Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (601)

Search Parameters:
Keywords = free-space measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3699 KiB  
Article
Three-Dimensional Extended Target Tracking and Shape Learning Based on Double Fourier Series and Expectation Maximization
by Hongge Mao and Xiaojun Yang
Sensors 2025, 25(15), 4671; https://doi.org/10.3390/s25154671 - 28 Jul 2025
Viewed by 238
Abstract
This paper investigates the problem of tracking targets with unknown but fixed 3D star-convex shapes using point cloud measurements. While existing methods typically model shape parameters as random variables evolving according to predefined prior models, this evolution process is often unknown in practice. [...] Read more.
This paper investigates the problem of tracking targets with unknown but fixed 3D star-convex shapes using point cloud measurements. While existing methods typically model shape parameters as random variables evolving according to predefined prior models, this evolution process is often unknown in practice. We propose a particular approach within the Expectation Conditional Maximization (ECM) framework that circumvents this limitation by treating shape-defining quantities as parameters estimated directly via optimization. The objective is the joint estimation of target kinematics, extent, and orientation in 3D space. Specifically, the 3D shape is modeled using a radial function estimated via double Fourier series (DFS) expansion, and orientation is represented using the compact, singularity-free axis-angle method. The ECM algorithm facilitates this joint estimation: an Unscented Kalman Smoother infers kinematics in the E-step, while the M-step estimates DFS shape parameters and rotation angles by minimizing regularized cost functions, promoting robustness and smoothness. The effectiveness of the proposed algorithm is substantiated through two experimental evaluations. Full article
Show Figures

Figure 1

19 pages, 8002 KiB  
Article
3D Forward Simulation of Borehole-Surface Transient Electromagnetic Based on Unstructured Finite Element Method
by Jiayi Liu, Tianjun Cheng, Lei Zhou, Xinyu Wang and Xingbing Xie
Minerals 2025, 15(8), 785; https://doi.org/10.3390/min15080785 - 26 Jul 2025
Viewed by 136
Abstract
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study [...] Read more.
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study starts from the time-domain electric field diffusion equation and discretizes the calculation area in space using tetrahedral meshes. The Galerkin method is used to derive the finite element equation of the electric field, and the vector interpolation basis function is used to approximate the electric field in any arbitrary tetrahedral mesh in the free space, thus achieving the three-dimensional forward simulation of the BSTEM field based on the finite element method. Following validation of the numerical simulation method, we further analyze the electromagnetic field response excited by vertical line sources.. Through comparison, it is concluded that measuring the radial electric field is the most intuitive and effective layout method for BSTEM, with a focus on the propagation characteristics of the electromagnetic field in both low-resistance and high-resistance anomalies at different positions. Numerical simulations reveal that BSTEM demonstrates superior resolution capability for low-resistivity anomalies, while showing limited detectability for high-resistivity anomalies Numerical simulation results of BSTEM with realistic orebody models, the correctness of this rule is further verified. This has important implications for our understanding of the propagation laws of BSTEM as well as for subsequent data processing and interpretation. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

12 pages, 941 KiB  
Article
Data Center Temperature Control Method Based on Multi-Parameter Model-Free Adaptive Control Strategy
by Di Jiang, Shangxuan Zhang and Kaiyan Pan
Processes 2025, 13(8), 2360; https://doi.org/10.3390/pr13082360 - 24 Jul 2025
Viewed by 251
Abstract
With the continuous expansion of data center scales worldwide, the problem of energy consumption has become increasingly prominent. To address the multi-parameter control challenge in environmental temperature regulation for large data center computer rooms, achieve precise control of hot-aisle temperatures in data centers, [...] Read more.
With the continuous expansion of data center scales worldwide, the problem of energy consumption has become increasingly prominent. To address the multi-parameter control challenge in environmental temperature regulation for large data center computer rooms, achieve precise control of hot-aisle temperatures in data centers, and reduce energy waste, this paper designs a multi-parameter model-free adaptive control (MMFAC) algorithm suitable for computer room environmental temperatures. The algorithm integrates the model-free adaptive control (MFAC) algorithm with a weight matrix to perform scaling transformations. Considering the large parameter space of the MFAC controller and the dynamic complexity of data center temperature control systems, compact-form dynamic linearization (CFDL) technology and optimization mathematical methods are used to simplify the parameter identification of the pseudo-Jacobian matrices and the calculation of control quantities for the regulation devices. Simulation experiments based on measured data from a data center show that the proposed algorithm can calculate control quantities for equipment such as air conditioners according to real-time environmental parameter measurements and drive each device based on these control quantities. Meanwhile, the algorithm can reduce errors in key parameters by adjusting the weight matrix. Comparative tests with other control algorithms show that the algorithm has faster response in temperature control and smaller control errors, verifying the effectiveness and application prospects of the algorithm in data center temperature control. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

