Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects
Abstract
:1. Introduction
2. Physical Problem
3. Variational Formulation
4. Hamilton’s Principle
5. Free Vibrations
6. Boundary Conditions
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lyshevski, S.E. Nano and Microelectromechanical Systems: Fundamentals of Nano and Microengineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Roudbari, M.A.; Jorshari, T.D.; Lü, C.; Ansari, R.; Kouzani, A.Z.; Amabili, M. A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Walled Struct. 2022, 170, 108562. [Google Scholar] [CrossRef]
- Rafii-Tabar, H.; Ghavanloo, E.; Fazelzadeh, S.A. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 2016, 638, 1–97. [Google Scholar] [CrossRef]
- Thai, H.-T.; Vo, T.P.; Nguyen, T.-K.; Kim, S.-E. A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 2017, 177, 196–219. [Google Scholar] [CrossRef]
- Kong, S. A Review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch. Comput. Methods Eng. 2022, 29, 1–31. [Google Scholar] [CrossRef]
- Jorshari, T.D.; Roudbari, M.A. A review on the mechanical behavior of size-dependent beams and plates using the nonlocal strain-gradient Model. J. Basic Appl. Sci. 2021, 17, 184–193. [Google Scholar] [CrossRef]
- Chandel, V.S.; Wang, G.; Talha, M. Advances in modelling and analysis of nano structures: A review. Nanotechnol. Rev. 2020, 9, 230–258. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, K.; Cai, Q.; Wang, N.; Wu, L.; He, Q.; Wang, H.; Zhang, Y.; Xie, Y.; Yao, Y.; et al. Advances in synthesis and applications of boron nitride nanotubes: A review. Chem. Eng. J. 2022, 431, 134118. [Google Scholar] [CrossRef]
- James, R.D. Objective structures. J. Mech. Phys. Solids 2006, 54, 2354–2390. [Google Scholar] [CrossRef]
- Sfyris, D.; Sfyris, G.; Galiotis, C. Constitutive modeling of some 2D crystals: Graphene, hexagonal BN, MoS 2, WSe 2 and NbSe 2. Int. J. Solids Struct. 2015, 66, 98–110. [Google Scholar] [CrossRef]
- Sfyris, D.; Sfyris, G.I.; Bustamante, R. Nonlinear electro-magneto-mechanical constitutive modelling of monolayer graphene. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20150750. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, G. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions. Phys. B Condens. Matter 2014, 451, 48–52. [Google Scholar] [CrossRef]
- Sfyris, D.; Sfyris, G. Constitutive modeling of three-dimensional monoatomic linear elastic multilattices. Math. Mech. Solids 2023, 28, 973–988. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Liang, W.; Sun, M. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater. Today Phys. 2017, 2, 6–34. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Sun, M. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822. [Google Scholar] [CrossRef]
- Turhan, E.A.; Pazarçeviren, A.E.; Evis, Z.; Tezcaner, A. Properties and applications of boron nitride nanotubes. Nanotechnology 2022, 33, 242001. [Google Scholar] [CrossRef] [PubMed]
- Suryavanshi, A.P.; Yu, M.-F.; Wen, J.; Tang, C.; Bando, Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 2004, 84, 2527–2529. [Google Scholar] [CrossRef]
- Arenal, R.; Wang, M.-S.; Xu, Z.; Loiseau, A.; Golberg, D. Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes. Nanotechnology 2011, 22, 265704. [Google Scholar] [CrossRef]
- Salavati, M.; Ghasemi, H.; Rabczuk, T. Electromechanical properties of Boron Nitride Nanotube: Atomistic bond potential and equivalent mechanical energy approach. Comput. Mater. Sci. 2018, 149, 460–465. [Google Scholar] [CrossRef]
- Tamilkovan, A.L.; Arumugam, P.A. Current review on boron nitride nanotubes and their applications. Adv. Nat. Sci. Nanosci. Nanotechnol. 2024, 15, 013002. [Google Scholar] [CrossRef]
