Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = fowl adenovirus 4 ON1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2710 KiB  
Article
Protective Efficacy of an Inactivated Recombinant Serotype 4 Fowl Adenovirus Against Duck Adenovirus 3 in Muscovy Duck
by Yun Lin, Wenjie Jiang, Lihua Ma, Jiayu Zhang, Ye Tang, Qiuqi Kan, Haifeng Xiong, Jiayan Wu, Jun Zhang, Yiwen Niu, Wei Zhang, Shengnan Wang, Weikang Wang, Quan Xie, Tuofan Li, Zhimin Wan, Wei Gao, Hongxia Shao, Aijian Qin and Jianqiang Ye
Vaccines 2024, 12(12), 1357; https://doi.org/10.3390/vaccines12121357 - 30 Nov 2024
Viewed by 1076
Abstract
Background: Duck adenovirus 3 (DAdV-3) is an emerging pathogen that has caused severe economic losses to the duck industry in China. Recently, the infection of ducks with serotype 4 fowl adenovirus (FAdV-4) has also been reported in China. Therefore, an efficient bivalent vaccine [...] Read more.
Background: Duck adenovirus 3 (DAdV-3) is an emerging pathogen that has caused severe economic losses to the duck industry in China. Recently, the infection of ducks with serotype 4 fowl adenovirus (FAdV-4) has also been reported in China. Therefore, an efficient bivalent vaccine to control the diseases caused by DAdV-3 and FAdV-4 is extremely urgent. In our previous study, a recombinant FAdV-4 expressing Fiber-2 of DAdV-3 was generated and designated as rFAdV-4-Fiber-2/DAdV-3. Methods: Here, the recombinant virus rFAdV-4-Fiber-2/DAdV-3 was inactivated to serve as a bivalent vaccine, and its immunogenicity and protective efficacy against DAdV-3 were evaluated in Muscovy ducks. Results: The subcutaneous injection of rFAdV-4-Fiber-2/DAdV-3 could efficiently induce antibodies against Fiber-2 of DAdV-3 and neutralize antibodies against FAdV-4. After challenges with DAdV-3, in comparison with the non-immunized ducks, the immunized ducks did not show any bodyweight loss, gross lesions, or histopathologic change. Moreover, viral loads in livers and kidneys from immunized ducks were undetectable, whereas those in non-immunized ducks with challenge were significantly high. Conclusions: All these data demonstrate that the inactivated recombinant virus rFAdV-4-Fiber-2/DAdV-3 has the potential to be an efficient vaccine candidate against both FAdV-4 and DAdV-3, although efficacy for FAdV-4 needs to be confirmed experimentally. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

17 pages, 2379 KiB  
Article
The Knob Domain of the Fiber-1 Protein Affects the Replication of Fowl Adenovirus Serotype 4
by Xiaofeng Li, Zhixun Xie, You Wei, Zhiqin Xie, Aiqiong Wu, Sisi Luo, Liji Xie, Meng Li and Yanfang Zhang
Microorganisms 2024, 12(11), 2265; https://doi.org/10.3390/microorganisms12112265 - 8 Nov 2024
Viewed by 1169
Abstract
Fowl adenovirus serotype 4 (FAdV-4) outbreaks have caused significant economic losses in the Chinese poultry industry since 2015. The relationships among viral structural proteins in infected hosts are relatively unknown. To explore the role of different parts of the fiber-1 protein in FAdV-4-infected [...] Read more.
Fowl adenovirus serotype 4 (FAdV-4) outbreaks have caused significant economic losses in the Chinese poultry industry since 2015. The relationships among viral structural proteins in infected hosts are relatively unknown. To explore the role of different parts of the fiber-1 protein in FAdV-4-infected hosts, we truncated fiber-1 into fiber-1-Δ1 (73–205 aa) and fiber-1-Δ2 (211–412 aa), constructed pEF1α-HA-fiber-1-Δ1 and pEF1α-HA-fiber-1-Δ2 and then transfected them into leghorn male hepatocyte (LMH) cells. After FAdV-4 infection, the roles of fiber-1-Δ1 and fiber-1-Δ2 in the replication of FAdV-4 were investigated, and transcriptome sequencing was performed. The results showed that the fiber-1-Δ1 and fiber-1-Δ2 proteins were the shaft and knob domains, respectively, of fiber-1, with molecular weights of 21.4 kDa and 29.6 kDa, respectively. The fiber-1-Δ1 and fiber-1-Δ2 proteins were mainly localized in the cytoplasm of LMH cells. Fiber-1-Δ2 has a greater ability to inhibit FAdV-4 replication than fiber-1-Δ1, and 933 differentially expressed genes (DEGs) were detected between the fiber-1-Δ1 and fiber-1-Δ2 groups. Functional analysis revealed these DEGs in a variety of biological functions and pathways, such as the phosphoinositide 3-kinase–protein kinase b (PI3K–Akt) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, cytokine–cytokine receptor interactions, Toll-like receptors (TLRs), the Janus tyrosine kinase–signal transducer and activator of transcription (Jak–STAT) signaling pathway, the nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) signaling pathway, and other innate immune pathways. The mRNA expression levels of type I interferons (IFN-α and INF-β) and proinflammatory cytokines (IL-1β, IL-6 and IL-8) were significantly increased in cells overexpressing the fiber-1-Δ2 protein. These results demonstrate the role of the knob domain of the fiber-1 (fiber-1-Δ2) protein in FAdV-4 infection and provide a theoretical basis for analyzing the function of the fiber-1 protein of FAdV-4. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

