Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (478)

Search Parameters:
Keywords = fractional free volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1252 KiB  
Article
Non-Invasive Prediction of Atrial Fibrosis Using a Regression Tree Model of Mean Left Atrial Voltage
by Javier Ibero, Ignacio García-Bolao, Gabriel Ballesteros, Pablo Ramos, Ramón Albarrán-Rincón, Leire Moriones, Jean Bragard and Inés Díaz-Dorronsoro
Biomedicines 2025, 13(8), 1917; https://doi.org/10.3390/biomedicines13081917 - 6 Aug 2025
Abstract
Background: Atrial fibrosis is a key contributor to atrial cardiomyopathy and can be assessed invasively using mean left atrial voltage (MLAV) from electroanatomical mapping. However, the invasive nature of this procedure limits its clinical applicability. Machine learning (ML), particularly regression tree-based models, [...] Read more.
Background: Atrial fibrosis is a key contributor to atrial cardiomyopathy and can be assessed invasively using mean left atrial voltage (MLAV) from electroanatomical mapping. However, the invasive nature of this procedure limits its clinical applicability. Machine learning (ML), particularly regression tree-based models, may offer a non-invasive approach for predicting MLAV using clinical and echocardiographic data, improving non-invasive atrial fibrosis characterisation beyond current dichotomous classifications. Methods: We prospectively included and followed 113 patients with paroxysmal or persistent atrial fibrillation (AF) undergoing pulmonary vein isolation (PVI) with ultra-high-density voltage mapping (uHDvM), from whom MLAV was estimated. Standardised two-dimensional transthoracic echocardiography was performed before ablation, and clinical and echocardiographic variables were analysed. A regression tree model was constructed using the Classification and Regression Trees—CART-algorithm to identify key predictors of MLAV. Results: The regression tree model exhibited moderate predictive accuracy (R2 = 0.63; 95% CI: 0.55–0.71; root mean squared error = 0.90; 95% CI: 0.82–0.98), with indexed minimum LA volume and passive emptying fraction emerging as the most influential variables. No significant differences in AF recurrence-free survival were found among MLAV tertiles or model-based generated groups (log-rank p = 0.319 and p = 0.126, respectively). Conclusions: We present a novel ML-based regression tree model for non-invasive prediction of MLAV, identifying minimum LA volume and passive emptying fraction as the most significant predictors. This model offers an accessible, non-invasive tool for refining atrial cardiomyopathy characterisation by reflecting the fibrotic substrate as a continuum, a crucial advancement over existing dichotomous approaches to guide tailored therapeutic strategies. Full article
Show Figures

Figure 1

14 pages, 6826 KiB  
Article
Crack-Mitigating Strategy in Directed Energy Deposition of Refractory Complex Concentrated CrNbTiZr Alloy
by Jan Kout, Tomáš Krajňák, Pavel Salvetr, Pavel Podaný, Michal Brázda, Dalibor Preisler, Miloš Janeček, Petr Harcuba, Josef Stráský and Jan Džugan
Materials 2025, 18(15), 3653; https://doi.org/10.3390/ma18153653 - 4 Aug 2025
Viewed by 192
Abstract
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant [...] Read more.
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant challenges for manufacturing defect-free alloys using this approach. To address this issue, we investigated the preparation of a CrNbTiZr quaternary complex concentrated alloy from an equimolar blend of elemental powders using commercially available powder-blown L-DED technology. Initially, the alloys exhibited some defects owing to the internal stress caused by the temperature gradients. This was subsequently resolved by optimizing the deposition strategy. SEM, XRD and EDS were used to analyze the alloy in the as-deposited condition, revealing a BCC phase and a secondary Laves phase. Furthermore, Vickers hardness testing demonstrated a correlation between the hardness and the volume fraction of the Laves phase. Finally, successfully performed compression tests confirmed that the prepared material exhibits high-temperature strength and therefore is promising for high-temperature application under extreme conditions. Full article
Show Figures

