Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = free-energy principle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3506 KiB  
Review
A Review of Electromagnetic Wind Energy Harvesters Based on Flow-Induced Vibrations
by Yidan Zhang, Shen Li, Weilong Wang, Pengfei Zen, Chunlong Li, Yizhou Ye and Xuefeng He
Energies 2025, 18(14), 3835; https://doi.org/10.3390/en18143835 - 18 Jul 2025
Viewed by 221
Abstract
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based [...] Read more.
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based wind energy harvesting has emerged as a promising approach. Electromagnetic FIV wind energy harvesters (WEHs) show great potential for realistic applications due to their excellent durability and stability. However, electromagnetic WEHs remain less studied than piezoelectric WEHs, with few dedicated review articles available. This review analyzes the working principle, device structure, and performance characteristics of electromagnetic WEHs based on vortex-induced vibration, galloping, flutter, wake galloping vibration, and Helmholtz resonator. The methods to improve the output power, broaden the operational wind speed range, broaden the operational wind direction range, and enhance the durability are then discussed, providing some suggestions for the development of high-performance electromagnetic FIV WEHs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 228 KiB  
Article
Why Are Cultural Rights over Sea Country Less Recognised than Terrestrial Ones?
by Rhetti Hoskins, Gareth Ogilvie, Matthew Storey and Alexandra Hill
Heritage 2025, 8(7), 283; https://doi.org/10.3390/heritage8070283 - 16 Jul 2025
Viewed by 434
Abstract
This article identifies the nature of Traditional Owners’ interests in Sea Country and addresses issues associated with all offshore energy projects—gas and wind. Exploring the impacts of offshore development on First Nations’ cultural heritage, the article proposes integration of free, prior and informed [...] Read more.
This article identifies the nature of Traditional Owners’ interests in Sea Country and addresses issues associated with all offshore energy projects—gas and wind. Exploring the impacts of offshore development on First Nations’ cultural heritage, the article proposes integration of free, prior and informed consent (FPIC) and the United Nations Declaration on the Rights of Indigenous Peoples (UNDRIP), into the regulatory and legislative offshore environment. In the Australian context, this particularly regards administrative and regulatory reforms to overcome uncertainty arising from recent decisions in the Federal Court. The international focus on new energy has fast-tracked many processes that sideline First Nations’ rights, hitherto understood within the onshore minerals extraction regimes. The reforms proposed in this article recognise an international commitment to enact the principles contained in the UNDRIP and other relevant international law. Full article
44 pages, 7563 KiB  
Review
Green Batteries: A Sustainable Approach Towards Next-Generation Batteries
by Annu, Bairi Sri Harisha, Manesh Yewale, Bhargav Akkinepally and Dong Kil Shin
Batteries 2025, 11(7), 258; https://doi.org/10.3390/batteries11070258 - 10 Jul 2025
Viewed by 895
Abstract
The rising demand for sustainable energy storage has fueled the development of green batteries as alternatives to conventional systems. However, a major research gap lies in the unified integration of environmentally friendly materials and processes across all battery components—electrodes, electrolytes, and separators—without compromising [...] Read more.
The rising demand for sustainable energy storage has fueled the development of green batteries as alternatives to conventional systems. However, a major research gap lies in the unified integration of environmentally friendly materials and processes across all battery components—electrodes, electrolytes, and separators—without compromising performance or scalability. This review addresses this gap by highlighting recent advances in eco-conscious battery technologies, focusing on green electrode fabrication using water-based methods, electrophoretic deposition, solvent-free dry-press coating, 3D printing, and biomass-derived materials. It also examines the shift toward safer electrolytes, including ionic liquids, deep eutectic solvents, water-based systems, and solid biopolymer matrices, which improve both environmental compatibility and safety. Additionally, biodegradable separators made from natural polymers such as cellulose and chitosan offer enhanced thermal stability and ecological benefits. The review emphasizes the importance of lifecycle considerations like recyclability and biodegradability, aligning battery design with circular economy principles. While significant progress has been made, challenges such as standardization, long-term stability, and industrial scalability remain. By identifying key strategies and future directions, this article contributes to the foundation for next-generation green batteries, promoting their adoption in environmentally sensitive applications ranging from wearable electronics to grid storage. Full article
Show Figures