20 pages, 9633 KiB  
Article
Redirect Tropism of Fowl Adenovirus 4 Vector by Modifying Fiber2 with Variable Domain of Heavy-Chain Antibody
by Yongjin Wang, Xiaohui Zou, Xiaojuan Guo, Zhichao Zhang, Min Wang, Tao Hung and Zhuozhuang Lu
Genes 2024, 15(4), 467; https://doi.org/10.3390/genes15040467 - 8 Apr 2024
Viewed by 1621
Abstract
The variable domain of a heavy-chain antibody (VHH) has the potential to be used to redirect the cell tropism of adenoviral vectors. Here, we attempted to establish platforms to simplify the screening of VHHs for their specific targeting function when being incorporated into [...] Read more.
The variable domain of a heavy-chain antibody (VHH) has the potential to be used to redirect the cell tropism of adenoviral vectors. Here, we attempted to establish platforms to simplify the screening of VHHs for their specific targeting function when being incorporated into the fiber of adenovirus. Both fowl adenovirus 4 (FAdV-4) and simian adenovirus 1 (SAdV-1) have two types of fiber, one of which is dispensable for virus propagation and is a proper site for VHH display. An intermediate plasmid, pMD-FAV4Fs, was constructed as the start plasmid for FAdV-4 fiber2 modification. Foldon from phage T4 fibritin, a trigger for trimerization, was employed to bridge the tail/shaft domain of fiber2 and VHHs against human CD16A, a key membrane marker of natural killer (NK) cells. Through one step of restriction-assembly, the modified fiber2 was transferred to the adenoviral plasmid, which was linearized and transfected to packaging cells. Five FAdV-4 viruses carrying the GFP gene were finally rescued and amplified, with three VHHs being displayed. One recombinant virus, FAdV4FC21-EG, could hardly transduce human 293 or Jurkat cells. In contrast, when it was used at a multiplicity of infection of 1000 viral particles per cell, the transduction efficiency reached 51% or 34% for 293 or Jurkat cells expressing exogenous CD16A. Such a strategy of fiber modification was transplanted to the SAdV-1 vector to construct SAdV1FC28H-EG, which moderately transduced primary human NK cells while the parental virus transduced none. Collectively, we reformed the strategy of integrating VHH to fiber and established novel platforms for screening VHHs to construct adenoviral vectors with a specific tropism. Full article
(This article belongs to the Section Viral Genomics)
Show Figures