Figure 1

19 pages, 1627 KiB  
Article
Separation of Rare Earth Elements by Ion Exchange Resin: pH Effect and the Use of Fractionation Column
by Clauson Souza, Pedro A. P. V. S. Ferreira and Ana Claudia Q. Ladeira
Minerals 2025, 15(8), 821; https://doi.org/10.3390/min15080821 - 1 Aug 2025
Viewed by 171
Abstract
This work investigated the ion exchange technique for selective separation of rare earth elements (REE) from acid mine drainage (AMD), using different column systems, pH values, and eluent concentrations. Systematic analysis of pH and eluent concentration showed that an initial pH of 6.0 [...] Read more.
This work investigated the ion exchange technique for selective separation of rare earth elements (REE) from acid mine drainage (AMD), using different column systems, pH values, and eluent concentrations. Systematic analysis of pH and eluent concentration showed that an initial pH of 6.0 and 0.02 mol L−1 NH4EDTA are the optimal conditions, achieving 98.4% heavy REE purity in the initial stage (0 to 10 bed volumes). This represents a 32-fold increase compared to the original AMD (6.7% heavy REE). The speciation of REE and impurities was determined by Visual Minteq 4.0 software using pH 2.0, which corresponds to the pH at the inlet of the fractionation column. Under this condition, La and Nd and the impurities (Ca, Mg, and Mn) remained in the fractionation column, while Al was partially retained. In addition, the heavy REE (Y and Dy) were mainly in the form of REE-EDTA complexes and not as free cations, which made fractionation more feasible. The fractionation column minimized impurities, retaining 100% of Ca and 67% of Al, generating a liquor concentrated in heavy REE. This sustainable approach adopted herein meets the critical needs for scalable recovery of REE from diluted effluents, representing a circular economy strategy for critical metals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 4101 KiB  
Article
A Physics-Informed Neural Network Solution for Rheological Modeling of Cement Slurries
by Huaixiao Yan, Jiannan Ding and Chengcheng Tao
Fluids 2025, 10(7), 184; https://doi.org/10.3390/fluids10070184 - 13 Jul 2025
Viewed by 368
Abstract
Understanding the rheological properties of fresh cement slurries is essential to maintain optimal pumpability, achieve dependable zonal isolation, and preserve long-term well integrity in oil and gas cementing operations and the 3D printing cement and concrete industry. However, accurately and efficiently modeling the [...] Read more.
Understanding the rheological properties of fresh cement slurries is essential to maintain optimal pumpability, achieve dependable zonal isolation, and preserve long-term well integrity in oil and gas cementing operations and the 3D printing cement and concrete industry. However, accurately and efficiently modeling the rheological behavior of cement slurries remains challenging due to the complex fluid properties of fresh cement slurries, which exhibit non-Newtonian and thixotropic behavior. Traditional numerical solvers typically require mesh generation and intensive computation, making them less practical for data-scarce, high-dimensional problems. In this study, a physics-informed neural network (PINN)-based framework is developed to solve the governing equations of steady-state cement slurry flow in a tilted channel. The slurry is modeled as a non-Newtonian fluid with viscosity dependent on both the shear rate and particle volume fraction. The PINN-based approach incorporates physical laws into the loss function, offering mesh-free solutions with strong generalization ability. The results show that PINNs accurately capture the trend of velocity and volume fraction profiles under varying material and flow parameters. Compared to conventional solvers, the PINN solution offers a more efficient and flexible alternative for modeling complex rheological behavior in data-limited scenarios. These findings demonstrate the potential of PINNs as a robust tool for cement slurry rheological modeling, particularly in scenarios where traditional solvers are impractical. Future work will focus on enhancing model precision through hybrid learning strategies that incorporate labeled data, potentially enabling real-time predictive modeling for field applications. Full article
(This article belongs to the Special Issue Advances in Computational Mechanics of Non-Newtonian Fluids)
Show Figures

