Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = free radical photopolymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 13838 KiB  
Article
Obtaining and Characterizing Poly(Acid Acrylic–co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache)
by Alejandra B. Navarro-Hermosillo, Gabriel Landázuri-Gómez, J. Félix Armando Soltero-Martínez, Manuel Alberto Gallardo-Sánchez, Jorge Alberto Cortes-Ortega, Carmen López-López, J. Jesus Vargas-Radillo, José Guillermo Torres-Rendón, Gonzalo Canché-Escamilla, Salvador García-Enriquez and Emma Rebeca Macias-Balleza
Gels 2025, 11(2), 144; https://doi.org/10.3390/gels11020144 - 18 Feb 2025
Viewed by 1423
Abstract
In this work, cellulose nanocrystals (CNCs) were obtained from the wood of Acacia farnesiana L. Willd (Huizache) via acid hydrolysis; then, they were used to reinforce polyacrylic acid–co-acrylamide (AAc/AAm) hydrogels synthesized in a solution process via in situ free radical photopolymerization. The nanomaterials [...] Read more.
In this work, cellulose nanocrystals (CNCs) were obtained from the wood of Acacia farnesiana L. Willd (Huizache) via acid hydrolysis; then, they were used to reinforce polyacrylic acid–co-acrylamide (AAc/AAm) hydrogels synthesized in a solution process via in situ free radical photopolymerization. The nanomaterials were characterized using atomic force microscopy, dynamic light scattering (DLS), and the residual charge on the CNCs; the nanohydrogels were characterized using infrared spectroscopy, scanning electron microscopy, swelling kinetics, and Young’s modulus. Soluble-grade cellulose presented 94.6% α-cellulose, 0.5% β-cellulose, and 2.7% γ-cellulose, as well as a viscosity of 8.25 cp and a degree of polymerization (DP) of 706. The CNCs averaged 180 nm in length and 20 nm in width. In the nanohydrogels, it was observed that the swelling kinetic behavior followed the Schott kinetic model, at times lower than 500 h; after that, it became linear. The results show that the hydrogel swelling capacity depended on the crosslinking agent and CNC concentration, as well as the CNC chemical and morphological properties, rather than the CNC source. The hydrogels with CNCs exhibited a decreased swelling degree compared to the hydrogels without CNCs. Young’s modulus increased with CNC presence and depended on the concentration and characteristics of the CNC as a crosslinking agent. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Graphical abstract

13 pages, 2026 KiB  
Article
Leveraging the Activated Monomer Mechanism to Create Grafted Polymer Networks in Epoxide–Acrylate Hybrid Photopolymerizations
by Brian F. Dillman, Sage M. Schissel and Julie L. P. Jessop
Macromol 2024, 4(1), 104-116; https://doi.org/10.3390/macromol4010005 - 2 Mar 2024
Viewed by 1300
Abstract
Hybrid epoxide–acrylate photopolymerization enables the temporal structuring of polymer networks for advanced material properties. The ability to design polymer network architectures and to tune mechanical properties can be realized through the control of the cationic active center propagation reaction (active chain end mechanism) [...] Read more.
Hybrid epoxide–acrylate photopolymerization enables the temporal structuring of polymer networks for advanced material properties. The ability to design polymer network architectures and to tune mechanical properties can be realized through the control of the cationic active center propagation reaction (active chain end mechanism) relative to the cationic chain transfer reaction (activated monomer mechanism). Grafted polymer networks (GPNs) can be developed through the covalent bonding of epoxide chains to acrylate chains through hydroxyl substituents, making hydroxyl-containing acrylates a promising class of chain transfer agents. This work demonstrates the formation of these GPNs and explores the physical properties obtained through the control of hydroxyl content and hybrid formulation composition. The GPNs exhibit a lower glass transition temperature than the neat epoxide network and result in a more homogeneous network. Further investigations of hydroxyl-containing acrylates as chain transfer agents will generate a wider range of physical property options for photopolymerized hybrid coatings, sealants, and adhesives. Full article
Show Figures