Figure 1

13 pages, 2742 KiB  
Article
The Development of a Novel Fiber-2 Subunit Vaccine against Fowl Adenovirus Serotype 4 Formulated with Oil Adjuvants
by Wenjian Liu, Meng Liu, Shuaiwen Wang, Zhihui Tang, Jiwen Liu, Suquan Song and Liping Yan
Vaccines 2024, 12(3), 263; https://doi.org/10.3390/vaccines12030263 - 1 Mar 2024
Cited by 4 | Viewed by 2268
Abstract
Hepatitis-hydropericardium syndrome (HHS), caused by fowl adenovirus serotype 4 (FAdV-4), has been widely spread across China, resulting in great financial losses in the poultry industry. Therefore, efficient vaccines against this disease urgently need to be developed. In our study, the fiber-2 and penton [...] Read more.
Hepatitis-hydropericardium syndrome (HHS), caused by fowl adenovirus serotype 4 (FAdV-4), has been widely spread across China, resulting in great financial losses in the poultry industry. Therefore, efficient vaccines against this disease urgently need to be developed. In our study, the fiber-2 and penton base proteins derived from the FAdV-4 JS strain were expressed in a prokaryotic system (E. coli) in a soluble form. Then, the efficacy of the two recombinant proteins formulated with cheap and widely used adjuvants (Marcol™ 52 white oil) were respectively tested, and the minimum immune doses and safety of the above proteins were also determined. It was indicated that the fiber-2 (20 µg/bird, 200 µg/bird) and penton base (200 µg/bird) could provide complete protection against the highly pathogenic FAdV-4 and suppress its replication and shedding. Unfortunately, only the fiber-2 protein could induce complete protection (10/10) at a low dose (10 µg/bird). In addition, we confirmed that the fiber-2 subunit vaccine formulated with oil adjuvants was safe for vaccinated chickens. Conclusively, all of our results suggest that we successfully prepared an efficient and cheap fiber-2 subunit vaccine with few side effects. Full article
(This article belongs to the Special Issue Vaccines for Chicken)
Show Figures

Figure 1

13 pages, 5571 KiB  
Article
Chicken Interferon-Alpha and -Lambda Exhibit Antiviral Effects against Fowl Adenovirus Serotype 4 in Leghorn Male Hepatocellular Cells
by Jinyu Lai, Xingchen He, Rongjie Zhang, Limei Zhang, Libin Chen, Fengping He, Lei Li, Liangyu Yang, Tao Ren and Bin Xiang
Int. J. Mol. Sci. 2024, 25(3), 1681; https://doi.org/10.3390/ijms25031681 - 30 Jan 2024
Cited by 5 | Viewed by 2133
Abstract
Hydropericardium hepatitis syndrome (HHS) is primarily caused by fowl adenovirus serotype 4 (FAdV-4), causing high mortality in chickens. Although vaccination strategies against FAdV-4 have been adopted, HHS still occurs sporadically. Furthermore, no effective drugs are available for controlling FAdV-4 infection. However, type I [...] Read more.
Hydropericardium hepatitis syndrome (HHS) is primarily caused by fowl adenovirus serotype 4 (FAdV-4), causing high mortality in chickens. Although vaccination strategies against FAdV-4 have been adopted, HHS still occurs sporadically. Furthermore, no effective drugs are available for controlling FAdV-4 infection. However, type I and III interferon (IFN) are crucial therapeutic agents against viral infection. The following experiments were conducted to investigate the inhibitory effect of chicken IFN against FadV-4. We expressed recombinant chicken type I IFN-α (ChIFN-α) and type III IFN-λ (ChIFN-λ) in Escherichia coli and systemically investigated their antiviral activity against FAdV-4 infection in Leghorn male hepatocellular (LMH) cells. ChIFN-α and ChIFN-λ dose dependently inhibited FAdV-4 replication in LMH cells. Compared with ChIFN-λ, ChIFN-α more significantly inhibited viral genome transcription but less significantly suppressed FAdV-4 release. ChIFN-α- and ChIFN-λ-induced IFN-stimulated gene (ISG) expression, such as PKR, ZAP, IRF7, MX1, Viperin, IFIT5, OASL, and IFI6, in LMH cells; however, ChIFN-α induced a stronger expression level than ChIFN-λ. Thus, our data revealed that ChIFN-α and ChIFN-λ might trigger different ISG expression levels, inhibiting FAdV-4 replication via different steps of the FAdV-4 lifecycle, which furthers the potential applications of IFN antiviral drugs in chickens. Full article
Show Figures

