A | Membrane area |
ATR-FTIR | Total Reflection Fourier transform infrared spectroscopy |
Barrer | 1 × 10−10 cm3 (STP) cm cm−2 cmHg−1 s−1 |
CO2 | Carbon dioxide |
DN | Double network |
DSC | Differential scanning calorimetry |
DMTA | Dynamic mechanical thermal analysis |
G’ | Storage modulus |
G’’ | Loss modulus |
IL | Ionic liquid |
l | Membrane thickness |
N2 | Nitrogen |
P | Permeability |
PEG | Poly(ethylene glycol) |
PEGDA | Poly(ethylene glycol) diacrylate |
Pfeed | Pressure in the feed compartment |
PA | Polyamide |
PIL | Poly(ionic liquid) |
pperm | Pressure in the permeate compartment |
SEM | Scanning electron microscopy |
SILM | Supported ionic liquid membrane |
T | Time |
Tdec | Decomposition temperature |
Tg | Glass transition temperature |
TGA | Thermogravimetric analysis |
Tonset | Onset temperature |
UV | Ultraviolet |
Vfeed | Volume of the feed compartment |
Vperm | Volume of the permeate compartment |
α | Ideal selectivity |
β | Geometric parameter |
Cations | |
[C2mim]+ | 1-Ethyl-3-methylimidazolium |
[C4mim]+ | 1-Butyl-3-methylimidazolium |
Anions | |
[B(CN)4]– | Tetracyanoborate |
[BF4]– | Tetrafluoroborate |
[C(CN)3]– | Tricyanomethanide |
[FSI]– | Bis(fluorosulfonyl)imide |
[Inda]– | Indazole |
[PF6]– | Hexafluorophosphate |
[Pro]– | Prolinate |
[TFSI]– | Bis(trifluoromethylsulfonyl)imide |
References
- Tomé, L.C.; Marrucho, I.M. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem. Soc. Rev. 2016, 45, 2785–2824. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.S.; Bai, L.; Han, J.L.; Yang, B.B.; Zhang, S.J.; Zhang, X.P. Functionalized ionic liquid membranes for CO2 separation. Chem. Commun. 2018, 54, 12671–12685. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.D.; Noble, R.D.; Gin, D.L.; Zhang, X.P.; Deng, L.Y. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. J. Membr. Sci. 2016, 497, 1–20. [Google Scholar] [CrossRef]
- Le Bideau, J.; Viau, L.; Vioux, A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 2011, 40, 907–925. [Google Scholar] [CrossRef]
- Voss, B.A.; Bara, J.E.; Gin, D.L.; Noble, R.D. Physically Gelled Ionic Liquids: Solid Membrane Materials with Liquidlike CO2 Gas Transport. Chem. Mater. 2009, 21, 3027–3029. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Voss, B.A.; Wiesenauer, E.F.; Gin, D.L.; Nobe, R.D. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance. Ind. Eng. Chem. Res. 2013, 52, 8812–8821. [Google Scholar] [CrossRef]
- Gu, Y.Y.; Lodge, T.P. Synthesis and Gas Separation Performance of Triblock Copolymer Ion Gels with a Polymerized Ionic Liquid Mid-Block. Macromolecules 2011, 44, 1732–1736. [Google Scholar] [CrossRef]
- Gu, Y.Y.; Cussler, E.L.; Lodge, T.P. ABA-triblock copolymer ion gels for CO2 separation applications. J. Membr. Sci. 2012, 423, 20–26. [Google Scholar] [CrossRef]
- Hong, S.U.; Park, D.; Ko, Y.; Baek, I. Polymer-ionic liquid gels for enhanced gas transport. Chem. Commun. 2009, 46, 7227–7229. [Google Scholar] [CrossRef]
- Chen, H.Z.; Li, P.; Chung, T.S. PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas. Int. J. Hydrogen Energy 2012, 37, 11796–11804. [Google Scholar] [CrossRef]