9 pages, 3392 KiB  
Article
Validating Pseudo-Free-Space Conditions in a Planar Waveguide Using Phase Retrieval from Fresnel Diffraction Patterns
by Varis Karitans, Mattias Hammar, Martins Zubkins, Edvins Letko, Maris Ozolinsh and Sergejs Fomins
Photonics 2025, 12(8), 740; https://doi.org/10.3390/photonics12080740 - 22 Jul 2025
Viewed by 220
Abstract
In this study, we address the question of whether a waveguide with absorbing sidewalls can be considered pseudo free space and if the free-space transfer function is valid in such a medium. We test this hypothesis by applying a phase retrieval algorithm based [...] Read more.
In this study, we address the question of whether a waveguide with absorbing sidewalls can be considered pseudo free space and if the free-space transfer function is valid in such a medium. We test this hypothesis by applying a phase retrieval algorithm based on the free-space transfer function. First, optical measurements are carried out to measure the optical properties of a stack of thin films and select the parameters of simulations. Next, the propagation of light in a waveguide was simulated in COMSOL, and the phase of a wave was retrieved in MATLAB. Analysis was performed both for free-space conditions, and for a waveguide with absorbing sidewalls. The cross-correlation between the distributions of intensity under both conditions was about 0.40. The RMS error of the wave retrieved under free-space conditions was 0.378 rad, while that in the case of absorbing sidewalls was 0.323 rad, indicating successful retrieval. The successfully recovered phase of the input wave suggests that a waveguide with absorbing sidewalls can be approximated as pseudo free space and the free-space transfer function may be valid. These results may be used in future studies on how to shorten the phase retrieval of two-dimensional objects. Full article
Show Figures

Figure 1

26 pages, 7157 KiB  
Article
Urban Heat Islands and Land-Use Patterns in Zagreb: A Composite Analysis Using Remote Sensing and Spatial Statistics
by Dino Bečić and Mateo Gašparović
Land 2025, 14(7), 1470; https://doi.org/10.3390/land14071470 - 15 Jul 2025
Viewed by 811
Abstract
Urban heat islands (UHIs) present a growing environmental issue in swiftly urbanizing regions, where impermeable surfaces and a lack of vegetation increase local temperatures. This research analyzes the spatial distribution of urban heat islands in Zagreb, Croatia, utilizing remote sensing data, urban planning [...] Read more.
Urban heat islands (UHIs) present a growing environmental issue in swiftly urbanizing regions, where impermeable surfaces and a lack of vegetation increase local temperatures. This research analyzes the spatial distribution of urban heat islands in Zagreb, Croatia, utilizing remote sensing data, urban planning metrics, and spatial-statistical analysis. Composite rasters of land surface temperature (LST) and the Normalized Difference Vegetation Index (NDVI) were generated from four cloud-free Landsat 9 images obtained in the summer of 2024. The data were consolidated into regulatory planning units through zonal statistics, facilitating the evaluation of the impact of built-up density and designated green space on surface temperatures. A composite UHI index was developed by combining normalized land surface temperature (LST) and normalized difference vegetation index (NDVI) measurements, while spatial clustering was examined with Local Moran’s I and Getis-Ord Gi*. The results validate spatial patterns of heat intensity, with high temperatures centered in densely built residential areas. This research addresses the gap in past UHI studies by providing a reproducible approach for detecting thermal stress zones, linking satellite data with spatial planning variables. The results support the development of localized climate adaptation methods and highlight the importance of integrating green infrastructure into urban planning methodologies. Full article
(This article belongs to the Special Issue Urban Land Use Change and Its Spatial Planning)
Show Figures