Figure 1

14 pages, 2263 KiB  
Article
Prevalence and Molecular Characteristics of FAdV-4 from Indigenous Chicken Breeds in Yunnan Province, Southwestern China
by Jinyu Lai, Liangyu Yang, Fashun Chen, Xingchen He, Rongjie Zhang, Yong Zhao, Gan Gao, Weiwu Mu, Xi Chen, Shiyu Luo, Tao Ren and Bin Xiang
Microorganisms 2023, 11(11), 2631; https://doi.org/10.3390/microorganisms11112631 - 26 Oct 2023
Cited by 4 | Viewed by 1900
Abstract
Fowl adenovirus-induced hepatitis–pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular [...] Read more.
Fowl adenovirus-induced hepatitis–pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular epidemiology of fowl adenovirus serotype 4 (FAdV-4) has been well studied in commercial broiler and layer chickens, the prevalence and genetic characteristics of FAdV-4 in indigenous chickens remain largely unknown. In this study, samples were collected from six indigenous chicken breeds in Yunnan province, China. FAdV-positive samples were identified in five of the six indigenous chicken populations via PCR and 10 isolates were obtained. All FAdVs belonged to serotype FAdV-4 and species FAdV-C. The hexon, fiber, and penton gene sequence comparison analysis demonstrated that the prevalence of FAdV-4 isolates in these chickens might have originated from other provinces that exported chicks and poultry products to Yunnan province. Moreover, several distinct amino acid mutations were firstly identified in the major structural proteins. Our findings highlighted the need to decrease inter-regional movements of live poultry to protect indigenous chicken genetic resources and that the immune traits of these indigenous chickens might result in new mutations of FAdV-4 strains. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases)
Show Figures

Figure 1

12 pages, 2947 KiB  
Article
Rapid Construction of an Infectious Clone of Fowl Adenovirus Serotype 4 Isolate
by Minzhi Gong, Yating Wang, Shijia Liu, Boshuo Li, Enqi Du and Yupeng Gao
Viruses 2023, 15(8), 1657; https://doi.org/10.3390/v15081657 - 29 Jul 2023
Cited by 1 | Viewed by 2640
Abstract
Adenovirus vectors possess a good safety profile, an extensive genome, a range of host cells, high viral yield, and the ability to elicit broad humoral and cellular immune responses. Adenovirus vectors are widely used in infectious disease research for future vaccine development and [...] Read more.
Adenovirus vectors possess a good safety profile, an extensive genome, a range of host cells, high viral yield, and the ability to elicit broad humoral and cellular immune responses. Adenovirus vectors are widely used in infectious disease research for future vaccine development and gene therapy. In this study, we obtained a fowl adenovirus serotype 4 (FAdV-4) isolate from sick chickens with hepatitis–hydropericardium syndrome (HHS) and conducted animal regression text to clarify biological pathology. We amplified the transfer vector and extracted viral genomic DNA from infected LMH cells, then recombined the mixtures via the Gibson assembly method in vitro and electroporated them into EZ10 competent cells to construct the FAdV-4 infectious clone. The infectious clones were successfully rescued in LMH cells within 15 days of transfection. The typical cytopathic effect (CPE) and propagation titer of FAdV-4 infectious clones were also similar to those for wild-type FAdV-4. To further construct the single-cycle adenovirus (SC-Ad) vector, we constructed SC-Ad vectors by deleting the gene for IIIa capsid cement protein. The FAdV4 infectious clone vector was introduced into the ccdB cm expression cassette to replace the IIIa gene using a λ-red homologous recombination technique, and then the ccdB cm expression cassette was excised by PmeI digestion and self-ligation to obtain the resulting plasmids as SC-Ad vectors. Full article
(This article belongs to the Special Issue Advances in Veterinary Virology: Volume II)
Show Figures

Figure 1

13 pages, 6907 KiB  
Article
Genomic and Pathologic Characterization of the First FAdV-C Serotype 4 Isolate from Black-Necked Crane
by Xiaoyan Xue, Qinhong Yang, Ming J. Wu, Zhenxing Zhang, Jianling Song, Wei Wang, Jia Yang, Jia Ji, Yongxian Zhang, Hongyang Dai, Hongbin Yin and Suhua Li
Viruses 2023, 15(8), 1653; https://doi.org/10.3390/v15081653 - 29 Jul 2023
Cited by 6 | Viewed by 1911
Abstract
Fowl adenoviruses (FAdVs) are distributed worldwide in poultry and incriminated as the etiological agents for several health problems in fowls, and are capable of crossing species barriers between domestic and wild fowls. An FAdV strain was, for the first time, isolated from black-necked [...] Read more.
Fowl adenoviruses (FAdVs) are distributed worldwide in poultry and incriminated as the etiological agents for several health problems in fowls, and are capable of crossing species barriers between domestic and wild fowls. An FAdV strain was, for the first time, isolated from black-necked crane in this study, and was designated as serotype 4 Fowl aviadenovirus C (abbreviated as BNC2021) according to the phylogenetic analysis of its DNA polymerase and hexon gene. The viral genomic sequence analysis demonstrated that the isolate possessed the ORF deletions that are present in FAdV4 strains circulating in poultry fowls in China and the amino acid mutations associated with viral pathogenicity in the hexon and fiber 2 proteins. A viral challenge experiment with mallard ducks demonstrated systemic viral infection and horizontal transmission. BNC2021 induced the typical clinical signs of hepatitis–hydropericardium syndrome (HHS) with swelling and inflammation in multiple organs and showed significant viral replication in all eight organs tested in the virus-inoculated ducks and their contactees at 6 dpi. The findings highlight the importance of surveillance of FAdVs in wild birds. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