Figure 1

18 pages, 1011 KiB  
Opinion
The Fifth Freedom: Shaping EU Innovation Policy for Renewable Energy Storage and Decarbonization
by Esmeralda Colombo
Energies 2025, 18(13), 3570; https://doi.org/10.3390/en18133570 - 7 Jul 2025
Cited by 1 | Viewed by 402
Abstract
This article proposes recognizing innovation as the European Union’s “fifth freedom”, alongside the free movement of goods, services, capital, and people, with the aim of embedding it into renewable energy legislation. Focusing on renewable energy storage—a critical but overlooked component of decarbonization—it identifies [...] Read more.
This article proposes recognizing innovation as the European Union’s “fifth freedom”, alongside the free movement of goods, services, capital, and people, with the aim of embedding it into renewable energy legislation. Focusing on renewable energy storage—a critical but overlooked component of decarbonization—it identifies structural barriers in EU cleantech innovation, including regulatory fragmentation, slow financing, and weak industrial coordination. To address these, this article introduces the Risk–Resilience–Reward (RRR) framework, a strategic tool for more anticipatory policymaking. It outlines how the proposed Clean Energy Delivery Agency and Clean Energy Deployment Fund could operationalize the RRR framework to accelerate storage deployment and strengthen EU competitiveness. Embedding purpose-led principles in energy policy, this article positions storage as the “unsung hero of decarbonization” and offers takeaways for advancing a just, sustainable EU economy. Full article
Show Figures

Figure 1

29 pages, 3192 KiB  
Article
Bio-2FA-IoD: A Biometric-Enhanced Two-Factor Authentication Protocol for Secure Internet of Drones Operations
by Hyunseok Kim and Seunghyun Park
Mathematics 2025, 13(13), 2177; https://doi.org/10.3390/math13132177 - 3 Jul 2025
Viewed by 245
Abstract
The Internet of Drones (IoD) is rapidly expanding into sensitive applications, necessitating robust and efficient authentication. Traditional methods struggle against prevalent attacks, especially considering the unique vulnerabilities of the IoD, such as drone physical capture. This paper proposes Bio-2FA-IoD, a novel biometric-enhanced two-factor [...] Read more.
The Internet of Drones (IoD) is rapidly expanding into sensitive applications, necessitating robust and efficient authentication. Traditional methods struggle against prevalent attacks, especially considering the unique vulnerabilities of the IoD, such as drone physical capture. This paper proposes Bio-2FA-IoD, a novel biometric-enhanced two-factor authentication protocol designed for secure IoD operations. Drawing on established 2FA principles and fuzzy extractor technology, Bio-2FA-IoD achieves strong mutual authentication between an operator (via an operator device), a drone (as a relay), and a ground control station (GCS), supported by a trusted authority. We detail the protocol’s registration and authentication phases, emphasizing reliable biometric key generation. A formal security analysis using BAN logic demonstrates secure belief establishment and key agreement, while a proof sketch under the Bellare–Pointcheval–Rogaway (BPR) model confirms its security against active adversaries in Authenticated Key Exchange (AKE) contexts. Furthermore, a comprehensive performance evaluation conducted using the Contiki OS and Cooja simulator illustrates Bio-2FA-IoD’s superior efficiency in computational and communication costs, alongside very low latency, high packet delivery rate, and minimal energy consumption. This positions it as a highly viable and lightweight solution for resource-constrained IoD environments. Additionally, this paper conceptually explores potential extensions to Bio-2FA-IoD, including the integration of Diffie–Hellman for enhanced perfect forward secrecy and a Sybil-free pseudonym management scheme for improved user anonymity and unlinkability. Full article
(This article belongs to the Special Issue Applied Cryptography and Information Security with Application)
Show Figures