Figure 1

15 pages, 3428 KiB  
Article
An Enhanced Circularly Polarized Textile Antenna Using a Metasurface and Slot-Patterned Ground for Off-Body Communications
by Yong-Deok Kim, Tu Tuan Le and Tae-Yeoul Yun
Micromachines 2025, 16(7), 799; https://doi.org/10.3390/mi16070799 - 9 Jul 2025
Viewed by 320
Abstract
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an [...] Read more.
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an orthogonal direction with equal magnitude and a 90° phase difference, converts the linearly polarized (LP) wave, radiated from the fundamental radiator with a corner-truncated slot square-patch configuration, into being CP. The SPG, consisting of periodic slots with two different sizes of corner-truncated slots, redistributes the surface current on the ground plane, enhancing the axial ratio bandwidth (ARBW) of the proposed antenna. The novel combination of MS and SPG not only enables the generation and enhancement of CP characteristics but also significantly improves the impedance bandwidth (IBW), gain, and radiation efficiency by introducing additional surface wave resonances. The proposed antenna is composed of a conductive textile and a felt substrate, offering comfort and flexibility for applications where the antenna is placed in close proximity to the human body. The proposed antenna is simulated under bending in various directions, showing exceptionally similar characteristics to a flat condition. The proposed antenna is fabricated and is then verified by measurements in both free space and a human body environment. The measured IBW is 36.3%, while the ARBW is 18%. The measured gain and radiation efficiency are 6.39 dBic and 64.7%, respectively. The specific absorption rate (SAR) is simulated, and the results satisfy both US and EU safety standards. Full article
(This article belongs to the Special Issue Metasurface-Based Devices and Systems)
Show Figures

Figure 1

25 pages, 15912 KiB  
Article
Disturbance-Resilient Flatness-Based Control for End-Effector Rehabilitation Robotics
by Soraya Bououden, Brahim Brahmi, Naveed Iqbal, Raouf Fareh and Mohammad Habibur Rahman
Actuators 2025, 14(7), 341; https://doi.org/10.3390/act14070341 - 8 Jul 2025
Viewed by 224
Abstract
Robotic-assisted therapy is an increasingly vital approach for upper-limb rehabilitation, offering consistent, high-intensity training critical to neuroplastic recovery. However, current control strategies often lack robustness against uncertainties and external disturbances, limiting their efficacy in dynamic, real-world settings. Addressing this gap, this study proposes [...] Read more.
Robotic-assisted therapy is an increasingly vital approach for upper-limb rehabilitation, offering consistent, high-intensity training critical to neuroplastic recovery. However, current control strategies often lack robustness against uncertainties and external disturbances, limiting their efficacy in dynamic, real-world settings. Addressing this gap, this study proposes a novel control framework for the iTbot—a 2-DoF end-effector rehabilitation robot—by integrating differential flatness theory with a derivative-free Kalman filter (DFK). The objective is to achieve accurate and adaptive trajectory tracking in the presence of unmeasured dynamics and human–robot interaction forces. The control design reformulates the nonlinear joint-space dynamics into a 0-flat canonical form, enabling real-time computation of feedforward control laws based solely on flat outputs and their derivatives. Simultaneously, the DFK-based observer estimates external perturbations and unmeasured states without requiring derivative calculations, allowing for online disturbance compensation. Extensive simulations across nominal and disturbed conditions demonstrate that the proposed controller significantly outperforms conventional flatness-based control in tracking accuracy and robustness, as measured by reduced mean absolute error and standard deviation. Experimental validation under both simple and repetitive physiotherapy tasks confirms the system’s ability to maintain sub-millimeter Cartesian accuracy and sub-degree joint errors even amid dynamic perturbations. These results underscore the controller’s effectiveness in enabling compliant, safe, and disturbance-resilient rehabilitation, paving the way for broader deployment of robotic therapy in clinical and home-based environments. Full article
Show Figures