18 pages, 2824 KiB  
Article
Design and Identification of a Novel Antiviral Affinity Peptide against Fowl Adenovirus Serotype 4 (FAdV-4) by Targeting Fiber2 Protein
by Xiao Chen, Qiang Wei, Fusheng Si, Fangyu Wang, Qingxia Lu, Zhenhua Guo, Yongxiao Chai, Rongfang Zhu, Guangxu Xing, Qianyue Jin and Gaiping Zhang
Viruses 2023, 15(4), 821; https://doi.org/10.3390/v15040821 - 23 Mar 2023
Cited by 5 | Viewed by 2446
Abstract
Outbreaks of hydropericardium hepatitis syndrome caused by fowl adenovirus serotype 4 (FAdV-4) with a novel genotype have been reported in China since 2015, with significant economic losses to the poultry industry. Fiber2 is one of the important structural proteins on FAdV-4 virions. In [...] Read more.
Outbreaks of hydropericardium hepatitis syndrome caused by fowl adenovirus serotype 4 (FAdV-4) with a novel genotype have been reported in China since 2015, with significant economic losses to the poultry industry. Fiber2 is one of the important structural proteins on FAdV-4 virions. In this study, the C-terminal knob domain of the FAdV-4 Fiber2 protein was expressed and purified, and its trimer structure (PDB ID: 7W83) was determined for the first time. A series of affinity peptides targeting the knob domain of the Fiber2 protein were designed and synthesized on the basis of the crystal structure using computer virtual screening technology. A total of eight peptides were screened using an immunoperoxidase monolayer assay and RT-qPCR, and they exhibited strong binding affinities to the knob domain of the FAdV-4 Fiber2 protein in a surface plasmon resonance assay. Treatment with peptide number 15 (P15; WWHEKE) at different concentrations (10, 25, and 50 μM) significantly reduced the expression level of the Fiber2 protein and the viral titer during FAdV-4 infection. P15 was found to be an optimal peptide with antiviral activity against FAdV-4 in vitro with no cytotoxic effect on LMH cells up to 200 μM. This study led to the identification of a class of affinity peptides designed using computer virtual screening technology that targeted the knob domain of the FAdV-4 Fiber2 protein and may be developed as a novel potential and effective antiviral strategy in the prevention and control of FAdV-4. Full article
(This article belongs to the Special Issue Veterinary Virology and Disease Control in China 2023)
Show Figures