Figure 1

16 pages, 2023 KiB  
Article
The Prognostic Implication of Left Atrial Strain Parameters with Conventional Left Atrial Parameters for the Prediction of Adverse Outcomes in Asian Patients with Hypertrophic Cardiomyopathy—An Echocardiographic Study
by Andre Seah, Tony Y. W. Li, Novi Yanti Sari, Chi-Hang Lee, Tiong-Cheng Yeo, James W. L. Yip, Yoke Ching Lim, Kian-Keong Poh, William K. F. Kong, Weiqin Lin, Ching-Hui Sia and Raymond C. C. Wong
J. Cardiovasc. Dev. Dis. 2025, 12(7), 261; https://doi.org/10.3390/jcdd12070261 - 8 Jul 2025
Viewed by 338
Abstract
Background/Objectives: Left atrial function can be a tool for risk stratification for hypertrophic cardiomyopathy (HCM). Over the past decade, there has been growing interest in the application of strain analysis for earlier and more accurate prediction of cardiovascular disease prognosis. This study aimed [...] Read more.
Background/Objectives: Left atrial function can be a tool for risk stratification for hypertrophic cardiomyopathy (HCM). Over the past decade, there has been growing interest in the application of strain analysis for earlier and more accurate prediction of cardiovascular disease prognosis. This study aimed to investigate the performance of left atrial strain analysis compared to conventional left atrial measures in predicting clinical outcomes in Asian patients with HCM. Methods and Results: This was a retrospective study involving 291 patients diagnosed with HCM between 2010 and 2017. Left atrial volumes were assessed using the method of discs in orthogonal plans at both end diastole and end systole. Left atrial (LA) strain was obtained using a post-hoc analysis with TOMTEC software. We tested the various left atrial parameters against outcomes of (1) heart failure hospitalization and (2) event-free survival from a composite of adverse events, including all-cause mortality, ventricular tachycardia (VT)/ventricular fibrillation (VF) events, appropriate device therapy if an implantable cardioverter defibrillator (ICD) was implanted, stroke, and heart failure hospitalization. The patients had a mean age of 59.0 ± 16.7 years with a male preponderance (71.2%). The cumulative event-free survival over a follow-up of 3.9 ± 2.7 years was 55.2% for patients with an abnormal LA strain versus 82.4% for patients without one (p < 0.001). Multivariable Cox regression analyses were performed separately for each LA parameter, adjusting for age, sex, LV mass index, LV ejection fraction (EF), E/e’, the presence of LV outflow tract (LVOT) obstruction at rest, and atrial fibrillation. An analysis showed that all parameters except for LAEF demonstrated an independent association with heart failure hospitalization. Left atrial strain outperformed the rest of the parameters by demonstrating an association with a composite of adverse events. Conclusions: In Asian patients with HCM, measures of left atrial strain were independently associated with heart failure hospitalization and a composite of adverse outcomes. Left atrial strain may be used as a tool to predict adverse outcomes in patients with HCM. Full article
(This article belongs to the Special Issue Role of Cardiovascular Imaging in Heart Failure)
Show Figures

Figure 1

14 pages, 1220 KiB  
Article
Viscoelastic Response of Double Hydrophilic Block Copolymers for Drug Delivery Applications
by Achilleas Pipertzis, Angeliki Chroni, Stergios Pispas and Jan Swenson
Polymers 2025, 17(13), 1857; https://doi.org/10.3390/polym17131857 - 2 Jul 2025
Viewed by 351
Abstract
This study investigates the mechanical properties of double hydrophilic block copolymers (DHBCs) based on poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) blocks by employing small amplitude oscillatory shear (SAOS) rheological measurements. We report that the mechanical properties of DHBCs are [...] Read more.
This study investigates the mechanical properties of double hydrophilic block copolymers (DHBCs) based on poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) blocks by employing small amplitude oscillatory shear (SAOS) rheological measurements. We report that the mechanical properties of DHBCs are governed by the interfacial glass transition temperature (Tginter), verifying the disordered state of these copolymers. An increase in zero shear viscosity can be observed by increasing the VBTMAC content, yielding a transition from liquid-like to gel-like and finally to an elastic-like response for the PVBTMAC homopolymer. By changing the block arrangement along the backbone from statistical to sequential, a distinct change in the viscoelastic response is obvious, indicating the presence/absence of bulk-like regions. The tunable viscosity values and shear-thinning behavior achieved through alteration of the copolymer composition and block arrangement along the backbone render the studied DHBCs promising candidates for drug delivery applications. In the second part, the rheological data are analyzed within the framework of the classical free volume theories of glass formation. Specifically, the copolymers exhibit reduced fractional free volume and similar fragility values compared to the PVBTMAC homopolymer. On the contrary, the activation energy increases by increasing the VBTMAC content, reflecting the required higher energy for the relaxation of the glassy VBTMAC segments. Overall, this study provides information about the viscoelastic properties of DHBCs with densely grafted macromolecular architecture and shows how the mechanical and dynamical properties can be tailored for different drug delivery applications by simply altering the ratio between the two homopolymers. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Graphical abstract