Figure 1

18 pages, 2148 KiB  
Article
Structural and Dielectric Impedance Studies of Mixed Ionic–Electronic Conduction in SrLaFe1−xMnxTiO6 (x = 0, 0.33, 0.67, and 1.0) Double Perovskites
by Abdelrahman A. Elbadawi, Elsammani A. Shokralla, Mohamed A. Siddig, Obaidallah A. Algethami, Abdullah Ahmed Alghamdi and Hassan H. E. Idris
Ceramics 2025, 8(3), 87; https://doi.org/10.3390/ceramics8030087 - 7 Jul 2025
Viewed by 331
Abstract
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor [...] Read more.
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor solid-state reaction in air at 1250 °C. The purity phase and crystal structures of perovskite compounds were determined by means of the standard Rietveld refinement method using the FullProf suite. The best fitting results showed that SrLaFeTiO6−δ was orthorhombic with space group Pnma, and both SrLaFe0.67Mn0.33TiO6−δ and SrLaFe0.33Mn0.67TiO6−δ were cubic structures with space group Fm3m, while SrLaMnTiO6−δ was tetragonal with a I/4m space group. The charge density maps obtained for these structures indicated that the compounds show an ionic and mixed ionic–electronic conduction. The dielectric impedance measurements were carried out in the range of 20 Hz to 1 MHz, and the analysis showed that there is more than one relaxation mechanism of Debye type. Doping with Mn was found to reduce the dielectric impedance of the samples, and the major contribution to the dielectric impedance was established to change from a capacitive for SrLaFeTiO6−δ to a resistive for SrLaMnTiO6−δ. The fall in values of electrical resistance may be related to the possible occurrence of the double exchange (DEX) mechanism among the Mn ions, provided there is oxygen deficiency in the samples. DC-resistivity measurements revealed that SrLaFeTiO6−δ was an insulator while SrLaMnTiO6−δ was showing a semiconductor–metallic transition at ~250 K, which is in support of the DEX interaction. The dielectric impedance of SrLaFe0.67Mn0.33TiO6−δ was found to be similar to that of (La,Sr)(Co,Fe)O3-δ, the mixed ionic–electronic conductor (MIEC) model. The occurrence of a mixed ionic–electronic state in these compounds may qualify them to be used in free lead solar cells and energy storage technology. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

12 pages, 1072 KiB  
Article
Performance Evaluation of IM/DD FSO Communication System Under Dust Storm Conditions
by Maged Abdullah Esmail
Technologies 2025, 13(7), 288; https://doi.org/10.3390/technologies13070288 - 7 Jul 2025
Viewed by 251
Abstract
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior [...] Read more.
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior studies have addressed atmospheric effects such as fog and turbulence, the specific impact of dust on signal performance remains insufficiently explored. This work presents a probabilistic modeling framework for evaluating the performance of an intensity modulation/direct detection (IM/DD) FSO system under dust storm conditions. Using a controlled laboratory environment, we conducted measurements of the optical signal under dust-induced channel conditions using real-world dust samples collected from an actual dust storm. We identified the Beta distribution as the most accurate model for the measured signal fluctuations. Closed-form expressions were derived for average bit error rate (BER), outage probability, and channel capacity. The close agreement between the analytical, approximate, and simulated results validates the proposed model as a reliable tool for evaluating FSO system performance. The results show that the forward error correction (FEC) BER threshold of 103 is achieved at approximately 10.5 dB, and the outage probability drops below 103 at 10 dB average SNR. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