Figure 1

27 pages, 5232 KiB  
Article
Analysis of Fowl Adenovirus 4 Transcriptome by De Novo ORF Prediction Based on Corrected Nanopore Full-Length cDNA Sequencing Data
by Zhuozhuang Lu, Yongjin Wang, Xiaohui Zou and Tao Hung
Viruses 2023, 15(2), 529; https://doi.org/10.3390/v15020529 - 14 Feb 2023
Cited by 2 | Viewed by 2713
Abstract
The transcriptome of fowl adenovirus has not been comprehensively revealed. Here, we attempted to analyze the fowl adenovirus 4 (FAdV-4) transcriptome by deep sequencing. RNA samples were extracted from chicken LMH cells at 12, 18 or 26 h post-FAdV-4 infection, and subjected to [...] Read more.
The transcriptome of fowl adenovirus has not been comprehensively revealed. Here, we attempted to analyze the fowl adenovirus 4 (FAdV-4) transcriptome by deep sequencing. RNA samples were extracted from chicken LMH cells at 12, 18 or 26 h post-FAdV-4 infection, and subjected to Illumina strand-specific RNA-seq or nanopore full-length PCR-cDNA sequencing. After removing the reads of host cells, the data of FAdV-4 nanopore full-length cDNAs (transcripts) were corrected with reads from the Illumina RNA-seq, mapped to the viral genome and then used to predict viral open reading frames (ORFs). Other than 42 known ORFs, 39 novel ORFs were annotated to the FAdV-4 genome. Different from human adenovirus 5, one FAdV-4 ORF was often encoded by several transcripts, and more FAdV-4 ORFs were located on two exons. With these data, 18 major transcription start sites and 15 major transcription termination sites were defined, implying 18 viral promoters and 15 polyadenylation signals. The temporal cascade of viral gene transcription was observed in FAdV-4-infected cells, with six promoters possessing considerable activity in the early phase. Unexpectedly, four promoters, instead of one major late promoter, were engaged in the transcription of the viral genus-common genes on the forward strand. The clarification of the FAdV-4 transcriptome laid a solid foundation for the study of viral gene function, virulence and virus evolution, and it would help construct FAdV-4 as a gene transfer vehicle. The strategy of de novo ORF prediction could be used to parse the transcriptome of other novel adenoviruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 2240 KiB  
Article
CELO Fiber1 Knob Is a Promising Candidate to Modify the Tropism of Adenoviral Vectors
by Yangyang Sun, Xiaohui Zou, Xiaojuan Guo, Chunlei Yang, Tao Hung and Zhuozhuang Lu
Genes 2022, 13(12), 2316; https://doi.org/10.3390/genes13122316 - 8 Dec 2022
Cited by 3 | Viewed by 1974
Abstract
Fowl adenovirus 4 (FAdV-4) has the potential to be constructed as a gene transfer vector for human gene therapy or vaccine development to avoid the pre-existing immunity to human adenoviruses. To enhance the transduction of FAdV-4 to human cells, CELO fiber1 knob (CF1K) [...] Read more.
Fowl adenovirus 4 (FAdV-4) has the potential to be constructed as a gene transfer vector for human gene therapy or vaccine development to avoid the pre-existing immunity to human adenoviruses. To enhance the transduction of FAdV-4 to human cells, CELO fiber1 knob (CF1K) was chosen to replace the fiber2 knob in FAdV-4 to generate recombinant virus F2CF1K-CG. The original FAdV4-CG virus transduced 4% human 293 or 1% HEp-2 cells at the multiplicity of infection of 1000 viral particles per cell. In contrast, F2CF1K-CG could transduce 98% 293 or 60% HEp-2 cells under the same conditions. Prokaryotically expressed CF1K protein blocked 50% transduction of F2CF1K-CG to 293 cells at a concentration of 1.3 µg/mL while it only slightly inhibited the infection of human adenovirus 5 (HAdV-5), suggesting CF1K could bind to human cells in a manner different from HAdV-5 fiber. The incorporation of CF1K had no negative effect on the growth of FAdV-4 in the packaging cells. In addition, CF1K-pseudotyped HAdV-41 could transduce HEp-2 and A549 cells more efficiently. These data indicated that CF1K had the priority to be considered when there is a need to modify adenovirus tropism. Full article
Show Figures

Figure 1

19 pages, 4015 KiB  
Article
Gga-miR-30c-5p Enhances Apoptosis in Fowl Adenovirus Serotype 4-Infected Leghorn Male Hepatocellular Cells and Facilitates Viral Replication through Myeloid Cell Leukemia-1
by Areayi Haiyilati, Linyi Zhou, Jiaxin Li, Wei Li, Li Gao, Hong Cao, Yongqiang Wang, Xiaoqi Li and Shijun J. Zheng
Viruses 2022, 14(5), 990; https://doi.org/10.3390/v14050990 - 7 May 2022
Cited by 7 | Viewed by 2407
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the primary causative agent responsible for the hepatitis-hydropericardium syndrome (HHS) in chickens, leading to considerable economic losses to stakeholders. Although the pathogenesis of FAdV-4 infection has gained attention, the underlying molecular mechanism is still unknown. Here, we [...] Read more.
Fowl adenovirus serotype 4 (FAdV-4) is the primary causative agent responsible for the hepatitis-hydropericardium syndrome (HHS) in chickens, leading to considerable economic losses to stakeholders. Although the pathogenesis of FAdV-4 infection has gained attention, the underlying molecular mechanism is still unknown. Here, we showed that the ectopic expression of gga-miR-30c-5p in leghorn male hepatocellular (LMH) cells enhanced apoptosis in FAdV-4-infected LMH cells by directly targeting the myeloid cell leukemia-1 (Mcl-1), facilitating viral replication. On the contrary, the inhibition of endogenous gga-miR-30c-5p markedly suppressed apoptosis and viral replication in LMH cells. Importantly, the overexpression of Mcl-1 inhibited gga-miR-30c-5p or FAdV-4-induced apoptosis in LMH cells, reducing FAdV-4 replication, while the knockdown of Mcl-1 by RNAi enhanced apoptosis in LMH cells. Furthermore, transfection of LMH cells with gga-miR-30c-5p mimics enhanced FAdV-4-induced apoptosis associated with increased cytochrome c release and caspase-3 activation. Thus, gga-miR-30c-5p enhances FAdV-4-induced apoptosis by directly targeting Mcl-1, a cellular anti-apoptotic protein, facilitating FAdV-4 replication in host cells. These findings could help to unravel the mechanism of how a host responds against FAdV-4 infection at an RNA level. Full article
(This article belongs to the Special Issue State-of-the-Art Avian Viruses Research in Asia)
Show Figures