- Seo, J.-W.; Pophali, A.; An, S.; Liang, C.S.L.; Li, S.; Liu, H.; Kim, J.; An, K.; Kim, J.; Kim, T. Fundamental structural study of hexagonal boron nitride (h-BN) and boron nitride nanotube (BNNT) at low and high temperatures. J. Mol. Struct. 2025, 1319, 139545. [Google Scholar] [CrossRef]
- Kang, J.H.; Sauti, G.; Park, C.; Yamakov, V.I.; Wise, K.E.; Lowther, S.E.; Fay, C.C.; Thibeault, S.A.; Bryant, R.G. Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes. ACS Nano 2015, 9, 11942–11950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Meguid, S.A. Effect of number of layers upon piezoelectric behaviour of multi-walled boron nitride nanotubes. J. Phys. D Appl. Phys. 2015, 48, 495301. [Google Scholar] [CrossRef]
- Panchal, M.B.; Upadhyay, S.H. Single walled boron nitride nanotube-based biosensor: An atomistic finite element modelling approach. IET Nanobiotechnology 2014, 8, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Roudbari, M.A.; Ansari, R. Single-walled boron nitride nanotube as nano-sensor. Contin. Mech. Thermodyn. 2020, 32, 729–748. [Google Scholar] [CrossRef]
- Panchal, M.B.; Upadhyay, S.H.; Harsha, S.P. Mass detection using single walled boron nitride nanotube as a nanomechanical resonator. Nano 2012, 7, 1250029. [Google Scholar] [CrossRef]
- Panchal, M.B.; Upadhyay, S.H.; Harsha, S.P. Vibration Analysis of Single Walled Boron Nitride Nanotube Based Nanoresonators. J. Nanotechnol. Eng. Med. 2012, 3, 031004. [Google Scholar] [CrossRef]
- Zhang, D.; Yapici, N.; Oakley, R.; Yap, Y.K. The rise of boron nitride nanotubes for applications in energy harvesting, nanoelectronics, quantum materials, and biomedicine. J. Mater. Res. 2022, 37, 4605–4619. [Google Scholar] [CrossRef]
- Jakubinek, M.B.; Kim, K.S.; Kim, M.J.; Martí, A.A.; Pasquali, M. Recent advances and perspective on boron nitride nanotubes: From synthesis to applications. J. Mater. Res. 2022, 37, 4403–4418. [Google Scholar] [CrossRef]
- Adel, M.; Keyhanvar, P.; Zahmatkeshan, M.; Bayandori, M.; Teimourian, S.; Hooshyar, S.; Keyhanvar, N. Boron nitride nanotubes: Unlocking a new frontier in biomedicine. BioNanoScience 2025, 15, 1–26. [Google Scholar] [CrossRef]
- Ihsanullah, I. Boron nitride-based materials for water purification: Progress and outlook. Chemosphere 2021, 263, 127970. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, R.; Wang, L.; Songfeng, E. Boron nitride nanotubes and nanosheets: Their basic properties, synthesis, and some of applications. Diam. Relat. Mater. 2023, 136, 109978. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Murdoch, A.I. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 1975, 57, 291–323. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Murdoch, A.I. Surface stress in solids. Int. J. Solids Struct. 1978, 4, 431–440. [Google Scholar] [CrossRef]
- Murdoch, A.I. Some fundamental aspects of surface modelling. J. Elast. 2005, 80, 33–52. [Google Scholar] [CrossRef]
- Shanab, R.A.; Attia, M.A. On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories. Waves Random Complex. Media 2021, 33, 590–636. [Google Scholar] [CrossRef]
- Li, L.; Lin, R.; Ng, T.Y. Contribution of nonlocality to surface elasticity. Int. J. Eng. Sci. 2020, 152, 103311. [Google Scholar] [CrossRef]
- Xu, B.; Kiani, K. Nonlinear nonlocal-surface energy-based vibrations of a bidirectionally excited nanobeam at its supports. Phys. Scr. 2021, 96, 2. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Hosseini, S.H.S. Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of double-walled nanobeams: An analytical study. Eng. Comput. 2021, 37, 1219–1230. [Google Scholar] [CrossRef]