18 pages, 2110 KiB  
Article
Evaluation of HoloLens 2 for Hand Tracking and Kinematic Features Assessment
by Jessica Bertolasi, Nadia Vanessa Garcia-Hernandez, Mariacarla Memeo, Marta Guarischi and Monica Gori
Virtual Worlds 2025, 4(3), 31; https://doi.org/10.3390/virtualworlds4030031 - 3 Jul 2025
Viewed by 505
Abstract
The advent of mixed reality (MR) systems has revolutionized human–computer interactions by seamlessly integrating virtual elements with the real world. Devices like the HoloLens 2 (HL2) enable intuitive, hands-free interactions through advanced hand-tracking technology, making them valuable in fields such as education, healthcare, [...] Read more.
The advent of mixed reality (MR) systems has revolutionized human–computer interactions by seamlessly integrating virtual elements with the real world. Devices like the HoloLens 2 (HL2) enable intuitive, hands-free interactions through advanced hand-tracking technology, making them valuable in fields such as education, healthcare, engineering, and training simulations. However, despite the growing adoption of MR, there is a noticeable lack of comprehensive comparisons between the hand-tracking accuracy of the HL2 and high-precision benchmarks like motion capture systems. Such evaluations are essential to assess the reliability of MR interactions, identify potential tracking limitations, and improve the overall precision of hand-based input in immersive applications. This study aims to assess the accuracy of HL2 in tracking hand position and measuring kinematic hand parameters, including joint angles and lateral pinch span (distance between thumb and index fingertips), using its tracking data. To achieve this, the Vicon motion capture system (VM) was used as a gold-standard reference. Three tasks were designed: (1) finger tracing of a 2D pattern in 3D space, (2) grasping various common objects, and (3) lateral pinching of objects with varying sizes. Task 1 tests fingertip tracking, Task 2 evaluates joint angle accuracy, and Task 3 examines the accuracy of pinch span measurement. In all tasks, HL2 and VM simultaneously recorded hand positions and movements. The data captured in Task 1 were analyzed to evaluate HL2’s hand-tracking capabilities against VM. Finger rotation angles from Task 2 and lateral pinch span from Task 3 were then used to assess HL2’s accuracy compared to VM. The results indicate that the HL2 exhibits millimeter-level errors compared to Vicon’s tracking system in Task 1, spanning in a range from 2 mm to 4 mm, suggesting that HL2’s hand-tracking system demonstrates good accuracy. Additionally, the reconstructed grasping positions in Task 2 from both systems show a strong correlation and an average error of 5°, while in Task 3, the accuracy of the HL2 is comparable to that of VM, improving performance as the object thickness increases. Full article
Show Figures

Figure 1

16 pages, 3101 KiB  
Article
Enhanced High-Resolution and Long-Range FMCW LiDAR with Directly Modulated Semiconductor Lasers
by Luís C. P. Pinto and Maria C. R. Medeiros
Sensors 2025, 25(13), 4131; https://doi.org/10.3390/s25134131 - 2 Jul 2025
Viewed by 579
Abstract
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. [...] Read more.
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. Integrating LiDARs into electronic and photonic semiconductor chips can lower their cost, size, and power consumption, making them affordable for cost-sensitive applications. Additionally, simple designs are required, such as FMCW signal generation by the direct modulation of the current of a semiconductor laser. However, semiconductor lasers are inherently nonlinear, and the driving waveform needs to be optimized to generate linear FMCW signals. In this paper, we employ pre-distortion techniques to compensate for chirp nonlinearity, achieving frequency nonlinearities of 0.0029% for the down-ramp and the up-ramp at 55 kHz. Experimental results demonstrate a highly accurate LiDAR system with a resolution of under 5 cm, operating over a 210-m range through single-mode fiber, which corresponds to approximately 308 m in free space, towards meeting the requirements for long-range autonomous driving. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