Figure 1

18 pages, 3229 KiB  
Article
Dissociative Adsorption of Hydrogen in Hydrogen-Blended Natural Gas Pipelines: A First Principles and Thermodynamic Analysis
by Wei He, Zhenmin Luo, Pengyu Zhang, Ruikang Li and Xi Yang
Appl. Sci. 2025, 15(13), 7342; https://doi.org/10.3390/app15137342 - 30 Jun 2025
Viewed by 238
Abstract
This study employs first principles calculations and thermodynamic analyses to investigate the dissociative adsorption of hydrogen on the Fe(110) surface. The results show that the adsorption energies of hydrogen at different sites on the iron surface are −1.98 eV (top site), −2.63 eV [...] Read more.
This study employs first principles calculations and thermodynamic analyses to investigate the dissociative adsorption of hydrogen on the Fe(110) surface. The results show that the adsorption energies of hydrogen at different sites on the iron surface are −1.98 eV (top site), −2.63 eV (bridge site), and −2.98 eV (hollow site), with the hollow site being the most stable adsorption position. Thermodynamic analysis further reveals that under operational conditions of 25 °C and 12 MPa, the Gibbs free energy change (ΔG) for hydrogen dissociation is −1.53 eV, indicating that the process is spontaneous under pipeline conditions. Moreover, as temperature and pressure increase, the spontaneity of the adsorption process improves, thus enhancing hydrogen transport efficiency in pipelines. These findings provide a theoretical basis for optimizing hydrogen transport technology in natural gas pipelines and offer scientific support for mitigating hydrogen embrittlement, improving pipeline material performance, and developing future hydrogen transportation strategies and safety measures. Full article
(This article belongs to the Special Issue Industrial Safety and Occupational Health Engineering)
Show Figures

Figure 1

29 pages, 3774 KiB  
Article
Improving the Minimum Free Energy Principle to the Maximum Information Efficiency Principle
by Chenguang Lu
Entropy 2025, 27(7), 684; https://doi.org/10.3390/e27070684 - 26 Jun 2025
Viewed by 965
Abstract
Friston proposed the Minimum Free Energy Principle (FEP) based on the Variational Bayesian (VB) method. This principle emphasizes that the brain and behavior coordinate with the environment, promoting self-organization. However, it has a theoretical flaw, a possibility of being misunderstood, and a limitation [...] Read more.
Friston proposed the Minimum Free Energy Principle (FEP) based on the Variational Bayesian (VB) method. This principle emphasizes that the brain and behavior coordinate with the environment, promoting self-organization. However, it has a theoretical flaw, a possibility of being misunderstood, and a limitation (only likelihood functions are used as constraints). This paper first introduces the semantic information G theory and the R(G) function (where R is the minimum mutual information for the given semantic mutual information G). The G theory is based on the P-T probability framework and, therefore, allows for the use of truth, membership, similarity, and distortion functions (related to semantics) as constraints. Based on the study of the R(G) function and logical Bayesian Inference, this paper proposes the Semantic Variational Bayesian (SVB) and the Maximum Information Efficiency (MIE) principle. Theoretic analysis and computing experiments prove that RG = FH(X|Y) (where F denotes VFE, and H(X|Y) is Shannon conditional entropy) instead of F continues to decrease when optimizing latent variables; SVB is a reliable and straightforward approach for latent variables and active inference. This paper also explains the relationship between information, entropy, free energy, and VFE in local non-equilibrium and equilibrium systems, concluding that Shannon information, semantic information, and VFE are analogous to the increment of free energy, the increment of exergy, and physical conditional entropy. The MIE principle builds upon the fundamental ideas of the FEP, making them easier to understand and apply. It needs to combine deep learning methods for wider applications. Full article
(This article belongs to the Special Issue Information-Theoretic Approaches for Machine Learning and AI)
Show Figures