12 pages, 1625 KiB  
Communication
Prediction of Multiphase Flow in Ruhrstahl–Heraeus (RH) Reactor
by Han Zhang, Hong Lei, Yuanxin Jiang, Yili Sun, Shuai Zeng and Shifu Chen
Materials 2025, 18(13), 3149; https://doi.org/10.3390/ma18133149 - 2 Jul 2025
Viewed by 306
Abstract
Splashed droplets in the vacuum chamber play an important role in decarburization and degassing in Ruhrstahl–Heraeus (RH), but the scholars do not pay attention to the behaviors of splashed droplets. Thus, it is necessary to propose a new method to investigate the splashed [...] Read more.
Splashed droplets in the vacuum chamber play an important role in decarburization and degassing in Ruhrstahl–Heraeus (RH), but the scholars do not pay attention to the behaviors of splashed droplets. Thus, it is necessary to propose a new method to investigate the splashed droplets. A Euler–Euler model and the inter-phase momentum transfer are applied to investigate the interaction between the molten steel and the bubbles, and the gas domain in the vacuum chamber is included in the computational domain in order to describe the movement of the splashed droplets. Numerical results show that the flow field predicted by Euler–Euler model agrees well with the experimental data. There is a higher gas volume fraction near the up-snorkel wall, the “fountain” formed by the upward flow from the up-snorkel exceeds 0.1 m above the free surface, and the center of the vortex between the upward stream and the downward stream is closer to the upward stream in the vacuum chamber. Full article
(This article belongs to the Special Issue Fundamental Metallurgy: From Impact Solutions to New Insight)
Show Figures

Figure 1

23 pages, 6238 KiB  
Article
The Semi-Penalized Updated Properties Model and Its Algorithm to Impose the Volume Fraction
by Amin Alibakhshi and Luis Saucedo-Mora
Materials 2025, 18(13), 2972; https://doi.org/10.3390/ma18132972 - 23 Jun 2025
Viewed by 394
Abstract
Intricate structures with minimal weight and maximum stiffness are demanded in many practical engineering applications. Topology optimization is a method for designing these structures, and the rise of additive manufacturing technologies has opened the door to their production. In a recently published paper, [...] Read more.
Intricate structures with minimal weight and maximum stiffness are demanded in many practical engineering applications. Topology optimization is a method for designing these structures, and the rise of additive manufacturing technologies has opened the door to their production. In a recently published paper, a novel topology optimization algorithm, named the Updated Properties Model (UPM), was developed with the homogenization of strain level as an objective function and an updating Young modulus as the design variable. The UPM method optimizes mechanical structures without applying any constraints. However, including constraints such as volume, mass, and/or stress in topology optimization is prevalent. This paper uses the density-dependent Young modulus concept to incorporate the volume fraction in the UPM method. We address the critical problem of constraint-aware design without the complexity of constraint-handling formulations. We show the proposed methodology’s success and functionality by plotting the algorithm’s results in two- and three-dimensional benchmark structures. Key results present that adjusting algorithmic parameters can yield both binary (single-material) and graded-material solutions, offering flexibility for different applications. These findings suggest that the UPM can effectively replicate constraint-driven outcomes without explicitly enforcing constraints. The main novelty of this work lies in extending the constraint-free UPM framework to allow for controlled material distribution using a physically meaningful update rule. This extends the applicability of the UPM beyond previous efforts in the literature. We have also created a Julia package for our proposal. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

21 pages, 4456 KiB  
Article
Refined Procedure to Purify and Sequence Circulating Cell-Free DNA in Prostate Cancer
by Samira Rahimirad, Seta Derderian, Lucie Hamel, Eleonora Scarlata, Ginette McKercher, Fadi Brimo, Raghu Rajan, Alexis Rompre-Brodeur, Wassim Kassouf, Rafael Sanchez-Salas, Armen Aprikian and Simone Chevalier
Int. J. Mol. Sci. 2025, 26(12), 5839; https://doi.org/10.3390/ijms26125839 - 18 Jun 2025
Viewed by 606
Abstract
Cell-free DNA (cfDNA), a fragmented DNA circulating in blood, is a promising biomarker for cancer diagnosis and monitoring. Standardization of cfDNA isolation to enhance the sensitivity of molecular analyses in prostate cancer (PCa) is required. Towards this goal, we optimized existing methods to [...] Read more.
Cell-free DNA (cfDNA), a fragmented DNA circulating in blood, is a promising biomarker for cancer diagnosis and monitoring. Standardization of cfDNA isolation to enhance the sensitivity of molecular analyses in prostate cancer (PCa) is required. Towards this goal, we optimized existing methods to obtain a high quantity and quality of cfDNA from low volumes of plasma. The protocol was applied to samples from healthy males and three patient categories: radical prostatectomy (RP), disease-free (>6 years post-RP), and metastatic castration-resistant PCa (mCRPC). The yield was significantly higher in mCRPC cases, and the size of fragments was shorter. We compared for the first time library preparation using two cfDNA inputs and low vs. high sequencing depth. Clonal events were observed irrespective of input and depth, but lower input showed more subclonal events. The clinical application of the refined protocols to cfDNA samples from an mCRPC patient showed no tumor fraction before RP, while it increased to 25% at the advanced stage. Among chromosomal changes and mutations, the androgen receptor gene amplification was detected. Altogether, this comprehensive study on improved cfDNA procedures is highly promising to enhance the quality of liquid biopsy-based research for discoveries and much-needed clinical applications. Full article
Show Figures