Graphical abstract

20 pages, 5962 KiB  
Article
Thioxanthone-Based Siloxane Photosensitizer for Cationic/Radical Photopolymerization and Photoinduced Sol–Gel Reactions
by Thi-Thanh-Tam Nguyen, Louise Breloy, Agustin Rios De Anda, Hassan Hayek, Annalisa Chiappone, Jean-Pierre Malval, Daniel Grande and Davy-Louis Versace
Molecules 2024, 29(1), 255; https://doi.org/10.3390/molecules29010255 - 3 Jan 2024
Cited by 3 | Viewed by 2166
Abstract
In this investigation, a multifunctional visible-light TX-based photosensitizer containing a siloxane moiety (TXS) was designed with a good overall yield of 54%. The addition of a siloxane moiety enabled the incorporation of a TX photosensitizer into a siloxane network by photoinduced sol–gel chemistry, [...] Read more.
In this investigation, a multifunctional visible-light TX-based photosensitizer containing a siloxane moiety (TXS) was designed with a good overall yield of 54%. The addition of a siloxane moiety enabled the incorporation of a TX photosensitizer into a siloxane network by photoinduced sol–gel chemistry, thus avoiding its release. Both liquid 1H and solid-state 29Si NMR measurements undeniably confirmed the formation of photoacids resulting from the photolysis of the TXS/electron acceptor molecule (Iodonium salt), which promoted the photoinduced hydrolysis/condensation of the trimethoxysilane groups of TXS, with a high degree of condensation of its inorganic network. Notably, the laser flash photolysis, fluorescence, and electron paramagnetic resonance spin-trapping (EPR ST) experiments demonstrated that TXS could react with Iod through an electron transfer reaction through its excited states, leading to the formation of radical initiating species. Interestingly, the TXS/Iod was demonstrated to be an efficient photoinitiating system for free-radical (FRP) and cationic (CP) polymerization under LEDs@385, 405, and 455 nm. In particular, whatever the epoxy monomer mixtures used, remarkable final epoxy conversions were achieved up to 100% under air. In this latter case, we demonstrated that both the photoinduced sol–gel process (hydrolysis of trimethoxysilane groups) and the cationic photopolymerization occurred simultaneously. Full article
(This article belongs to the Special Issue Electrocatalysis/Photocatalysis in Organic Synthesis)
Show Figures

Graphical abstract

14 pages, 2957 KiB  
Review
A Practical Primer: Raman Spectroscopy for Monitoring of Photopolymerization Systems
by Julie L. P. Jessop
Polymers 2023, 15(18), 3835; https://doi.org/10.3390/polym15183835 - 20 Sep 2023
Cited by 6 | Viewed by 3631
Abstract
Photopolymerization systems provide compelling advantages for industrial applications due to their fast reaction kinetics, wide selection of monomers for physical property development, and energy-efficient initiation via illumination. These same advantages can present challenges when attempting to monitor these reactions or characterize their resulting [...] Read more.
Photopolymerization systems provide compelling advantages for industrial applications due to their fast reaction kinetics, wide selection of monomers for physical property development, and energy-efficient initiation via illumination. These same advantages can present challenges when attempting to monitor these reactions or characterize their resulting polymers; however, Raman spectroscopy can provide the flexibility and resolution needed. In this overview, Raman spectroscopy is compared to common characterization techniques, such as photo-differential scanning calorimetry and infrared spectroscopy, highlighting advantages of Raman spectroscopy. Examples are provided of how Raman spectroscopy has been used to monitor photopolymerizations and to provide insight on the impact of monomer chemistry and processing conditions, as well as paired with other techniques to elucidate physical properties. Finally, practical tips are provided for applying Raman spectroscopy and microscopy in photopolymerization systems. Full article
(This article belongs to the Collection Reviews on Progress in Polymer Analysis and Characterization)
Show Figures