Figure 1

12 pages, 5726 KiB  
Article
A Theoretical Study on Electrocatalytic Nitrogen Reduction at Boron-Doped Monolayer/Bilayer Black Phosphorene Edges
by Wenkai Bao, Jianling Xiong and Ziwei Xu
Coatings 2025, 15(7), 755; https://doi.org/10.3390/coatings15070755 - 25 Jun 2025
Viewed by 359
Abstract
The catalytic activity of monolayer and bilayer boron-doped edge black phosphorene nanoribbons (BPNRs) as electrocatalysts for the nitrogen reduction reaction (NRR) was investigated using first-principles calculations based on density functional theory (DFT). The results indicate that boron incorporation facilitates effective N2 adsorption [...] Read more.
The catalytic activity of monolayer and bilayer boron-doped edge black phosphorene nanoribbons (BPNRs) as electrocatalysts for the nitrogen reduction reaction (NRR) was investigated using first-principles calculations based on density functional theory (DFT). The results indicate that boron incorporation facilitates effective N2 adsorption at specific BPNR edges, thereby achieving superior NRR electrocatalytic performance. Through NRR screening criteria, six candidate edges (B@ZZ3-1, B@ZZ4-1, B@AC0-1, B@ZZ0AA-1, B@ZZ1AB-3, and B@ZZ4AA-3) were identified. Electronic property analysis revealed that boron doping significantly reduces the bandgap of BPNRs and enhances catalytic activity by promoting electron accumulation at boron sites. Free energy pathway calculations demonstrated that B@AC0-1, B@ZZ0AA-1, and B@ZZ1AB-3 exhibit overpotentials of 0.19 V, 0.28 V, and 0.15 V, respectively, during the NRR process, outperforming other phosphorus-based catalysts in activity. Full article
Show Figures

Graphical abstract

15 pages, 2266 KiB  
Article
SCAPS-1D Simulation of Various Hole Transport Layers’ Impact on CsPbI2Br Perovskite Solar Cells Under Indoor Low-Light Conditions
by Chih-Hsi Peng and Yi-Cheng Lin
Solids 2025, 6(3), 31; https://doi.org/10.3390/solids6030031 - 21 Jun 2025
Viewed by 672
Abstract
This study presents the first comprehensive theoretical investigation utilizing SCAPS-1D simulation to systematically evaluate eight hole transport materials for CsPbI2Br perovskite solar cells under authentic indoor LED conditions (560 lux, 5700 K color temperature). Unlike previous studies employing simplified illumination assumptions, [...] Read more.
This study presents the first comprehensive theoretical investigation utilizing SCAPS-1D simulation to systematically evaluate eight hole transport materials for CsPbI2Br perovskite solar cells under authentic indoor LED conditions (560 lux, 5700 K color temperature). Unlike previous studies employing simplified illumination assumptions, our work establishes fundamental design principles for indoor photovoltaics through rigorous material property correlations. The investigation explores the influence of layer thickness and defect concentration on performance to identify optimal parameters. Through detailed energy band alignment analysis, we demonstrate that CuI achieves superior performance (PCE: 23.66%) over materials with significantly higher mobility, revealing that optimal band alignment supersedes carrier mobility under low-light conditions. Analysis of HTL and absorber layer thickness, bulk defect concentration, interface defect density, and an HTL-free scenario showed that interface defect concentration and absorber layer parameters have greater influence than HTL thickness. Remarkably, ultra-thin HTL layers (0.04 μm) maintain >99% efficiency, offering substantial cost reduction potential for large-scale manufacturing. Under optimized conditions of a 0.87 μm absorber layer thickness, defect concentration of 1015 cm−3, interface defect concentration of 109 cm−3, and CuI doping concentration of 1017 cm−3, PCE reached 28.57%, while the HTL-free structure achieved 17.6%. This study establishes new theoretical foundations for indoor photovoltaics, demonstrating that material selection criteria differ fundamentally from outdoor applications. Full article
Show Figures