- Tomé, L.C.; Mecerreyes, D.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes. J. Membr. Sci. 2013, 428, 260–266. [Google Scholar] [CrossRef]
- Tomé, L.C.; Isik, M.; Freire, C.S.R.; Mecerreyes, D.; Marrucho, I.M. Novel pyrrolidinium-based polymeric ionic liquids with cyano counter-anions: High performance membrane materials for post-combustion CO2 separation. J. Membr. Sci. 2015, 483, 155–165. [Google Scholar] [CrossRef]
- Gouveia, A.S.L.; Ventaja, L.; Tomé, L.C.; Marrucho, I.M. Towards Biohydrogen Separation Using Poly(Ionic Liquid)/Ionic Liquid Composite Membranes. Membranes 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Tomé, L.C.; Guerreiro, D.C.; Teodoro, R.M.; Alves, V.D.; Marrucho, I.M. Effect of polymer molecular weight on the physical properties and CO2/N-2 separation of pyrrolidinium-based poly(ionic liquid) membranes. J. Membr. Sci. 2018, 549, 267–274. [Google Scholar] [CrossRef]
- Carlisle, T.K.; Wiesenauer, E.F.; Nicodemus, G.D.; Gin, D.L.; Noble, R.D. Ideal CO2/Light Gas Separation Performance of Poly(vinylimidazolium) Membranes and Poly(vinylimidazolium)-Ionic Liquid Composite Films. Ind. Eng. Chem. Res. 2013, 52, 1023–1032. [Google Scholar] [CrossRef]
- Bara, J.E.; Noble, R.D.; Gin, D.L. Effect of “Free” Cation Substituent on Gas Separation Performance of Polymer-Room-Temperature Ionic Liquid Composite Membranes. Ind. Eng. Chem. Res. 2009, 48, 4607–4610. [Google Scholar] [CrossRef]
- Li, P.; Paul, D.R.; Chung, T.S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chem. 2012, 14, 1052–1063. [Google Scholar] [CrossRef]
- Lopez, A.M.; Cowan, M.G.; Gin, D.L.; Noble, R.D. Phosphonium-Based Poly(ionic liquid)/Ionic Liquid Ion Gel Membranes: Influence of Structure and Ionic Liquid Loading on Ion Conductivity and Light Gas Separation Performance. J. Chem. Eng. Data 2018, 63, 1154–1162. [Google Scholar] [CrossRef]
- Cowan, M.G.; Gin, D.L.; Noble, R.D. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High “Free” Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations. Acc. Chem. Res. 2016, 49, 724–732. [Google Scholar] [CrossRef]
- Carlisle, T.K.; McDanel, W.M.; Cowan, M.G.; Noble, R.D.; Gin, D.L. Vinyl-Functionalized Poly(imidazolium)s: A Curable Polymer Platform for Cross-Linked Ionic Liquid Gel Synthesis. Chem. Mater. 2014, 26, 1294–1296. [Google Scholar] [CrossRef]
- McDanel, W.M.; Cowan, M.G.; Carlisle, T.K.; Swanson, A.K.; Noble, R.D.; Gin, D.L. Cross-linked ionic resins and gels from epoxide-functionalized imidazolium ionic liquid monomers. Polymer 2014, 55, 3305–3313. [Google Scholar] [CrossRef]
- McDanel, W.M.; Cowan, M.G.; Barton, J.A.; Gin, D.L.; Noble, R.D. Effect of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas Permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-Gels. Ind. Eng. Chem. Res. 2015, 54, 4396–4406. [Google Scholar] [CrossRef]
- Moghadam, F.; Kamio, E.; Yoshizumi, A.; Matsuyama, H. An amino acid ionic liquid-based tough ion gel membrane for CO2 capture. Chem. Commun. 2015, 51, 13658–13661. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, F.; Kamio, E.; Yoshioka, T.; Matsuyama, H. New approach for the fabrication of double-network ion-gel membranes with high CO2/N-2 separation performance based on facilitated transport. J. Membr. Sci. 2017, 530, 166–175. [Google Scholar] [CrossRef]