Figure 1

25 pages, 5076 KiB  
Article
Nanocomposite Hydrogel Films Based on Sequential Interpenetrating Polymeric Networks as Drug Delivery Platforms
by Gabriela Toader, Alice Ionela Podaru, Aurel Diacon, Edina Rusen, Alexandra Mocanu, Oana Brincoveanu, Mioara Alexandru, Florina Lucica Zorila, Mihaela Bacalum, Florin Albota, Ana Mihaela Gavrila, Bogdan Trica, Traian Rotariu, Mariana Ionita and Marcel Istrate
Polymers 2023, 15(15), 3176; https://doi.org/10.3390/polym15153176 - 26 Jul 2023
Cited by 9 | Viewed by 2424
Abstract
In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by [...] Read more.
In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli. Full article
Show Figures

Figure 1

16 pages, 10457 KiB  
Article
Preparation of Xanthene-TEMPO Dyads: Synthesis and Study of the Radical Enhanced Intersystem Crossing
by Wenhui Zhu, Yanran Wu, Yiyan Zhang, Andrey A. Sukhanov, Yuqi Chu, Xue Zhang, Jianzhang Zhao and Violeta K. Voronkova
Int. J. Mol. Sci. 2023, 24(13), 11220; https://doi.org/10.3390/ijms241311220 - 7 Jul 2023
Cited by 4 | Viewed by 2115
Abstract
We prepared a rhodamine-TEMPO chromophore-radical dyad (RB-TEMPO) to study the radical enhanced intersystem crossing (REISC). The visible light-harvesting chromophore rhodamine is connected with the TEMPO (a nitroxide radical) via a C–N bond. The UV-vis absorption spectrum indicates negligible electron interaction between the two [...] Read more.
We prepared a rhodamine-TEMPO chromophore-radical dyad (RB-TEMPO) to study the radical enhanced intersystem crossing (REISC). The visible light-harvesting chromophore rhodamine is connected with the TEMPO (a nitroxide radical) via a C–N bond. The UV-vis absorption spectrum indicates negligible electron interaction between the two units at the ground state. Interestingly, the fluorescence of the rhodamine moiety is strongly quenched in RB-TEMPO, and the fluorescence lifetime of the rhodamine moiety is shortened to 0.29 ns, from the lifetime of 3.17 ns. We attribute this quenching effect to the intramolecular electron spin–spin interaction between the nitroxide radical and the photoexcited rhodamine chromophore. Nanosecond transient absorption spectra confirm the REISC in RB-TEMPO, indicated by the detection of the rhodamine chromophore triplet excited state; the lifetime was determined as 128 ns, which is shorter than the native rhodamine triplet state lifetime (0.58 μs). The zero-field splitting (ZFS) parameters of the triplet state of the chromophore were determined with the pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra. RB-TEMPO was used as a photoinitiator for the photopolymerization of pentaerythritol triacrylate (PETA). These studies are useful for the design of heavy atom-free triplet photosensitizers, the study of the ISC, and the electron spin dynamics of the radical-chromophore systems upon photoexcitation. Full article
(This article belongs to the Special Issue Recent Advances in Free Radicals, Radical Ions and Radical Pairs)
Show Figures

Figure 1

40 pages, 9593 KiB  
Review
Recent Advances on Quinoxaline-Based Photoinitiators of Polymerization
by Frédéric Dumur
Catalysts 2023, 13(4), 718; https://doi.org/10.3390/catal13040718 - 10 Apr 2023
Cited by 6 | Viewed by 3515
Abstract
Photopolymerization offers a unique opportunity to convert liquid monomers to polymers using light as the activation source. Recently, major efforts have been devoted to developing visible light photo-initiating systems, and the search for new dyes that can be incorporated into photocurable resins and [...] Read more.
Photopolymerization offers a unique opportunity to convert liquid monomers to polymers using light as the activation source. Recently, major efforts have been devoted to developing visible light photo-initiating systems, and the search for new dyes that can be incorporated into photocurable resins and polymerize a resin within a few seconds is still ongoing. With the aim of exploring a maximum of structures to reach this goal, quinoxaline has been identified to be a promising scaffold for the design of UV-centered and visible light photo-initiating systems. In this review, an overview of the different quinoxaline-based dyes will be given. In order to evidence the interest in these structures, comparisons with reference systems will be given. Full article
(This article belongs to the Special Issue Advances in Light-Induced Catalytic Polymerization)
Show Figures