Figure 1

12 pages, 3978 KiB  
Article
Pathology and Molecular Epidemiology of Fowl Adenovirus Serotype 4 Outbreaks in Broiler Chicken in Abu Dhabi Emirate, UAE
by Hassan Zackaria Ali Ishag, Abdelnasir Mohammed Adam Terab, El Tigani Ahmed El Tigani-Asil, Oum Keltoum Bensalah, Nasereldien Altaib Hussein Khalil, Abdelmalik Ibrahim Khalafalla, Zulaikha Mohamed Abdel Hameed Al Hammadi, Asma Abdi Mohamed Shah and Salama Suhail Mohammed Al Muhairi
Vet. Sci. 2022, 9(4), 154; https://doi.org/10.3390/vetsci9040154 - 23 Mar 2022
Cited by 16 | Viewed by 5287
Abstract
Background: Fowl adenovirus serotype 4 (FAdV-4), causing inclusion body hepatitis (IBH) and hydropericardium hepatitis syndrome (HPS), is responsible for the significant economic losses in poultry industry worldwide. This study describes FAdV disease and molecular characteristics of the virus as the first report in [...] Read more.
Background: Fowl adenovirus serotype 4 (FAdV-4), causing inclusion body hepatitis (IBH) and hydropericardium hepatitis syndrome (HPS), is responsible for the significant economic losses in poultry industry worldwide. This study describes FAdV disease and molecular characteristics of the virus as the first report in UAE. Methodology: Clinical, necropsy, histopathology, qPCR and phylogenetic analysis of hexon gene were used to diagnose and characterize the virus. Results: The age of the infected broiler chicken was 2–4 weeks. The morbidity and mortality rates ranged between 50 and 100% and 44 and 100%, respectively. Clinically, sudden onset, diarrhea, anemia and general weakness were recorded. At necropsy, acute necrotic hepatitis, with swollen, yellowish discoloration, enlarged and friable liver; hydropericarditis with hydropericardium effusions; and enlarged mottled spleen were observed. Histopathology examination revealed degeneration and necrosis, lymphocytic infiltration and inclusion bodies. The qPCR analysis detected the virus in all samples tested. Hexon gene sequence analysis identified FAdV serotype 4, species C as the major cause of FAdV infections in UAE in 2020, and this strain was closely related to FAdV-4 circulating in Saudi Arabia, Pakistan, Nepal and China. Conclusion: The serotype 4, species C, was the common FAdV strain causing IBH and HPS episodes in the region. This result may help design effective vaccination programs that rely on field serotypes. Full article
(This article belongs to the Special Issue Trends in Poultry Diseases)
Show Figures