- Moghadam, F.; Kamio, E.; Matsuyama, H. High CO2 separation performance of amino acid ionic liquid-based double network ion gel membranes in low CO2 concentration gas mixtures under humid conditions. J. Membr. Sci. 2017, 525, 290–297. [Google Scholar] [CrossRef]
- Ranjbaran, F.; Kamio, E.; Matsuyama, H. Inorganic/organic composite ion gel membrane with high mechanical strength and high CO2 separation performance. J. Membr. Sci. 2017, 544, 252–260. [Google Scholar] [CrossRef]
- Ranjbaran, F.; Kamio, E.; Matsuyama, H. Ion Gel Membrane with Tunable Inorganic/Organic Composite Network for CO2 Separation. Ind. Eng. Chem. Res. 2017, 56, 12763–12772. [Google Scholar] [CrossRef]
- Fujii, K.; Makino, T.; Hashimoto, K.; Sakai, T.; Kanakubo, M.; Shibayama, M. Carbon Dioxide Separation Using a High-toughness Ion Gel with a Tetra-armed Polymer Network. Chem. Lett. 2015, 44, 17–19. [Google Scholar] [CrossRef]
- Visentin, A.F.; Alimena, S.; Panzer, M.J. Influence of Ionic Liquid Selection on the Properties of Poly(Ethylene Glycol) Diacrylate-Supported Ionogels as Solid Electrolytes. Chemelectrochem 2014, 1, 718–721. [Google Scholar] [CrossRef]
- Hubble, D.; Qin, J.X.; Lin, F.; Murphy, I.A.; Jang, S.H.; Yang, J.H.; Jen, A.K.Y. Designing solvate ionogel electrolytes with very high room- temperature conductivity and lithium transference number. J. Mater. Chem. A 2018, 6, 24100–24106. [Google Scholar] [CrossRef]
- Fdz De Anastro, A.; Porcarelli, L.; Hilder, M.; Berlanga, C.; Galceran, M.; Howlett, P.; Forsyth, M.; Mecerreyes, D. UV-Cross-Linked Ionogels for All-Solid-State Rechargeable Sodium Batteries. ACS Appl. Energy Mater. 2019, 2, 6960–6966. [Google Scholar] [CrossRef]
- Lin, H.; Freeman, B.D. Gas solubility, diffusivity and permeability in poly(ethylene oxide). J. Membr. Sci. 2004, 239, 105–117. [Google Scholar] [CrossRef]
- Lin, H.Q.; Freeman, B.D. Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate). Macromolecules 2006, 39, 3568–3580. [Google Scholar] [CrossRef]
- Kusuma, V.A.; Macala, M.K.; Liu, J.; Marti, A.M.; Hirsch, R.J.; Hill, L.J.; Hopkinson, D. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes. J. Membr. Sci. 2018, 545, 292–300. [Google Scholar] [CrossRef]
- Kusuma, V.A.; Macala, M.K.; Baker, J.S.; Hopkinson, D. Cross-Linked Poly(ethylene oxide) Ion Gels Containing Functionalized Imidazolium Ionic Liquids as Carbon Dioxide Separation Membranes. Ind. Eng. Chem. Res. 2018, 57, 11658–11667. [Google Scholar] [CrossRef]
- Deng, J.; Yu, J.B.; Dai, Z.D.; Deng, L.Y. Cross-Linked PEG Membranes of Interpenetrating Networks with Ionic Liquids as Additives for Enhanced CO2 Separation. Ind. Eng. Chem. Res. 2019, 58, 5261–5268. [Google Scholar] [CrossRef]
- Tomé, L.C.; Florindo, C.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. Playing with ionic liquid mixtures to design engineered CO2 separation membranes. Phys. Chem. Chem. Phys. 2014, 16, 17172–17182. [Google Scholar] [CrossRef]