Figure 1

14 pages, 2459 KiB  
Article
Molecular Level Understanding of Amine Structural Variations on Diaminodiphenyl Sulfone to Thermomechanical Characteristics in Bifunctional Epoxy Resin: Molecular Dynamics Simulation Approach
by Hei Je Jeong, Sung Hyun Kwon, Jihoon Lim, Woong Kwon, Gun Hwan Park, Eunhye Lee, Jong Sung Won, Man Young Lee, Euigyung Jeong and Seung Geol Lee
Polymers 2025, 17(12), 1694; https://doi.org/10.3390/polym17121694 - 18 Jun 2025
Viewed by 554
Abstract
Epoxy-based composite materials, widely used in various industries such as coatings, adhesives, aerospace, electronics, and biomedical engineering, remain a topic of global interest due to their varying characteristics based on the base resin and curing agents used. This paper employs molecular dynamics simulation [...] Read more.
Epoxy-based composite materials, widely used in various industries such as coatings, adhesives, aerospace, electronics, and biomedical engineering, remain a topic of global interest due to their varying characteristics based on the base resin and curing agents used. This paper employs molecular dynamics simulation to examine the thermal and mechanical properties, as well as molecular behaviors, of epoxy systems cured with diglycidyl ether of bisphenol F as the base resin and aromatic amine curing agents, specifically the meta structure of 3,3′-diaminodiphenyl sulfone (3,3′-DDS) and the para structure of 4,4′-diaminodiphenyl sulfone (4,4′-DDS). The 3,3′-DDS system demonstrated a greater density and Young’s modulus than the 4,4′-DDS system. This tendency was analyzed based on differences in molecular fractional free volume and cohesive energy density (CED). The 4,4′-DDS system exhibits a higher glass transition temperature (Tg) compared to the 3,3′-DDS system, with values of 406.36 K and 431.22 K, respectively. To understand this behavior, we examined atomic-scale displacements at Tg through mean squared displacement analysis, which revealed that the onset of molecular motion occurs at a lower temperature in the 3,3′-DDS system. Molecular-level study reveals how the structural features of each curing agent appear in thermal and mechanical properties, offering important insights for epoxy system development. Full article
(This article belongs to the Special Issue Structure and Dynamics of Polymers)
Show Figures

Figure 1

15 pages, 2242 KiB  
Review
Early Echocardiographic Markers in Heart Failure with Preserved Ejection Fraction
by Annamaria Tavernese, Vincenzo Rizza, Valeria Cammalleri, Rocco Mollace, Cristina Carresi, Giorgio Antonelli, Nino Cocco, Luca D’Antonio, Martina Gelfusa, Francesco Piccirillo, Annunziata Nusca and Gian Paolo Ussia
J. Cardiovasc. Dev. Dis. 2025, 12(6), 229; https://doi.org/10.3390/jcdd12060229 - 16 Jun 2025
Viewed by 695
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents nearly half of all heart failure cases and remains diagnostically challenging due to its heterogeneous pathophysiology and often subtle myocardial dysfunction. Conventional echocardiographic parameters, such as left ventricular ejection fraction (LVEF) and the left atrial [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) represents nearly half of all heart failure cases and remains diagnostically challenging due to its heterogeneous pathophysiology and often subtle myocardial dysfunction. Conventional echocardiographic parameters, such as left ventricular ejection fraction (LVEF) and the left atrial volume index (LAVI), frequently fail to detect early functional changes. Advanced echocardiographic techniques have emerged as valuable tools for early diagnosis and risk stratification. Global Longitudinal Strain (GLS) allows for the identification of subclinical systolic dysfunction, even with preserved LVEF. Left Atrial Strain (LAS), particularly reservoir and pump strain, provides sensitive markers of diastolic function and elevated filling pressures, offering additional diagnostic and prognostic insights. Myocardial Work (MW), through non-invasive pressure–strain loops, enables load-independent assessment of contractility, while Right Ventricular Free Wall Longitudinal Strain (RVFWLS) captures early right heart involvement, often present in advanced HFpEF. The integration of these advanced parameters can enhance diagnostic precision and guide personalized treatment strategies. This review highlights the current evidence and clinical applications of strain-based imaging in HFpEF, underscoring the importance of a multiparametric, pathophysiology-oriented approach in heart failure evaluation. Full article
(This article belongs to the Special Issue Role of Cardiovascular Imaging in Heart Failure)
Show Figures