Figure 1

28 pages, 13802 KiB  
Review
Recent Advances on Furan-Based Visible Light Photoinitiators of Polymerization
by Frédéric Dumur
Catalysts 2023, 13(3), 493; https://doi.org/10.3390/catal13030493 - 28 Feb 2023
Cited by 14 | Viewed by 4762
Abstract
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the [...] Read more.
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification. In this review, an overview concerning the design of furane-based photoinitiators is provided. Comparisons with reference systems are also established to demonstrate evidence of the interest of these photoinitiators in innovative structures. Full article
Show Figures

Figure 1

18 pages, 5905 KiB  
Article
Influence of Methacrylate and Vinyl Monomers on Radical Bulk Photopolymerization Process and Properties of Epoxy-Acrylate Structural Adhesives
by Konrad Gziut, Agnieszka Kowalczyk, Beata Schmidt, Tomasz J. Idzik and Jacek G. Sośnicki
Polymers 2023, 15(4), 926; https://doi.org/10.3390/polym15040926 - 13 Feb 2023
Cited by 13 | Viewed by 3520
Abstract
In this paper, epoxy-acrylate structural adhesives tapes (SATs) were obtained from Bisphenol A-based liquid epoxy resin and epoxy acrylic resins (EARs). A new method of EARs preparation, i.e., the free radical bulk photopolymerization process (FRBP), was studied in detail. The influence of methacrylic [...] Read more.
In this paper, epoxy-acrylate structural adhesives tapes (SATs) were obtained from Bisphenol A-based liquid epoxy resin and epoxy acrylic resins (EARs). A new method of EARs preparation, i.e., the free radical bulk photopolymerization process (FRBP), was studied in detail. The influence of methacrylic monomers (methyl methacrylate, ethyl methacrylate, butyl methacrylate, lauryl methacrylate, (2-acetoacetoxy)ethyl methacrylate) and vinyl monomers (N-vinylpyrrolidone and styrene) on the FRBP process of base monomers (i.e., butyl acrylate, glycidyl methacrylate and 2-hydroxyethyl acrylate) was investigated. The kinetics of photopolymerization process was monitored by photo-differential scanning calorimetry method. The properties of the obtained EARs (viscosity and average molecular weights), as well as monomers conversion using 1H NMR, were determined. It was revealed that styrene significantly decreases the photopolymerization rate and increases the final monomers conversion (+27%). However, the resulting tetrapolymers BA-co-GMA-co-HEA-co-STY have low molecular weights and low polydispersity (2.2). Methacrylate monomers with shorter aliphatic chains (<C4) also decrease the rate of photopolymerization due to the length of the aliphatic chain increasing. Surprisingly, the best results of adhesion to steel and shear strength were obtained for SAT based on epoxy acrylate resin with styrene (11 N/25 mm and 20.8 MPa, respectively). However, the thermomechanical properties of SAT with styrene were weaker than those with methacrylates. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Resins-Based Polymer Materials II)
Show Figures