- Tomé, L.C.; Patinha, D.J.S.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. CO2 separation applying ionic liquid mixtures: The effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Adv. 2013, 3, 12220–12229. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, A.S.L.; Tomé, L.C.; Lozinskaya, E.I.; Shaplov, A.S.; Vygodskii, Y.S.; Marrucho, I.M. Exploring the effect of fluorinated anions on the CO2/N-2 separation of supported ionic liquid membranes. Phys. Chem. Chem. Phys. 2017, 19, 28876–28884. [Google Scholar] [CrossRef] [Green Version]
- Neves, L.A.; Afonso, C.; Coelhoso, I.M.; Crespo, J.G. Integrated CO2 capture and enzymatic bioconversion in supported ionic liquid membranes. Sep. Purif. Technol. 2012, 97, 34–41. [Google Scholar] [CrossRef]
- Neves, L.A.; Crespo, J.G.; Coelhoso, I.M. Gas permeation studies in supported ionic liquid membranes. J. Membr. Sci. 2010, 357, 160–170. [Google Scholar] [CrossRef]
- Peter, M.; Tayalia, P. An alternative technique for patterning cells on poly(ethylene glycol) diacrylate hydrogels. RSC Adv. 2016, 6, 40878–40885. [Google Scholar] [CrossRef]
- Kiefer, J.; Fries, J.; Leipertz, A. Experimental vibratnional study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl. Spectrosc. 2007, 61, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Paschoal, V.H.; Faria, L.F.O.; Ribeiro, M.C.C. Vibrational Spectroscopy of Ionic Liquids. Chem. Rev. 2017, 117, 7053–7112. [Google Scholar] [CrossRef]
- Yunis, T.; Girard, G.M.A.; Wang, X.E.; Zhu, H.J.; Bhattacharyya, A.J.; Howlett, P.; MacFarlane, D.R.; Forsyth, M. The anion effect in ternary electrolyte systems using poly (diallyldimethylammonium) and phosphonium-based ionic liquid with high Lithium salt concentration. Solid State Ionics 2018, 327, 83–92. [Google Scholar] [CrossRef]
- Ronca, A.; D’Amora, U.; Raucci, M.G.; Lin, H.; Fan, Y.J.; Zhang, X.D.; Ambrosio, L. A Combined Approach of Double Network Hydrogel and Nanocomposites Based on Hyaluronic Acid and Poly(ethylene glycol) Diacrylate Blend. Materials 2018, 11, 2454. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.T.; Kwon, O.M.; Mun, J.; Oh, S.M.; Yim, T.; Kim, Y.G. Novel Pyrrolinium-based Ionic Liquids for Lithium Ion Batteries: Effect of the Cation on Physicochemical and Electrochemical Properties. Electrochim. Acta 2017, 240, 267–276. [Google Scholar] [CrossRef]
- Jeon, J.H.; Tanaka, K.; Chujo, Y. Synthesis of sulfonic acid-containing POSS and its filler effects for enhancing thermal stabilities and lowering melting temperatures of ionic liquids. J. Mater. Chem. A 2014, 2, 624–630. [Google Scholar] [CrossRef]
- Fellinger, T.P.; Su, D.S.; Engenhorst, M.; Gautam, D.; Schlogl, R.; Antonietti, M. Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: Mechanism, structure analysis and electronic properties. J. Mater. Chem. 2012, 22, 23996–24005. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Song, H.Z.; Duan, X.L.; Wang, Z.H.; Liu, J.H.; Ba, X.W. Novel Chemical Cross-Linked Ionogel Based on Acrylate Terminated Hyperbranched Polymer with Superior Ionic Conductivity for High Performance Lithium-Ion Batteries. Polymers 2019, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Gayet, F.; Viau, L.; Leroux, F.; Monge, S.; Robin, J.J.; Vioux, A. Polymer nanocomposite ionogels, high-performance electrolyte membranes. J. Mater. Chem. 2010, 20, 9456–9462. [Google Scholar] [CrossRef]