Figure 1

13 pages, 5181 KiB  
Article
Dense Phase Mixing in a Solid-Liquid Stirred Tank by Computational Fluid Dynamics Simulation
by Shengkun Jiang, Yuanyuan Zhao, Xin Zhao, Chunlin Chen, Wenwen Tu, Yu Chi and Junhao Wang
Processes 2025, 13(6), 1876; https://doi.org/10.3390/pr13061876 - 13 Jun 2025
Viewed by 427
Abstract
This study numerically investigates the solid–liquid mixing characteristics in solid–liquid stirred tanks with solid volume fraction as high as 35%, focusing on the effect of impeller and baffle configurations on solid and liquid flow behaviors. Three stirred tanks with different capacities and impellers [...] Read more.
This study numerically investigates the solid–liquid mixing characteristics in solid–liquid stirred tanks with solid volume fraction as high as 35%, focusing on the effect of impeller and baffle configurations on solid and liquid flow behaviors. Three stirred tanks with different capacities and impellers were analyzed to evaluate liquid flow field, solid suspension, and free surface profiles. It has demonstrated superior shear rate uniformity in the multi-impeller systems compared to the single-impeller, attributed to the enhanced fluid circulation. Multi-impeller systems can achieve near-complete off-bottom suspension, while the single-impeller configuration exhibited band-shaped particle accumulation above the impeller. Free surface vortices, significantly deeper in the 6 m3 multi-impeller tank due to high blade tip velocities, were mitigated through the integration of four circumferentially arranged triangular baffles. The existence of baffles can suppress surface turbulence, promote axial flow patterns, and eliminate particle accumulation at the tank bottom, improving shear rate and solid concentration homogeneity. These findings provide a beneficial guideline for the optimization of solid–liquid mixing efficiency the similar flow system or processes. Full article
Show Figures

Figure 1

16 pages, 3644 KiB  
Article
Sensing Protein Structural Transitions with Microfluidic Modulation Infrared Spectroscopy
by Lathan Lucas, Phoebe S. Tsoi, Ananya Nair, Allan Chris M. Ferreon and Josephine C. Ferreon
Biosensors 2025, 15(6), 382; https://doi.org/10.3390/bios15060382 - 13 Jun 2025
Cited by 1 | Viewed by 730
Abstract
Microfluidic modulation spectroscopy-infrared (MMS) offers a label-free, high-sensitivity approach for quantifying changes in protein secondary structures under native solution conditions. MMS subtracts the solvent backgrounds from sample signals by alternately flowing proteins and matched buffers through a microfluidic chamber, yielding clear amide I [...] Read more.
Microfluidic modulation spectroscopy-infrared (MMS) offers a label-free, high-sensitivity approach for quantifying changes in protein secondary structures under native solution conditions. MMS subtracts the solvent backgrounds from sample signals by alternately flowing proteins and matched buffers through a microfluidic chamber, yielding clear amide I spectra from microliter volumes. In this study, we validated MMS on canonical globular proteins, bovine serum albumin, mCherry, and lysozyme, demonstrating accurate detection and resolution of α-helix, β-sheet, and mixed-fold structures. Applying MMS to the intrinsically disordered protein Tau, we detected environment-driven shifts in transient conformers: both the acidic (pH 2.5) and alkaline (pH 10) conditions increased the turn/unordered structures and decreased the α-helix content relative to the neutral pH, highlighting the charge-mediated destabilization of the labile motifs. Hyperphosphorylation of Tau yielded a modest decrease in the α-helical fraction and an increase in the turn/unordered structures. Comparison of monomeric and aggregated hyperphosphorylated Tau revealed a dramatic gain in β-sheet and a loss in turn/unordered structures upon amyloid fibril formation, confirming MMS’s ability to distinguish disordered monomers from amyloids. These findings establish MMS as a robust platform for detecting protein secondary structures and monitoring aggregation pathways in both folded and disordered systems. The sensitive detection of structural transitions offers opportunities for probing misfolding mechanisms and advancing our understanding of aggregation-related diseases. Full article
(This article belongs to the Special Issue Design and Application of Microfluidic Biosensors in Biomedicine)
Show Figures