Graphical abstract

13 pages, 5900 KiB  
Article
Study on New Dental Materials Containing Quinoxaline-Based Photoinitiators in Terms of Exothermicity of the Photopolymerization Process
by Ilona Pyszka, Łukasz Skowroński and Beata Jędrzejewska
Int. J. Mol. Sci. 2023, 24(3), 2752; https://doi.org/10.3390/ijms24032752 - 1 Feb 2023
Cited by 15 | Viewed by 2030
Abstract
Modern dentistry places great demands on the dental composites used for filling tooth cavities or treating cavitated tooth decay. The aim of the work was to modify the properties of composites by changing the initiators and co-initiators. This was achieved by using initiators [...] Read more.
Modern dentistry places great demands on the dental composites used for filling tooth cavities or treating cavitated tooth decay. The aim of the work was to modify the properties of composites by changing the initiators and co-initiators. This was achieved by using initiators based on a quinoxaline skeleton and co-initiators that are derivatives of acetic acid, which is an advantage of these photoinitiating systems due to the elimination of aromatic amines from the photocurable composition. The composites also differed in dental fillers. The effect of the compounds on the exothermicity of the photopolymerization process, the surface morphology of the obtained materials and the maximum compressive strength were determined. The photoinitiating capacity of the two-component systems was tested by the microcalorimetric method using the multifunctional monomer TMPTA, typical for dental filler compositions. The new photoinitiating systems show particularly good efficiency of free radical polymerization initiation, which occurs by the photoinduced intermolecular electron transfer (PET) mechanism. The comparison of the tested systems with camphorquinone, a photoinitiator traditionally used in dentistry, made it possible to observe a decrease in temperature during photopolymerization without a significant decrease in the polymerization rate or increase in photocuring time, as well as a better homogeneity of the surface of the obtained polymeric materials. This indicates that dye–acetic acid derivative systems may be useful in dental applications. Full article
(This article belongs to the Special Issue Advances in Materials and Biomaterials in Dental Implantology)
Show Figures

Figure 1

42 pages, 26914 KiB  
Review
High-Performance Photoinitiating Systems for LED-Induced Photopolymerization
by Shaohui Liu, Timur Borjigin, Michael Schmitt, Fabrice Morlet-Savary, Pu Xiao and Jacques Lalevée
Polymers 2023, 15(2), 342; https://doi.org/10.3390/polym15020342 - 9 Jan 2023
Cited by 31 | Viewed by 5597
Abstract
Currently, increasing attention has been focused on light-emitting diodes (LEDs)-induced photopolymerization. The common LEDs (e.g., LED at 365 nm and LED at 405 nm) possess narrow emission bands. Due to their light absorption properties, most commercial photoinitiators are sensitive to UV light and [...] Read more.
Currently, increasing attention has been focused on light-emitting diodes (LEDs)-induced photopolymerization. The common LEDs (e.g., LED at 365 nm and LED at 405 nm) possess narrow emission bands. Due to their light absorption properties, most commercial photoinitiators are sensitive to UV light and cannot be optimally activated under visible LED irradiation. Although many photoinitiators have been designed for LED-induced free radical polymerization and cationic polymerization, there is still the issue of the mating between photoinitiators and LEDs. Therefore, the development of novel photoinitiators, which could be applied under LED irradiation, is significant. Many photoinitiating systems have been reported in the past decade. In this review, some recently developed photoinitiators used in LED-induced photopolymerization, mainly in the past 5 years, are summarized and categorized as Type Ⅰ photoinitiators, Type Ⅱ photoinitiators, and dye-based photoinitiating systems. In addition, their light absorption properties and photoinitiation efficiencies are discussed. Full article
Show Figures

Graphical abstract

13 pages, 2303 KiB  
Article
Synthesis of Hybrid Epoxy Methacrylate Resin Based on Diglycidyl Ethers and Coatings Preparation via Cationic and Free-Radical Photopolymerization
by Paulina Bednarczyk, Izabela Irska, Konrad Gziut, Karolina Mozelewska and Paula Ossowicz-Rupniewska
Int. J. Mol. Sci. 2022, 23(24), 15592; https://doi.org/10.3390/ijms232415592 - 9 Dec 2022
Cited by 2 | Viewed by 2908
Abstract
A series of difunctional epoxy methacrylate resins (EAs) containing at least one epoxy and at least one methacrylate group were synthesized by means of an addition reaction between epoxy-terminated diglycidyl ethers and methacrylic acid. In order to investigate the impact of polymer architecture [...] Read more.
A series of difunctional epoxy methacrylate resins (EAs) containing at least one epoxy and at least one methacrylate group were synthesized by means of an addition reaction between epoxy-terminated diglycidyl ethers and methacrylic acid. In order to investigate the impact of polymer architecture on the course of addition reactions and further coating properties, several different types of diglycidyl ethers, i.e., linear, containing aliphatic or aromatic rings, with a short or polymeric backbone, were employed in the synthesis. The carboxyl–epoxide addition esterification reactions have been found to, in a relatively straightforward manner, control the extent of acrylation depending on the substrate feed ratio and reaction time. The structure of obtained pre-polymers was evaluated by FT-IR and NMR methods. At the same time, the extent of addition reactions was validated via quantitative analysis, including non-volatile matter content (NV), acid value (PAVs), and epoxy equivalent value (EE) analysis. The modification was carried out in a manner likely to create a compound with one epoxy and one carbon–carbon pendant group. Hence, due to the presence of both functionalities, it is possible to crosslink compositions based on synthesized EAs via two distinct mechanisms: (i) cationic polymerization or (ii) free-radical polymerization. Synthesized epoxy methacrylate pre-polymers were further employed for use in formulate photocurable coating compositions by the cationic or radical process. Furthermore, the photopolymerization behavior and properties of cured coatings were explored regarding some structural factors and parameters. The investigated polymeric materials cure in a short time to obtain coatings with good properties, which is why they can be successfully used to produce protective and decorative coatings for many industries. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Graphical abstract