Figure 1

11 pages, 1783 KiB  
Article
Density Functional Theory Study of Nitrogen Reduction to Ammonia on Bilayer Borophene
by Fuyong Qin
Catalysts 2025, 15(6), 603; https://doi.org/10.3390/catal15060603 - 19 Jun 2025
Viewed by 470
Abstract
The N2 reduction reaction (NRR) under ambient conditions is highly desirable because of its potential to replace the energy-consuming Haber-Bosch process for ammonia production. In recent years, much attention has been devoted to transition metal-based catalysts. However, the development of metal-free electrocatalysts [...] Read more.
The N2 reduction reaction (NRR) under ambient conditions is highly desirable because of its potential to replace the energy-consuming Haber-Bosch process for ammonia production. In recent years, much attention has been devoted to transition metal-based catalysts. However, the development of metal-free electrocatalysts remains a great challenge. Here, the electrocatalytic performance of bilayer borophene is systematically studied based on first-principles calculations. It was found that bilayer borophene has high activity with an overpotential of 0.21 V via the enzymatic mechanism. Bond elongations of nitrogen bond are observed in end-on and side-on patterns, where the bond lengths are stretched to 1.13 and 1.21 Å, respectively. Around 0.36 e is transferred to the adsorbed N2 with the contribution of bottom boron atoms. Our results propose bilayer borophene as a novel metal-free catalyst for nitrogen reduction, thus providing an avenue to explore highly efficient electrocatalysts for ammonia production under ambient conditions. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

14 pages, 739 KiB  
Article
Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects
by Sarp Adali
Dynamics 2025, 5(2), 21; https://doi.org/10.3390/dynamics5020021 - 8 Jun 2025
Viewed by 732
Abstract
A variational formulation and variationally consistent boundary conditions were derived for a coupled system of two boron nitride nanotubes (BNNTs), with the piezoelectric and surface effects taken into account in the formulation. The coupling between the nanotubes was defined in terms of Winkler [...] Read more.
A variational formulation and variationally consistent boundary conditions were derived for a coupled system of two boron nitride nanotubes (BNNTs), with the piezoelectric and surface effects taken into account in the formulation. The coupling between the nanotubes was defined in terms of Winkler and Pasternak interlayers. The equations governing the vibrations of the coupled system were expressed as a system of four partial differential equations based on nonlocal elastic theory. After deriving the variational principle for the double BNNT system, Hamilton’s principle was expressed in terms of potential and kinetic energies. Next, the differential equations for the free vibration case were presented and the variational form for this case was derived. The Rayleigh quotient was formulated for the vibration frequency, which indicated that piezoelectric and surface effects led to higher vibration frequencies. Next, the variationally consistent boundary conditions were formulated in terms of moment and shear force expressions. It was observed that the presence of the Pasternak interlayer between the nanotubes led to coupled boundary conditions when a shear force and/or a moment was specified at the boundaries. Full article
Show Figures

Figure 1

30 pages, 3363 KiB  
Review
Surface Plasmon Resonance Aptasensors: Emerging Design and Deployment Landscape
by Fahd Khalid-Salako, Hasan Kurt and Meral Yüce
Biosensors 2025, 15(6), 359; https://doi.org/10.3390/bios15060359 - 4 Jun 2025
Viewed by 716
Abstract
SPR biosensors operate on the principle of evanescent wave propagation at metal–dielectric interfaces in total internal reflection conditions, with consequent photonic energy attenuation. This plasmonic excitation occurs in specific conditions of incident light wavelength, angle, and the dielectric refractive index. This principle has [...] Read more.
SPR biosensors operate on the principle of evanescent wave propagation at metal–dielectric interfaces in total internal reflection conditions, with consequent photonic energy attenuation. This plasmonic excitation occurs in specific conditions of incident light wavelength, angle, and the dielectric refractive index. This principle has been the basis for SPR-based biosensor setups wherein mass/concentration-induced changes in the refractive indices of dielectric media reflect as plasmonic resonance condition changes quantitatively reported as arbitrary response units. SPR biosensors operating on this conceptual framework have been designed to study biomolecular interactions with real-time readout and in label-free setups, providing key kinetic characterization that has been valuable in various applications. SPR biosensors often feature antibodies as target affinity probes. Notably, the operational challenges encountered with antibodies have led to the development of aptamers—oligonucleotide biomolecules rationally designed to adopt tertiary structures, enabling high affinity and specific binding to a wide range of targets. Aptamers have been extensively adopted in SPR biosensor setups with promising clinical and industrial prospects. In this paper, we explore the growing literature on SPR setups featuring aptamers, specifically providing expert commentary on the current state and future implications of these SPR aptasensors for drug discovery as well as disease diagnosis and monitoring. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Graphical abstract