- Kachapi, S.H.H.; Dardel, M.; Daniali, H.M.; Fathi, A. Effects of surface energy on vibration characteristics of double-walled piezo-viscoelastic cylindrical nanoshell. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 2019, 233, 5264–5279. [Google Scholar] [CrossRef]
- Zeighampour, H.; Beni, Y.T. Vibration analysis of boron nitride nanotubes by considering electric field and surface effect. Adv. Nano Res. 2021, 11, 607–620. [Google Scholar] [CrossRef]
- Yamakov, V.; Park, C.; Kang, J.H.; Chen, X.; Ke, C.; Fay, C. Piezoelectric and elastic properties of multiwall boron-nitride nanotubes and their fibers: A molecular dynamics study. Comput. Mater. Sci. 2017, 135, 29–42. [Google Scholar] [CrossRef]
- Yamakov, V.; Park, C.; Kang, J.H.; Wise, K.E.; Fay, C. Piezoelectric molecular dynamics model for boron nitride nanotubes. Comput. Mater. Sci. 2014, 95, 362–370. [Google Scholar] [CrossRef]
- Tolladay, M.; Ivanov, D.; Allan, N.L.; Scarpa, F. Piezoelectric effects in boron nitride nanotubes predicted by the atomistic finite element method and molecular mechanics. Nanotechnology 2017, 28, 355705. [Google Scholar] [CrossRef] [PubMed]
- Kundalwal, S.; Choyal, V. Enhancing the piezoelectric properties of boron nitride nanotubes through defect engineering. Phys. E Low-Dimens. Syst. Nanostructures 2021, 125, 114304. [Google Scholar] [CrossRef]
- Arani, A.G.; Roudbari, M. Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Film. 2013, 542, 232–241. [Google Scholar] [CrossRef]
- Mohammadimehr, M.; Mohandes, M.; Moradi, M. Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory. J. Vib. Control. 2016, 22, 1790–1807. [Google Scholar] [CrossRef]
- Mohammadimehr, M.; Atifeh, S.J.; Navi, B.R. Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings. J. Vib. Control. 2018, 24, 3471–3486. [Google Scholar] [CrossRef]
- Adel, M.; Keyhanvar, P.; Zahmatkeshan, M.; Tavangari, Z.; Keyhanvar, N. A comparative simulation study of piezoelectric properties in zigzag and armchair boron nitride nanotubes: By discovering a pioneering protocol. J. Math. Chem. 2024, 62, 2943–2958. [Google Scholar] [CrossRef]
- Arani, A.G.; Roudbari, M.; Amir, S. Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Phys. B Condens. Matter 2012, 407, 3646–3653. [Google Scholar] [CrossRef]
- Ghadiri, M.; Ebrahimi, F.; Salari, E.; Hosseini, S.A.H.; Shaghaghi, G.R. Electro-thermomechanical vibration analysis of em-bedded SWBNNTs based on nonlocal third-order beam theory. Int. J. Multiscale Comp. Eng. 2015, 13, 443–461. [Google Scholar] [CrossRef]
- Arani, A.G.; Atabakhshian, V.; Loghman, A.; Shajari, A.; Amir, S. Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method. Phys. B Condens. Matter 2012, 407, 2549–2555. [Google Scholar] [CrossRef]
- Arani, A.G.; Roudbari, M. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Phys. B Condens. Matter 2014, 452, 159–165. [Google Scholar] [CrossRef]
- Yawei, D.; Yang, Z.; Jianwei, Y. Exact solutions of bending deflection for single-walled BNNTs based on the classical Euler-Bernoulli beam theory. Nanotechnol. Rev. 2020, 9, 961–970. [Google Scholar] [CrossRef]
- Zhao, D.; Fang, K.; Lian, Z. Mechanical and vibrational behaviors of bilayer hexagonal boron nitride in different stacking modes. Sci. Rep. 2024, 14, 10619. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, V.M.; Valchev, G.S. Dynamics and stability of double-walled carbon nanotube cantilevers conveying fluid in an elastic medium. Dynamics 2024, 4, 222–232. [Google Scholar] [CrossRef]
- Ahmadi, H.R.; Rahimi, Z.; Sumelka, W. Enhancing sensitivity of double-walled carbon nanotubes with longitudinal magnetic field. Appl. Sci. 2024, 14, 3010. [Google Scholar] [CrossRef]