13 pages, 1968 KiB  
Article
Naphthalene-Based Oxime Esters as Type I Photoinitiators for Free Radical Photopolymerization
by Zhong-Han Lee, Shih-Chieh Yen, Fatima Hammoud, Akram Hijazi, Bernadette Graff, Jacques Lalevée and Yung-Chung Chen
Polymers 2022, 14(23), 5261; https://doi.org/10.3390/polym14235261 - 2 Dec 2022
Cited by 17 | Viewed by 3207
Abstract
In order to discuss the polymerization effect from the substituted position and methoxy group of Type I photinitiators, a series of naphthalene-based oxime esters was designed and synthesized. Compared to the 2-naphthalene-substituted compound, the UV absorption region of the 1-naphthalene-based compound was greatly [...] Read more.
In order to discuss the polymerization effect from the substituted position and methoxy group of Type I photinitiators, a series of naphthalene-based oxime esters was designed and synthesized. Compared to the 2-naphthalene-substituted compound, the UV absorption region of the 1-naphthalene-based compound was greatly improved. In addition, the methoxy substitution exhibited longer absorption characteristics than did the methoxy-free one. The photochemical reaction behavior of these novel compounds was also studied by photolysis, cyclic voltammetry (CV), and electron spin resonance (ESR) experiments. Finally, the initiation abilities of naphthalene-based oxime esters toward trimethylolpropane triacrylate (TMPTA) monomer were conducted through the photo-DSC instrument under UV and a 405@nm LED lamp. Remarkedly, the naphthalene-based oxime ester (NA-3) that contains 1-naphthalene with o-methoxy substituent showed the rather red-shifted absorption region with the highest final conversion efficiency under UV (46%) and 405@nm LED (41%) lamp irradiation. Full article
(This article belongs to the Topic Photosensitive and Optical Materials)
Show Figures