29 pages, 3423 KiB  
Review
A Review on Biomedical Applications of Plant Extract-Mediated Metallic Ag, Au, and ZnO Nanoparticles and Future Prospects for Their Combination with Graphitic Carbon Nitride
by Priyanka Panchal, Protima Rauwel, Satya Pal Nehra, Priyanka Singh, Mamta Karla, Glemarie Hermosa and Erwan Rauwel
Pharmaceuticals 2025, 18(6), 820; https://doi.org/10.3390/ph18060820 - 29 May 2025
Viewed by 916
Abstract
Since the publication of the 12 principles of green chemistry in 1998 by Paul Anastas and John Warner, the green synthesis of metal and metal oxide nanoparticles has emerged as an eco-friendly and sustainable alternative to conventional chemical methods. Plant-based synthesis utilizes natural [...] Read more.
Since the publication of the 12 principles of green chemistry in 1998 by Paul Anastas and John Warner, the green synthesis of metal and metal oxide nanoparticles has emerged as an eco-friendly and sustainable alternative to conventional chemical methods. Plant-based synthesis utilizes natural extracts as reducing and stabilizing agents, minimizing harmful chemicals and toxic by-products. Ag nanoparticles (Ag-NPs) exhibit strong antibacterial activity; Au nanoparticles (Au-NPs) are seen as a promising carrier for drug delivery and diagnostics because of their easy functionalization and biocompatibility; and ZnO nanoparticles (ZnO-NPs), on the other hand, produce reactive oxygen species (ROS) that kill microorganisms effectively. These nanoparticles also demonstrate antioxidant properties by scavenging free radicals, reducing oxidative stress, and preventing degenerative diseases. Green syntheses based on plant extracts enhance biocompatibility and therapeutic efficacy, making them suitable for antimicrobial, anticancer, and antioxidant applications. Applying a similar “green synthesis” for advanced nanostructures like graphitic carbon nitride (GCN) is an environmentally friendly alternative to the traditional ways of doing things. GCN exhibits exceptional photocatalytic activity, pollutant degradation efficiency, and electronic properties, with applications in environmental remediation, energy storage, and biomedicine. This review highlights the potential of green-synthesized hybrid nanocomposites combining nanoparticles and GCN as sustainable solutions for biomedical and environmental challenges. The review also highlights the need for the creation of a database using a machine learning process that will enable providing a clear vision of all the progress accomplished till now and identify the most promising plant extracts that should be used for targeted applications. Full article
Show Figures