- Huang, K.; Peng, H.L. Solubilities of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Thiocyanate, 1-Ethyl-3-methylimidazolium Dicyanamide, and 1-Ethyl-3-methylimidazolium Tricyanomethanide at (298.2 to 373.2) K and (0 to 300.0) kPa. J. Chem. Eng. Data 2017, 62, 4108–4116. [Google Scholar] [CrossRef]
- Babarao, R.; Dai, S.; Jiang, D.E. Understanding the High Solubility of CO2 in an Ionic Liquid with the Tetracyanoborate Anion. J. Phys. Chem. B 2011, 115, 9789–9794. [Google Scholar] [CrossRef] [PubMed]
- Scovazzo, P.; Kieft, J.; Finan, D.A.; Koval, C.; DuBois, D.; Noble, R. Gas separations using non-hexafluorophosphate PF6 (-) anion supported ionic liquid membranes. J. Membr. Sci. 2004, 238, 57–63. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
Sample | Tonset (°C) a | Tdec (°C) b | Tm (°C) | Tg (°C) c | ∆Hm (J g−1) |
---|---|---|---|---|---|
PEGDA | 365 | 396 | ND f | −20 | - |
PEGDA – 60 FSI | 248 | 344 | −13 | −51 | 0.7 |
PEGDA – 70 FSI | 229 | 342 | −15 | ND | 1.1 |
PEGDA – 80 FSI | 231 | 334 | −12 | ND | 1.4 |
PEGDA – 90 FSI | 240 | 323 | −15 | ND | 22 |
[C2mim][FSI] | 294 | 343 | −11 | ND | 40 |
PEGDA – 60 TFSI | 361 | 406 | −15 | −47 | 0.4 |
PEGDA – 70 TFSI | 352 | 418 | −14 | −50 | 0.9 |
PEGDA – 80 TFSI | 359 | 436 | −15 | ND | 1.2 |
PEGDA – 90 TFSI | 342 | 436 | −15 | ND | 3.0 |
[C2mim][TFSI] | 424 | 463 | −13 | ND | 53 |
PEGDA – 60 C(CN)3 | 340 | 378 | 3 | −50 | 1.0 |
PEGDA – 70 C(CN)3 | 330 | 371 | 4 | ND | 2.2 |
PEGDA – 80 C(CN)3 | 334 | 378 | −4 | ND | 13 |
PEGDA – 90 C(CN)3 | 361 | 389 | 0 | ND | 33 |
[C2mim][C(CN)3] | 324 | 458 | 4 | ND | 48 |
PEGDA – 60 B(CN)4 | 360 | 392 | ND | −43 | - |
PEGDA – 70 B(CN)4 | 358 | 393 | ND | −51 | - |
PEGDA – 80 B(CN)4 | 364 | 401 | ND | −50 | - |
PEGDA – 90 B(CN)4 | 358 | 410 | ND | ND | - |
[C2mim][B(CN)3] | 391 | 427 | ND | ND | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, A.P.S.; Fdz De Añastro, A.; Olmedo-Martínez, J.L.; Nabais, A.R.; Neves, L.A.; Mecerreyes, D.; Tomé, L.C. Influence of Anion Structure on Thermal, Mechanical and CO2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate Iongels. Membranes 2020, 10, 46. https://doi.org/10.3390/membranes10030046
Martins APS, Fdz De Añastro A, Olmedo-Martínez JL, Nabais AR, Neves LA, Mecerreyes D, Tomé LC. Influence of Anion Structure on Thermal, Mechanical and CO2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate Iongels. Membranes. 2020; 10(3):46. https://doi.org/10.3390/membranes10030046
Chicago/Turabian StyleMartins, Ana P. S., Asier Fdz De Añastro, Jorge L. Olmedo-Martínez, Ana R. Nabais, Luísa A. Neves, David Mecerreyes, and Liliana C. Tomé. 2020. "Influence of Anion Structure on Thermal, Mechanical and CO2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate Iongels" Membranes 10, no. 3: 46. https://doi.org/10.3390/membranes10030046
APA StyleMartins, A. P. S., Fdz De Añastro, A., Olmedo-Martínez, J. L., Nabais, A. R., Neves, L. A., Mecerreyes, D., & Tomé, L. C. (2020). Influence of Anion Structure on Thermal, Mechanical and CO2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate Iongels. Membranes, 10(3), 46. https://doi.org/10.3390/membranes10030046