- Arani, A.G.; Kolahchi, R.; Vossough, H. Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory. Phys. B Condens. Matter 2012, 407, 4281–4286. [Google Scholar] [CrossRef]
- Abdollahian, M.; Arani, A.G.; Barzoki, A.M.; Kolahchi, R.; Loghman, A. Non-local wave propagation in embedded armchair TWBNNTs conveying viscous fluid using DQM. Phys. B Condens. Matter 2013, 418, 1–15. [Google Scholar] [CrossRef]
- Arani, A.G.; Kolahchi, R.; Maraghi, Z.K. Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory. Appl. Math. Model. 2013, 37, 7685–7707. [Google Scholar] [CrossRef]
- Arani, A.G.; Amir, S. Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory. Phys. B Condens. Matter 2013, 419, 1–6. [Google Scholar] [CrossRef]
- Ghorbanpour-Arani, A.H.; Rastgoo, A.; Bidgoli, A.H.; Kolahchi, R.; Arani, A.G. Wave propagation of coupled double-DWBNNTs conveying fluid-systems using different nonlocal surface piezoelasticity theories. Mech. Adv. Mater. Struct. 2016, 24, 1159–1179. [Google Scholar] [CrossRef]
- Arani, A.G.; Sabzeali, M.; Zarei, H.B. Nonlinear vibration of double-walled boron nitride and carbon nanopeapods under multi-physical fields with consideration of surface stress effects. Eur. Phys. J. Plus 2017, 132, 538. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Eringen, A.; Wegner, J. Nonlocal Continuum Field Theories. Appl. Mech. Rev. 2003, 56, B20–B22. [Google Scholar] [CrossRef]
- Steigmann, D.J.; Ogden, R.W. Elastic surface–substrate interactions. Proc. R. Soc. A 1999, 455, 437–474. [Google Scholar] [CrossRef]
- Ye, W. Steigmann-Ogden interface effect on the effective elastic properties of nanoparticle-reinforced composites: From nanocomposites to nanoparticles. Int. J. Solids Struct. 2023, 280, 112408. [Google Scholar] [CrossRef]
- Dai, M.; Schiavone, P. Discussion of the linearized version of the Steigmann-Ogden surface model in plane deformation and its application to inclusion problems. Int. J. Eng. Sci. 2023, 192, 112408. [Google Scholar] [CrossRef]
- Adali, S. Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. Phys. Lett. A 2008, 372, 5701–5705. [Google Scholar] [CrossRef]
- Adali, S. Variational Principles for Vibrating Carbon Nanotubes Modeled as Cylindrical Shells Based on Strain Gradient Nonlocal Theory. J. Comput. Theor. Nanosci. 2011, 8, 1954–1962. [Google Scholar] [CrossRef]
- Adali, S. Variational principles for a double Rayleigh beam system undergoing vibrations and connected by a nonlinear Winkler–Pasternak elastic layer. Nonlinear Eng. 2023, 12, 20220259. [Google Scholar] [CrossRef]
- Adali, S. A variational formulation for coupled single-walled carbon nanotubes undergoing vibrations in the presence of an axial magnetic field. Math. Model. Eng. Probl. 2023, 10, 1180–1188. [Google Scholar] [CrossRef]
- Salmon, R. Practical use of Hamilton’s principle. J. Fluid Mech. 1983, 132, 431–444. [Google Scholar] [CrossRef]
- Junker, P.; Balzani, D. An extended Hamilton principle as unifying theory for coupled problems and dissipative microstructure evolution. Contin. Mech. Thermodyn. 2021, 33, 1931–1956. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adali, S. Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects. Dynamics 2025, 5, 21. https://doi.org/10.3390/dynamics5020021
Adali S. Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects. Dynamics. 2025; 5(2):21. https://doi.org/10.3390/dynamics5020021
Chicago/Turabian StyleAdali, Sarp. 2025. "Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects" Dynamics 5, no. 2: 21. https://doi.org/10.3390/dynamics5020021
APA StyleAdali, S. (2025). Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects. Dynamics, 5(2), 21. https://doi.org/10.3390/dynamics5020021