Figure 1

11 pages, 2404 KiB  
Article
A Novel Recombinant FAdV-4 Virus with Fiber of FAdV-8b Provides Efficient Protection against Both FAdV-4 and FAdV-8b
by Hao Lu, Quan Xie, Wei Zhang, Jianjun Zhang, Weikang Wang, Mingjun Lian, Zhehong Zhao, Dan Ren, Songhua Xie, Yun Lin, Tuofan Li, Yaru Mu, Zhimin Wan, Hongxia Shao, Aijian Qin and Jianqiang Ye
Viruses 2022, 14(2), 376; https://doi.org/10.3390/v14020376 - 11 Feb 2022
Cited by 24 | Viewed by 2854
Abstract
Since 2015, the outbreaks of hydropericardium-hepatitis syndrome (HHS) and inclusion body hepatitis (IBH) caused by the highly pathogenic serotype 4 fowl adenovirus (FAdV-4) and serotype 8 fowl adenovirus (FAdV-8), respectively, have caused huge economic losses to the poultry industry. Although several vaccines have [...] Read more.
Since 2015, the outbreaks of hydropericardium-hepatitis syndrome (HHS) and inclusion body hepatitis (IBH) caused by the highly pathogenic serotype 4 fowl adenovirus (FAdV-4) and serotype 8 fowl adenovirus (FAdV-8), respectively, have caused huge economic losses to the poultry industry. Although several vaccines have been developed to control HHS or IBH, a recombinant genetic engineering vaccine against both FAdV-4 and FAdV-8 has not been reported. In this study, recombinant FAdV-4 expressing the fiber of FAdV-8b, designated as FA4-F8b, expressing fiber of FAdV-8b was generated by the CRISPR-Cas9 and homologous recombinant techniques. Infection studies in vitro and in vivo revealed that the FA4-F8b replicated efficiently in LMH cells and was also highly pathogenic to 2-week-old SPF chickens. Moreover, the inoculation of inactivated the FA4-F8b in chickens could not only induce highly neutralizing antibodies, but also provide efficient protection against both FAdV-4 and FAdV-8b. All these demonstrate that the inactivated recombinant FA4-F8b generated here can act as a vaccine candidate to control HHS and IBH, and FAdV-4 can be an efficient vaccine vector to deliver foreign antigens. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 2365 KiB  
Article
High Phenotypic Variation between an In Vitro-Passaged Fowl Adenovirus Serotype 1 (FAdV-1) and Its Virulent Progenitor Strain despite Almost Complete Sequence Identity of the Whole Genomes
by Beatrice Grafl, Anna Schachner and Michael Hess
Viruses 2022, 14(2), 358; https://doi.org/10.3390/v14020358 - 9 Feb 2022
Cited by 2 | Viewed by 2419
Abstract
Adenoviral gizzard erosion is an emerging disease with negative impact on health and production of chickens. In this study, we compared in vitro and in vivo characteristics of a fowl adenovirus serotype 1 (FAdV-1), attenuated by 53 consecutive passages in primary chicken embryo [...] Read more.
Adenoviral gizzard erosion is an emerging disease with negative impact on health and production of chickens. In this study, we compared in vitro and in vivo characteristics of a fowl adenovirus serotype 1 (FAdV-1), attenuated by 53 consecutive passages in primary chicken embryo liver (CEL) cell cultures (11/7127-AT), with the virulent strain (11/7127-VT). Whole genome analysis revealed near-complete sequence identity between the strains. However, a length polymorphism in a non-coding adenine repeat sequence (11/7127-AT: 11 instead of 9) immediately downstream of the hexon open reading frame was revealed. One-step growth kinetics showed delayed multiplication of 11/7127-AT together with significantly lower titers in cell culture (up to 4 log10 difference), indicating reduced replication efficiency in vitro. In vivo pathogenicity and immunogenicity were determined in day-old specific pathogen-free layer chicks inoculated orally with the respective viruses. In contrast to birds infected with 11/7127-VT, birds infected with 11/7127-AT did not exhibit body weight loss or severe pathological lesions in the gizzard. Virus detection rates, viral load in organs and virus excretion were significantly lower in birds inoculated with 11/7127-AT. Throughout the experimental period, these birds did not develop measurable neutralizing antibodies, prevalent in birds in response to 11/7127-VT infection. Differences in pathogenicity between the virulent FAdV-1 and the attenuated strain could not be correlated to prominently discriminate genomic features. We conclude that differential in vitro growth profiles indicate that attenuation is linked to modulation of viral replication during interaction of the virus with the host cells. Thus, hosts would be unable to prevent the rapid replication of virulent FAdV leading to severe tissue damage, a phenomenon broadly applicable to further FAdV serotypes, considering the substantial intra-serotype virulence differences of FAdVs and the variation of diseases. Full article
(This article belongs to the Special Issue Avian Adenovirus Infections)
Show Figures

Figure 1

Back to TopTop