Graphical abstract

21 pages, 3661 KiB  
Article
Sustainable Development and Assessment of Low-Strength/High-Toughness Recycled Plastic Rebars for Structural Elements Under Light Loads
by Aaroon Joshua Das and Majid Ali
Sustainability 2025, 17(11), 4997; https://doi.org/10.3390/su17114997 - 29 May 2025
Cited by 1 | Viewed by 996
Abstract
The construction sector faces growing pressure to adopt sustainable alternatives amid the global plastic-waste crisis. This study presents a novel use of mechanically recycled high-density polyethylene (HDPE) and polypropylene (PP) to manufacture full-scale plastic rebars for mortar-free, light-load construction applications. A total of [...] Read more.
The construction sector faces growing pressure to adopt sustainable alternatives amid the global plastic-waste crisis. This study presents a novel use of mechanically recycled high-density polyethylene (HDPE) and polypropylene (PP) to manufacture full-scale plastic rebars for mortar-free, light-load construction applications. A total of 48 samples, plain and ribbed, across three diameters (12 mm, 19 mm, and 25 mm) were fabricated and tested. Due to the absence of standardized protocols for recycled plastic rebars, tensile testing was conducted in reference to ASTM A615. Characterization techniques such as X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) confirmed the material’s structural features and polymer integrity. XRD confirmed the crystalline phases of HDPE and PP, while SEM revealed ductile fracture in HDPE and brittle failure in PP. The 25 mm ribbed PP rebars demonstrated superior performance, achieving a maximum load capacity of 12.2 ± 0.6 kN, a toughness index of 19.3 ± 1.0, and energy absorption of 101.6 ± 5.0 N-m × 10. These results affirm their suitability for lightweight structural components such as boundary walls, partition panels, and mortar-free interlocking systems. Unlike prior studies that confined recycled plastics to filler roles in composites, this work validates their direct application as full-section, load-bearing members. Additionally, a polynomial-based empirical model was formulated to predict the tensile behavior of the recycled rebars. The findings underscore the potential of mechanical extrusion as a low-emission, scalable solution to convert plastic waste into durable construction materials that support circular economic principles. Full article
Show Figures

Figure 1

19 pages, 897 KiB  
Article
Stable Multipoint Flux Approximation (MPFA) Saturation Solution for Two-Phase Flow on Non-K-Orthogonal Anisotropic Porous Media
by Pijus Makauskas and Mayur Pal
Technologies 2025, 13(5), 193; https://doi.org/10.3390/technologies13050193 - 9 May 2025
Viewed by 1258
Abstract
This paper extends the multipoint flux approximation (MPFA-O) method to model coupled pressure and saturation dynamics in subsurface reservoirs with heterogeneous anisotropic permeability and non-K-orthogonal grids. The MPFA method is widely used for reservoir simulation to address the limitations of the two-point flux [...] Read more.
This paper extends the multipoint flux approximation (MPFA-O) method to model coupled pressure and saturation dynamics in subsurface reservoirs with heterogeneous anisotropic permeability and non-K-orthogonal grids. The MPFA method is widely used for reservoir simulation to address the limitations of the two-point flux approximation (TPFA), particularly in scenarios involving full-tensor permeability and strong anisotropy. However, the MPFA-O method is known to suffer from spurious oscillations and numerical instability, especially in high-anisotropy scenarios. Existing stability-enhancing techniques, such as optimal quadrature schemes and flux-splitting methods, mitigate these issues but are computationally expensive and do not always ensure monotonicity or oscillation-free solutions. Building upon prior advancements in the MPFA-O method for pressure equations, this work incorporates the saturation equation to enable the simulation of a coupled multiphase flow in porous media. A unified framework is developed to address stability challenges associated with the tight coupling of pressure and saturation fields while ensuring local conservation and accuracy in the presence of full-tensor permeability. The proposed method introduces stability-enhancing modifications, including a local rotation transformation, to mitigate spurious oscillations and preserve physical principles such as monotonicity and the maximum principle. Numerical experiments on heterogeneous, anisotropic domains with non-K-orthogonal grids validate the robustness and accuracy of the extended MPFA-O method. The results demonstrate improved stability and performance in capturing the complex interactions between pressure and saturation fields, offering a significant advancement in subsurface reservoir modeling. This work provides a reliable and efficient tool for simulating coupled flow and transport processes, with applications in CO2 storage, hydrogen storage, geothermal energy, and hydrocarbon recovery. Full article
(This article belongs to the Section Construction Technologies)
Show Figures

Figure 1

Back to TopTop