Figure 1

20 pages, 7004 KiB  
Article
Coumarin Ketoxime Ester with Electron-Donating Substituents as Photoinitiators and Photosensitizers for Photopolymerization upon UV-Vis LED Irradiation
by Shuheng Fan, Xun Sun, Xianglong He, Yulian Pang, Yangyang Xin, Yanhua Ding and Yingquan Zou
Polymers 2022, 14(21), 4588; https://doi.org/10.3390/polym14214588 - 28 Oct 2022
Cited by 19 | Viewed by 3924
Abstract
High-performance photoinitiators (PIs) are essential for ultraviolet–visible (UV-Vis) light emitting diode (LED) photopolymerization. In this study, a series of coumarin ketoxime esters (COXEs) with electron-donating substituents (tert-butyl, methoxy, dimethylamino and methylthio) were synthesized to study the structure/reactivity/efficiency relationships for substituents for [...] Read more.
High-performance photoinitiators (PIs) are essential for ultraviolet–visible (UV-Vis) light emitting diode (LED) photopolymerization. In this study, a series of coumarin ketoxime esters (COXEs) with electron-donating substituents (tert-butyl, methoxy, dimethylamino and methylthio) were synthesized to study the structure/reactivity/efficiency relationships for substituents for the photoinitiation performance of PIs. The introduction of heteroatom electron-donating substituents leads to a redshift in the COXE absorption of more than 60 nm, which matches the UV-Vis LED emission spectra. The PIs also show acceptable thermal stability via differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The results from real-time Fourier transform infrared (RT-FTIR) measurements indicate that COXEs show an excellent photoinitiation efficiency for free radical polymerization under UV-Vis LED irradiation (365–450 nm); in particular, the conversion efficiency for tri-(propylene glycol) diacrylate (TPGDA) polymerization initiated by COXE-O and COXE-S (4.8 × 10−5 mol·g−1) in 3 s can reach more than 85% under UV-LED irradiation (365, 385 nm). Moreover, the photosensitization of COXEs in the iodonium hexafluorophosphate (Iod-PF6) and hexaarylbiimidazole/N-phenylglycine (BCIM/NPG) systems was investigated via RT-FTIR. As a coinitiator, COXEs show excellent performance in dry film photoresist (DFR) photolithography. This excellent performance of COXEs demonstrates great potential for UV-curing and photoresist applications, providing a new idea for the design of PIs. Full article
(This article belongs to the Special Issue Recent Advances in Photopolymerization)
Show Figures

Graphical abstract

23 pages, 20533 KiB  
Article
UV-Cured Green Polymers for Biosensorics: Correlation of Operational Parameters of Highly Sensitive Biosensors with Nano-Volumes and Adsorption Properties
by Magdalena Goździuk, Taras Kavetskyy, Daniel Massana Roquero, Oleh Smutok, Mykhailo Gonchar, David P. Královič, Helena Švajdlenková, Ondrej Šauša, Pavol Kalinay, Hamed Nosrati, Migle Lebedevaite, Sigita Grauzeliene, Jolita Ostrauskaite, Arnold Kiv and Bożena Zgardzińska
Materials 2022, 15(19), 6607; https://doi.org/10.3390/ma15196607 - 23 Sep 2022
Cited by 5 | Viewed by 2550
Abstract
The investigated polymeric matrixes consisted of epoxidized linseed oil (ELO), acrylated epoxidized soybean oil (AESO), trimethylolpropane triglycidyl ether (RD1), vanillin dimethacrylate (VDM), triarylsulfonium hexafluorophosphate salts (PI), and 2,2-dimethoxy-2-phenylacetophenone (DMPA). Linseed oil-based (ELO/PI, ELO/10RD1/PI) and soybean oil-based (AESO/VDM, AESO/VDM/DMPA) polymers were obtained by cationic [...] Read more.
The investigated polymeric matrixes consisted of epoxidized linseed oil (ELO), acrylated epoxidized soybean oil (AESO), trimethylolpropane triglycidyl ether (RD1), vanillin dimethacrylate (VDM), triarylsulfonium hexafluorophosphate salts (PI), and 2,2-dimethoxy-2-phenylacetophenone (DMPA). Linseed oil-based (ELO/PI, ELO/10RD1/PI) and soybean oil-based (AESO/VDM, AESO/VDM/DMPA) polymers were obtained by cationic and radical photopolymerization reactions, respectively. In order to improve the cross-linking density of the resulting polymers, 10 mol.% of RD1 was used as a reactive diluent in the cationic photopolymerization of ELO. In parallel, VDM was used as a plasticizer in AESO radical photopolymerization reactions. Positron annihilation lifetime spectroscopy (PALS) was used to characterize vegetable oil-based UV-cured polymers regarding their structural stability in a wide range of temperatures (120–320 K) and humidity. The polymers were used as laccase immobilization matrixes for the construction of amperometric biosensors. A direct dependence of the main operational parameters of the biosensors and microscopical characteristics of polymer matrixes (mostly on the size of free volumes and water content) was established. The biosensors are intended for the detection of trace water pollution with xenobiotics, carcinogenic substances with a very negative impact on human health. These findings will allow better predictions for novel polymers as immobilization matrixes for biosensing or biotechnology applications. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Figure 1

Back to TopTop