14 pages, 2707 KiB  
Article
Understanding Bio-Orthogonal Strain-Driven Sydnone Cycloadditions: Data-Assisted Profiles and the Search for Linear Relationships
by Juan García de la Concepción, Pedro Cintas and Rafael Fernando Martínez
Molecules 2025, 30(13), 2770; https://doi.org/10.3390/molecules30132770 - 27 Jun 2025
Viewed by 345
Abstract
In the realm of click-type reactions and their application to bioorthogonal chemistry in living organisms, metal-free [3+2] cycloadditions involving mesoionic rings and strained cycloalkynes have gained increasing attention and potentiality in recent years. While there has been a significant accretion of experimental data, [...] Read more.
In the realm of click-type reactions and their application to bioorthogonal chemistry in living organisms, metal-free [3+2] cycloadditions involving mesoionic rings and strained cycloalkynes have gained increasing attention and potentiality in recent years. While there has been a significant accretion of experimental data, biological assays, and assessments of reaction mechanisms, some pieces of the tale are still missing. For instance, which structural and/or stereoelectronic effects are actually interlocked and which remain unplugged. With the advent of data-driven methods, including machine learning simulations, quantitative estimations of relevant observables and their correlations will explore better the chemical space of these transformations. Here we unveil a series of linear relationships, such as Hammett-type correlations, as well as deviations of linearity, using the case study of phenylsydnone (and its 4-aryl-substituted derivatives) with a highly reactive bicyclo[6.1.0]nonyne carbinol. Through accurate estimation of activation barriers and prediction of rate constants, our findings further increase the significance of integrating strain release and electronic effects in organic reactivity. Moreover, such results could pave the way to use mesoionics cycloadditions as probes for measuring the extent of delocalization-assisted strain release, which can be applied to related reactions involving dipoles and strained rings. Full article
Show Figures

Figure 1

25 pages, 27045 KiB  
Article
Photovoltaic Strings on Large, Flat Roofs: Experimental Wind Loads on Representative Configurations
by Giacomo Scrinzi, Enrico Sergio Mazzucchelli and Sara Muggiasca
Sustainability 2025, 17(13), 5914; https://doi.org/10.3390/su17135914 - 27 Jun 2025
Viewed by 330
Abstract
The integration of tilted photovoltaic strings on large, flat roofs, typical of industrial and commercial buildings, raises complex design challenges, particularly regarding wind-induced loads. This study presents a comprehensive wind tunnel investigation aimed at evaluating the aerodynamic effects on rooftop PV strings under [...] Read more.
The integration of tilted photovoltaic strings on large, flat roofs, typical of industrial and commercial buildings, raises complex design challenges, particularly regarding wind-induced loads. This study presents a comprehensive wind tunnel investigation aimed at evaluating the aerodynamic effects on rooftop PV strings under various representative configurations and the correlation between characteristic geometric parameters such as tilt angle, bottom clearance, row spacing, and wind direction. Following a literature review, a detailed 1:10 scaled model with geometric adjustment capabilities was developed and eventually tested in a boundary-layer wind tunnel. High-resolution pressure measurements were processed to derive force and moment resultants normalised by reference wind pressure. Envelopes of force/moment resultants are presented for each representative geometric configuration and for each wind exposure angle. The results present severe variations in local wind actions, particularly significant at the strings’ free ends and for oblique wind angles. The severe underestimation of local wind loads by standard codes is discussed. The findings underline the importance of detailed wind-load assessment for both new constructions and retrofits, suggesting that reliance solely on code provisions might result in unsafe designs. Full article
Show Figures

Figure 1

17 pages, 6551 KiB  
Article
Monitoring the Impacts of Human Activities on Groundwater Storage Changes Using an Integrated Approach of Remote Sensing and Google Earth Engine
by Sepide Aghaei Chaleshtori, Omid Ghaffari Aliabad, Ahmad Fallatah, Kamil Faisal, Masoud Shirali, Mousa Saei and Teodosio Lacava
Hydrology 2025, 12(7), 165; https://doi.org/10.3390/hydrology12070165 - 26 Jun 2025
Viewed by 516
Abstract
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. [...] Read more.
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. Although the influence of natural factors on groundwater is well-recognized, the impact of human activities, despite being a major contributor to its change, has been less explored due to the challenges in measuring such effects. To address this gap, our study employed an integrated approach using remote sensing and the Google Earth Engine (GEE) cloud-free platform to analyze the effects of various anthropogenic factors such as built-up areas, cropland, and surface water on groundwater storage in the Lake Urmia Basin (LUB), Iran. Key anthropogenic variables and groundwater data were pre-processed and analyzed in GEE for the period from 2000 to 2022. The processes linking these variables to groundwater storage were considered. Built-up area expansion often increases groundwater extraction and reduces recharge due to impervious surfaces. Cropland growth raises irrigation demand, especially in semi-arid areas like the LUB, leading to higher groundwater use. In contrast, surface water bodies can supplement water supply or enhance recharge. The results were then exported to XLSTAT software2019, and statistical analysis was conducted using the Mann–Kendall (MK) non-parametric trend test on the variables to investigate their potential relationships with groundwater storage. In this study, groundwater storage refers to variations in groundwater storage anomalies, estimated using outputs from the Global Land Data Assimilation System (GLDAS) model. Specifically, these anomalies are derived as the residual component of the terrestrial water budget, after accounting for soil moisture, snow water equivalent, and canopy water storage. The results revealed a strong negative correlation between built-up areas and groundwater storage, with a correlation coefficient of −1.00. Similarly, a notable negative correlation was found between the cropland area and groundwater storage (correlation coefficient: −0.85). Conversely, surface water availability showed a strong positive correlation with groundwater storage, with a correlation coefficient of 0.87, highlighting the direct impact of surface water reduction on groundwater storage. Furthermore, our findings demonstrated a reduction of 168.21 mm (millimeters) in groundwater storage from 2003 to 2022. GLDAS represents storage components, including groundwater storage, in units of water depth (mm) over each grid cell, employing a unit-area, mass balance approach. Although storage is conceptually a volumetric quantity, expressing it as depth allows for spatial comparison and enables conversion to volume by multiplying by the corresponding surface area. Full article
Show Figures

Figure 1

13 pages, 3040 KiB  
Article
Design and Development of Dipole Magnet for MIR/THz Free Electron Laser Beam Dumps and Spectrometers
by Ekkachai Kongmon, Kantaphon Damminsek, Nopadon Khangrang, Sakhorn Rimjaem and Chitrlada Thongbai
Particles 2025, 8(3), 66; https://doi.org/10.3390/particles8030066 - 25 Jun 2025
Viewed by 801
Abstract
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending [...] Read more.
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending angle for electron beams with energies up to 30 MeV, without requiring water cooling. Using CST EM Studio for 3D magnetic field simulations and ASTRA for particle tracking, the THz dipole (with 414 turns) and MIR dipole (with 600 turns) generated magnetic fields of 0.1739 T and 0.2588 T, respectively, while both operating at currents below 10 A. Performance analysis confirmed effective beam deflection, with the THz dipole showing that it was capable of handling beam energies up to 20 MeV and the MIR dipole could handle up to 30 MeV. The energy measurement at the spectrometer screen position was simulated, taking into account transverse beam size, fringe fields, and space charge effects, using ASTRA. The energy resolution, defined as the ratio of energy uncertainty to the mean energy, was evaluated for selected cases. For beam energies of 16 MeV and 25 MeV, resolutions of 0.2% and 0.5% were achieved with transverse beam sizes of 1 mm and 4 mm, respectively. All evaluated cases maintained energy resolutions below 1%, confirming the spectrometer’s suitability for high-precision beam diagnostics. Furthermore, the relationship between the initial and measured energy spread errors, taking into account a camera resolution of 0.1 mm/pixel, was evaluated. Simulations across various beam energies (10–16 MeV for the THz dipole and 20–25 MeV for the MIR dipole) confirmed that the measurement error in energy spread decreases with smaller RMS transverse beam sizes. This trend was consistent across all tested energies and magnet configurations. To ensure accurate energy spread measurements, a small initial beam size is recommended. Specifically, for beams with a narrow initial energy spread, a transverse beam size below 1 mm is essential. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

Back to TopTop