Figure 1

14 pages, 7215 KiB  
Article
Insight into the Dyeability of Bio-Based Polyamide 56 by Natural Dyes
by Chenchen Sun, Jiaqing Wu and Ying Wang
Chemistry 2025, 7(3), 95; https://doi.org/10.3390/chemistry7030095 - 9 Jun 2025
Viewed by 537
Abstract
Bio-based polyamide 56 (PA56) is a new sustainable material in the polyamide family. In this study, dyes suitable for PA56 fibers were experimentally screened from natural plants rich in pigments. The results showed that the preferred natural dyes for PA56 fabric are turmeric [...] Read more.
Bio-based polyamide 56 (PA56) is a new sustainable material in the polyamide family. In this study, dyes suitable for PA56 fibers were experimentally screened from natural plants rich in pigments. The results showed that the preferred natural dyes for PA56 fabric are turmeric for a yellow hue, madder for a red hue, catechu for a brown hue, and indigo for a blue hue. A green hue was achieved by the two-bath dyeing method using indigo and turmeric, respectively. For a dyability comparison with conventional PA6 and PA66, PA56, PA6, and PA66 fabrics were woven under identical conditions and dyed with turmeric, madder, catechu, and commercial indigo extracts. PA56 fabric exhibited the best dye uptake and the fastest dyeing rate (PA56 > PA6 > PA66). The reason for the excellent dyeability of PA56 fibers was analyzed in terms of differential scanning calorimetry measurement and molecular dynamics simulations. The results showed that the lowest crystallinity was exhibited by PA56 (PA56 < PA6 < PA66); in addition, PA56 displayed the largest fractional free volume (PA56 > PA6 > PA66). These structural characteristics contribute to the excellent dyeability of PA56 fibers. Therefore, PA56 fibers are promising materials, as they are derived from a sustainable source and have superior dyeing properties compared to PA6 and PA66 fibers. Full article
(This article belongs to the Topic Green and Sustainable Chemical Products and Processes)
Show Figures

Figure 1

19 pages, 6726 KiB  
Article
Simulation of Aging and Bonding Properties of the Matrix/Filler Interface in Particle-Reinforced Composites
by Zebin Chen, Xueren Wang, Zijie Zou, Hongfu Qiang and Xiao Fu
Polymers 2025, 17(11), 1557; https://doi.org/10.3390/polym17111557 - 3 Jun 2025
Viewed by 566
Abstract
To investigate the microscopic mechanism of aging-induced “dewetting” at the matrix/filler interface in Nitrate Ester Plasticized Polyether (NEPE) propellant, this study decoupled the aging process into two factors: crosslinking density evolution and nitrate ester decomposition. Molecular dynamics (MD) simulations were employed to construct [...] Read more.
To investigate the microscopic mechanism of aging-induced “dewetting” at the matrix/filler interface in Nitrate Ester Plasticized Polyether (NEPE) propellant, this study decoupled the aging process into two factors: crosslinking density evolution and nitrate ester decomposition. Molecular dynamics (MD) simulations were employed to construct all-component matrix models and matrix/filler interface models with varying aging extents. Key parameters including crosslinking density, mechanical properties, free volume fraction, diffusion coefficients of the matrix, as well as interfacial binding energy and radial distribution function (RDF) were calculated to analyze the effects of both aging factors on “debonding”. The results indicate the following: 1. Increased crosslinking density enhances matrix rigidity, suppresses molecular mobility, and causes interfacial binding energy to initially rise then decline, peaking at 40% crosslinking degree. 2. Progressive nitrate ester decomposition expands free volume within the matrix, improves binder system mobility, and weakens nitrate ester-induced interfacial damage, thereby strengthening hydrogen bonding and van der Waals interactions at the interface. 3. The addition of a small amount of bonding agent improved the interfacial bonding energy but did not change the trend of the bonding energy with aging. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop