Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = former mining site

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1111 KB  
Article
Estimating Mercury and Arsenic Release from the La Soterraña Abandoned Mine Waste Dump (Asturias, Spain): Source-Term Reconstruction Using High-Accuracy UAV Surveys and Historical Topographic Data
by Lorena Salgado, Arturo Colina, Alejandro Vega, Luis M. Lara, Eduardo Rodríguez-Valdés, José R. Gallego, Elías Afif Khouri and Rubén Forján
Land 2025, 14(10), 2016; https://doi.org/10.3390/land14102016 - 8 Oct 2025
Viewed by 494
Abstract
The waste dump from the abandoned La Soterraña mine, a former mercury extraction site, contains high concentrations of mercury (Hg) and arsenic (As), which pose a significant environmental risk due to direct exposure to the environment. Given the site’s topography and slope, surface [...] Read more.
The waste dump from the abandoned La Soterraña mine, a former mercury extraction site, contains high concentrations of mercury (Hg) and arsenic (As), which pose a significant environmental risk due to direct exposure to the environment. Given the site’s topography and slope, surface runoff has been identified as the primary mechanism for the dispersal of these toxic elements into nearby watercourses. This study quantifies the amount of Hg and As released into fluvial systems through surface runoff from the waste dump. Historical topographic data, Airborne Laser Exploration Survey public data from the National Plan for Aerial Orthophotographs (1st PNOA-LiDAR) of the Spanish Ministry of Transport, Mobility and Urban Agenda, and high-precision photogrammetric drone surveys were utilized, with centimeter-level accuracy achieved using airborne GNSS RTK positioning systems on the drone. The methodology yields reliable results when comparing surfaces generated from topographic data collected with consistent methodologies and standards. Analysis indicates an environmental release exceeding 1000 kg of mercury (Hg) and 12,000 kg of arsenic (As) between 2019 and 2023, based on high spatial resolution data (GSD = 8 cm). These findings highlight a sustained temporal contribution of chemical contaminants, which imposes serious environmental and biological health risks due to persistent exposure to toxic elements. Full article
Show Figures

Figure 1

28 pages, 3424 KB  
Article
Evaluation of Long-Term Environmental Impact and Radiological Risks at a Former Thorium and Rare Earth Site in North-Eastern Kazakhstan
by Zhanat Idrisheva, Iwona Ostolska, Ewa Skwarek, Gulzhan Daumova, Małgorzata Wiśniewska, Togzhan Toktaganov and Yernat Kozhakhmetov
Sustainability 2025, 17(19), 8569; https://doi.org/10.3390/su17198569 - 24 Sep 2025
Viewed by 984
Abstract
Kazakhstan holds the global leadership position in natural uranium mining. Nonetheless, the extraction and processing of radioactive ores has the potential to induce instances of radiological contamination. This study aimed to evaluate the radiological soil contamination at a former monazite, tin, and radioactive [...] Read more.
Kazakhstan holds the global leadership position in natural uranium mining. Nonetheless, the extraction and processing of radioactive ores has the potential to induce instances of radiological contamination. This study aimed to evaluate the radiological soil contamination at a former monazite, tin, and radioactive ore processing facility located in Ust-Kamenogorsk city. Pedestrian gamma–ray measurements revealed dose rates up to 1.00 µSv/h, significantly exceeding the natural background (0.16–0.18 µSv/h). The analysis of the 28 soil profiles demonstrated that deeper soil layers (below 60 cm) were significantly contaminated with radionuclides constituting production waste. Furthermore, the total activity in the superficial soil layer is in the range of 583–5275 Bq/kg (alpha emitters) and 641–1749 Bq/kg (beta radionuclides). The maximum of total radioactivity in the samples collected at the 80–100 cm layer was at the level of 22,482 Bq/kg (α-emitters) and 6845 Bq/kg for gross beta radiation. In consideration of the site’s proximity to public buildings, the calculated radiological hazard indices were calculated, revealing the potential danger for human health. The elevated excess lifetime cancer risk and annual gonadal dose equivalent obtained for the topsoil layer indicate a high level of radiological risk to the local population. The obtained results emphasise the necessity of developing rehabilitation strategies and long-term monitoring of the contaminated site, which is consistent with the global objectives of sustainable development in the field of environmental protection and public health. Full article
Show Figures

Figure 1

39 pages, 11616 KB  
Article
Integrating Advanced Technologies for Environmental Valuation in Legacy Mining Sites: The Role of Digital Twins at Lavrion Technological and Cultural Park
by Miguel Ángel Maté-González, Cristina Sáez Blázquez, Sergio Alejandro Camargo Vargas, Fernando Peral Fernández, Daniel Herranz Herranz, Enrique González González, Vasileios Protonotarios and Diego González-Aguilera
Sensors 2025, 25(19), 5941; https://doi.org/10.3390/s25195941 - 23 Sep 2025
Viewed by 816
Abstract
The rehabilitation of mining environments poses significant challenges due to the contamination risks associated with hazardous materials, such as arsenic and other chemical products. This research study presents the development of a Digital Twin for the Lavrion Technological and Cultural Park (LTCP), a [...] Read more.
The rehabilitation of mining environments poses significant challenges due to the contamination risks associated with hazardous materials, such as arsenic and other chemical products. This research study presents the development of a Digital Twin for the Lavrion Technological and Cultural Park (LTCP), a former mining and metalworking site that is currently undergoing environmental restoration. The Digital Twin integrates advanced technologies, including real-time sensor monitoring, geophysical methods, and 3D modeling, to provide a comprehensive tool for assessing and managing the environmental conditions of the site. Key elements of the project include the monitoring of hazardous-waste storage, the evaluation of contaminated soils, and the assessment of the Park’s infrastructure, which includes both deteriorating buildings and successfully restored structures. Real-time sensor data are collected to track critical parameters such as conductivity, temperature, salinity, and levels of pollutants, enabling proactive environmental management and mitigation of potential risks. The integration of these technologies enables continuous monitoring, historical data analysis, and improved decision making in the ongoing efforts to preserve the site’s ecological integrity. This study demonstrates the potential of using Digital Twins as an innovative solution for the sustainable management and valorization of mining heritage sites, offering insights into both technological applications and environmental conservation practices. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Graphical abstract

15 pages, 26209 KB  
Article
Quality of Constructed Technogenic Soils in Urban Gardens Located on a Reclaimed Clay Pit
by Dariusz Gruszka, Katarzyna Szopka and Cezary Kabala
Land 2025, 14(8), 1613; https://doi.org/10.3390/land14081613 - 8 Aug 2025
Viewed by 1039
Abstract
Urban gardening plays diverse social, cultural and economic roles; its further development appears to be worthwhile, provided that soil contamination does not compromise ecosystem services. This study was conducted at a complex of urban gardens in Wroclaw (Poland) where topsoil screening indicated significant [...] Read more.
Urban gardening plays diverse social, cultural and economic roles; its further development appears to be worthwhile, provided that soil contamination does not compromise ecosystem services. This study was conducted at a complex of urban gardens in Wroclaw (Poland) where topsoil screening indicated significant spatial differentiation of trace elements content, presumably related to the history of the site. Urbic Technosols cover the reclaimed section of the gardens, where industrial and urban waste materials, such as ash, slag, construction and demolition, and household waste, were used to fill former clay and sand mines. Although the topsoil layers, comprised of transported external soil, exhibited beneficial physicochemical properties and high fertility, they were seriously contaminated with trace elements (up to 1700, 920, 740, 5.1, 7.4, and 5.1 mg kg−1 zinc, lead, copper, cadmium, mercury, and arsenic, respectively). The trace elements were likely transferred from technogenic materials used for mine infilling, which now underlie the thin humus layers of the garden soils. The results suggest that the quality of soils in urban gardens located at reclaimed post-mining sites, while seemingly beneficial for horticulture based on physicochemical soil properties and fertility indices, can be seriously and permanently compromised by soil contamination from inappropriate materials used for site reclamation, thereby affecting soil quality and posing potential health and ecological risks. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

24 pages, 1894 KB  
Article
Honey as a Bioindicator: Pollution’s Effects on Its Quality in Mining vs. Protected Sites
by Mirel Glevitzky, Mihai-Teopent Corcheş, Maria Popa and Mihaela Laura Vică
Appl. Sci. 2025, 15(13), 7297; https://doi.org/10.3390/app15137297 - 28 Jun 2025
Cited by 1 | Viewed by 1121
Abstract
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, [...] Read more.
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, heavy metal content, and antimicrobial activity of honey samples collected from areas adjacent to former mining sites, as well as from protected areas within the same county in Romania. The results revealed significant differences between the two categories of locations. The samples from the protected areas showed higher levels of bioactive compounds (phenols and flavonoids) and exhibited stronger antibacterial activity. The heavy metal analysis indicated significantly higher concentrations of lead, cadmium, and iron in the honey samples from former mining areas compared to those from protected zones, suggesting pronounced industrial-origin contamination. The maximum recorded values were for Pb (0.607 mg/kg), Cd (0.02 mg/kg), Fe (12.131 mg/kg), Cu (0.545 mg/kg), and Zn (6.170 mg/kg). Their antimicrobial activity was tested against several bacterial and fungal strains, including Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Listeria monocytogenes, Candida albicans, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum, and Alternaria alternata. The antibacterial and antifungal activity were more pronounced in the honey samples from the protected areas. These findings support the use of honey as a bioindicator of environmental quality and highlight the influence of its geographical origin on its therapeutic and chemical properties. Full article
(This article belongs to the Special Issue Advances in Honeybee and Their Biological and Environmental Threats)
Show Figures

Figure 1

15 pages, 2052 KB  
Article
Assessment of Potential Environmental Risks Posed by Soils of a Deactivated Coal Mining Area in Northern Portugal—Impact of Arsenic and Antimony
by Marcus Monteiro, Patrícia Santos, Jorge Espinha Marques, Deolinda Flores, Manuel Azenha and José A. Ribeiro
Pollutants 2025, 5(2), 15; https://doi.org/10.3390/pollutants5020015 - 18 Jun 2025
Cited by 1 | Viewed by 2369
Abstract
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of [...] Read more.
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of the former Pejão coal mine complex in Northern Portugal, a site impacted by forest wildfires in October 2017 that triggered underground combustion within the waste heaps. Our methodology involved determining the “pseudo-total” concentrations of As and Sb in the collected heap samples using microwave digestion with aqua regia (ISO 12914), followed by analysis using hydride generation-atomic absorption spectroscopy (HG-AAS). The concentrations of As an Sb ranging from 31.0 to 68.6 mg kg−1 and 4.8 to 8.3 mg kg−1, respectively, were found to be above the European background values reported in project FOREGS (11.6 mg kg−1 for As and 1.04 mg kg−1 for Sb) and Portuguese Environment Agency (APA) reference values for agricultural soils (11 mg kg−1 for As and 7.5 mg kg−1 for Sb), indicating significant enrichment of these PTEs. Based on average Igeo values, As contamination overall was classified as “unpolluted to moderately polluted” while Sb contamination was classified as “moderately polluted” in the waste pile samples and “unpolluted to moderately polluted” in the downhill soil samples. However, total PTE content alone is insufficient for a comprehensive environmental risk assessment. Therefore, further studies on As and Sb fractionation and speciation were conducted using the Shiowatana sequential extraction procedure (SEP). The results showed that As and Sb levels in the more mobile fractions were not significant. This suggests that the enrichment in the burned (BCW) and unburned (UCW) coal waste areas of the mine is likely due to the stockpiling of lithic fragments, primarily coals hosting arsenian pyrites and stibnite which largely traps these elements within its crystalline structure. The observed enrichment in downhill soils (DS) is attributed to mechanical weathering, rock fragment erosion, and transport processes. Given the strong association of these elements with solid phases, the risk of leaching into surface waters and aquifers is considered low. This work underscores the importance of a holistic approach to environmental risk assessment at former mining sites, contributing to the development of sustainable remediation strategies for long-term environmental protection. Full article
(This article belongs to the Section Soil Pollution)
Show Figures

Figure 1

18 pages, 1749 KB  
Article
Relationship Between Perceived Authenticity, Place Attachment, and Tourists’ Environmental Behavior in Industrial Heritage
by Nengjie Qiu, Jiawei Wu, Haibo Li, Chen Pan and Jiaming Guo
Sustainability 2025, 17(11), 5152; https://doi.org/10.3390/su17115152 - 4 Jun 2025
Cited by 1 | Viewed by 2407
Abstract
As a crucial component of cultural heritage, industrial heritage possesses considerable cultural, historical, and economic significance. The key challenge for industrial heritage sites is to foster eco-conscious actions among visitors while boosting tourism spending. Based on the S-O-R theory, we constructed a relationship [...] Read more.
As a crucial component of cultural heritage, industrial heritage possesses considerable cultural, historical, and economic significance. The key challenge for industrial heritage sites is to foster eco-conscious actions among visitors while boosting tourism spending. Based on the S-O-R theory, we constructed a relationship model between authenticity, place attachment and environmental responsibility behavior through structural equation modeling and tested it with the survey data of tourists in Maoming open-pit mine ecological park. Findings reveal that both the object-related authenticity and the existential authenticity of the experience enhance the sense of reliance and belonging to the place, with the former also directly promoting visitors’ eco-conscious actions. In contrast, experiential authenticity does not exert a direct effect on eco-conscious actions. The sense of place reliance and identity are found to be significantly and positively linked to eco-conscious behavior. Furthermore, place reliance and identity act as intermediaries in the relationship between object authenticity, experiential authenticity, and eco-conscious behavior, serving as a sequential mediating factor. The study suggests strategies such as augmenting financial support to preserve the authenticity of the site, prioritizing the enhancement of infrastructure and the creation of cultural offerings to elicit emotional responses, and reinforcing emotional bonds to encourage eco-conscious actions. Full article
Show Figures

Figure 1

21 pages, 2609 KB  
Article
Perceptions of a Water Reservoir Construction Project Among the Local Community and Potential Tourists and Visitors
by Robert Machowski, Martyna A. Rzetala, Maksymilian Solarski, Mariusz Rzetala, Daniel Bakota, Arkadiusz Płomiński and Katarzyna Kłosowska
Sustainability 2025, 17(11), 4796; https://doi.org/10.3390/su17114796 - 23 May 2025
Viewed by 1330
Abstract
A study was conducted concerning the perceptions of a future reservoir (4.7–8.9 square kilometres, 42.2 million cubic metres) by residents, tourists, and visitors; the location in question was the former Kotlarnia sand pit in the catchment area of the Bierawka River (tributary of [...] Read more.
A study was conducted concerning the perceptions of a future reservoir (4.7–8.9 square kilometres, 42.2 million cubic metres) by residents, tourists, and visitors; the location in question was the former Kotlarnia sand pit in the catchment area of the Bierawka River (tributary of the Oder River in southern Poland). Divergent concepts for the reclamation and development of the former sand pit emerged; the construction of a reservoir was initially the dominant option but was eventually abandoned despite it having the greatest acceptance among the respondents (out of the 134 respondents, 43.3% favoured the creation of a water reservoir, 29.9% favoured introducing nature protection arrangements in the area to enable spontaneous nature regeneration, and 16.4% favoured reforestation). A clear discrepancy arose between the public’s expectations related to the reclamation and development of the former sand pit in order to create a reservoir and the official position of the land user and administrator of the potential reservoir, which indicated that it no longer intended to create such a reservoir. This study indicates that in the process of developing concepts related to the reclamation and development of former mineral workings, it is essential to obtain the results of public consultation based on a diagnostic survey conducted among representatives of the local community. This is an effective tool for predicting the optimal use of sites regenerated after the damage caused by open-pit mining provided that all technical considerations related to the planned project are taken into account in advance. Full article
Show Figures

Figure 1

26 pages, 7883 KB  
Article
Technosol Micromorphology Reveals the Early Pedogenesis of Abandoned Rare Earth Element Mining Sites Undergoing Reclamation in South China
by Françoise Watteau, Jean Louis Morel, Chang Liu, Yetao Tang and Hermine Huot
Minerals 2025, 15(5), 514; https://doi.org/10.3390/min15050514 - 14 May 2025
Cited by 3 | Viewed by 884
Abstract
The process of anthropogenic pedogenesis has necessarily become an important aspect of the study of today’s soils. The sustainable reclamation or remediation of soils degraded by industrial or mining activities is currently of great interest worldwide. In this field, the study of thin [...] Read more.
The process of anthropogenic pedogenesis has necessarily become an important aspect of the study of today’s soils. The sustainable reclamation or remediation of soils degraded by industrial or mining activities is currently of great interest worldwide. In this field, the study of thin soil sections can provide relevant answers, particularly to questions concerning the evolution of these soils under the impact of reclamation practices. Here, we describe an experiment to reclaim former rare earth element mining sites in China using organic soil amendments and plantations of a local fiber plant, Boehmeria nivea. Two years after the start of the experiment, a study of soil structure, considered as an indicator of soil biofunctioning, was carried out on the different plots, supplemented by monitoring of physico-chemical properties. Morphological (light microscopy) and analytical (SEM-EDX, µ-XRF) characterization of thin sections allowed us to pinpoint some pedological processes as aggregation with particular reference to the contribution of biological factors and mineral species, highlighting the impact of the practices implemented. Using a soil micromorphology approach enabled us to track the rapid evolution of the early stages of pedogenesis of these Technosols and to provide insight into the potential for reclamation of these mined sites in the future. Full article
(This article belongs to the Special Issue Thin Sections: The Past Serving The Future)
Show Figures

Figure 1

33 pages, 68063 KB  
Article
The Socio-Environmental Impact in the Adjacent Settlements of a Former Foundry
by Griselda Vázquez-Quintero, Daniel Lira-Hernández, César Damián Pérez-Olmos, María Cecilia Valles-Aragón, Leonor Cortes-Palacios, César Guillermo García-González, Ireyli Zuluamy Iracheta-Lara, Myrna Concepción Nevárez-Rodríguez and Gilberto Sandino Aquino-de los Ríos
Int. J. Environ. Res. Public Health 2025, 22(5), 692; https://doi.org/10.3390/ijerph22050692 - 27 Apr 2025
Viewed by 1036
Abstract
Mining has caused major pollution, especially in poorly regulated areas. The former Ávalos Foundry in Chihuahua, Mexico left toxic contamination after its closure in 1997, affecting the nearby settlements. This study examines the socio-environmental impact on residents adjacent to the site. A total [...] Read more.
Mining has caused major pollution, especially in poorly regulated areas. The former Ávalos Foundry in Chihuahua, Mexico left toxic contamination after its closure in 1997, affecting the nearby settlements. This study examines the socio-environmental impact on residents adjacent to the site. A total of 5773 dwellings were considered, with 4634 inhabited by 14,187 persons. A survey to 465 residents assessed sociodemographic aspects, environmental perceptions, and disposition to community participation. Tap water samples from 70 homes were analyzed for metals and compared to Mexican, American and European regulatory standards. Water pollutant dispersion was modeled using ArcGIS interpolation. Residents face economic, social, environmental, and health issues from ongoing contamination. Several suffer respiratory and skin diseases linked to excessive dust from the proximity to mining waste and unpaved streets. While the majority consider their lives comfortable or very comfortable, many would not have moved there if aware of the risks before moving. Despite concerns, most residents are reluctant to engage in community efforts to address the pollution. Tap water tests revealed levels above the regulatory standards of arsenic, copper, chromium, iron, manganese, and nickel, posing serious health risks. This study calls for immediate action, including awareness and health campaigns, environmental remediation, and intersectoral collaboration to secure funding for long-term solutions. Full article
(This article belongs to the Collection Environmental Risk Assessment)
Show Figures

Graphical abstract

17 pages, 7105 KB  
Article
Natural Regeneration Pattern and Driving Factors of Mixed Forest in the Reclaimed Area of Antaibao Open-Pit Coal Mine, Pingshuo
by Jia Liu and Donggang Guo
Appl. Sci. 2025, 15(8), 4525; https://doi.org/10.3390/app15084525 - 19 Apr 2025
Cited by 1 | Viewed by 537
Abstract
This study was conducted at a fixed monitoring site in the southern dump of the large-scale Antaibao open-pit coal mine of China Coal Pingshuo, using long-term monitoring methods. Based on data from 2019 and 2024 in the reclaimed area of the Pingshuo open-pit [...] Read more.
This study was conducted at a fixed monitoring site in the southern dump of the large-scale Antaibao open-pit coal mine of China Coal Pingshuo, using long-term monitoring methods. Based on data from 2019 and 2024 in the reclaimed area of the Pingshuo open-pit coal mine, all seedlings and saplings within the Robinia pseudoacacia L. + Ulmus pumila L. + Ailanthus altissima (Mill.) Swingle mixed forests were studied to analyze changes in their abundance and the driving factors influencing their survival rates from 2019 to 2024. The main conclusions are as follows: (1) The species composition of seedlings and saplings remained unchanged but the number of seedlings increased significantly. The majority of newly recruited seedlings were U. pumila., accounting for 92.22% of the total new seedlings, whereas R. pseudoacacia had the highest mortality rate among seedlings. The distribution patterns of seedling-to-sapling transition, sapling-to-tree transition, and seedling–sapling mortality were generally consistent with the overall distribution of seedlings and saplings at the community level. (2) At both the community and species levels, the optimal models for seedling and sapling survival were the height model and the biological factor model. Overall, survival rates of both seedlings and saplings showed a significant positive correlation with height. (3) The biological factors affecting the survival of U. pumila saplings were the basal area (BA) at breast height and the number of conspecific adult trees. The former was significantly negatively correlated with U. pumila seedling survival, while the latter was positively correlated. For R. pseudoacacia seedlings, the key biological factors were the number of heterospecific adult trees and the number of heterospecific seedlings. The former was significantly negatively correlated with survival, whereas the latter was significantly positively correlated. The primary factor influencing sapling survival was sapling height, which showed a significant positive correlation. Full article
(This article belongs to the Special Issue Ecosystems and Landscape Ecology)
Show Figures

Figure 1

26 pages, 37822 KB  
Article
Drone-Based VNIR–SWIR Hyperspectral Imaging for Environmental Monitoring of a Uranium Legacy Mine Site
by Victor Tolentino, Andres Ortega Lucero, Friederike Koerting, Ekaterina Savinova, Justus Constantin Hildebrand and Steven Micklethwaite
Drones 2025, 9(4), 313; https://doi.org/10.3390/drones9040313 - 17 Apr 2025
Cited by 2 | Viewed by 3309
Abstract
Growing awareness of the environmental cost of mining operations has led to increased research on monitoring and restoring legacy mine sites. Hyperspectral imaging (HSI) has emerged as a valuable tool in the mining life cycle, including post-mining environment. By detecting variations in crystal [...] Read more.
Growing awareness of the environmental cost of mining operations has led to increased research on monitoring and restoring legacy mine sites. Hyperspectral imaging (HSI) has emerged as a valuable tool in the mining life cycle, including post-mining environment. By detecting variations in crystal structure and physicochemical attributes on the surface of materials, HSI provides insights into site environmental and ecological conditions. Here, we explore the capabilities of drone-based HSI for mapping surface patterns related to contamination dispersal in a legacy uranium-rare earth element mine site. Hyperspectral data across the visible to near-infrared (VNIR) and short-wave infrared (SWIR) wavelength ranges (400–2500 nm) were collected over selected areas of the former Mary Kathleen mine site in Queensland, Australia. Analyses were performed using data-driven (Spectral Angle Mapper—SAM) and knowledge-based (Band Ratios—BRs) spectral processing techniques. SAM identifies contamination patterns and differentiates mineral compositions within visually similar areas. However, its accuracy is limited when mapping specific minerals, as most endmembers represent mineral groups or mixtures. BR highlights reactive surfaces and clay mixtures, reinforcing key patterns identified by SAM. The results indicate that drone-based HSI can capture and distinguish complex surface trends, demonstrating the technology’s potential to enhance the assessment and monitoring of environmental conditions at a mine site. Full article
Show Figures

Figure 1

23 pages, 10335 KB  
Article
Multitemporal Spatial Analysis for Monitoring and Classification of Coal Mining and Reclamation Using Satellite Imagery
by Koni D. Prasetya and Fuan Tsai
Remote Sens. 2025, 17(6), 1090; https://doi.org/10.3390/rs17061090 - 20 Mar 2025
Cited by 2 | Viewed by 2438
Abstract
Observing coal mining and reclamation activities using remote sensing avoids the need for physical site visits, which is important for environmental and land management. This study utilizes deep learning techniques with a U-Net and ResNet architecture to analyze Sentinel imagery in order to [...] Read more.
Observing coal mining and reclamation activities using remote sensing avoids the need for physical site visits, which is important for environmental and land management. This study utilizes deep learning techniques with a U-Net and ResNet architecture to analyze Sentinel imagery in order to track changes in coal mining and reclamation over time in Tapin Regency, Kalimantan, Indonesia. After gathering Sentinel 1 and 2 satellite imagery of Kalimantan Island, manually label coal mining areas are used to train a deep learning model. These labelled areas included open cuts, tailings dams, waste rock dumps, and water ponds associated with coal mining. Applying the deep learning model to multitemporal Sentinel 1 and 2 imagery allowed us to track the annual changes in coal mining areas from 2016 to 2021, while identifying reclamation sites where former coal mines had been restored to non-coal-mining use. An accuracy assessment resulted in an overall accuracy of 97.4%, with a Kappa value of 0.91, through a confusion matrix analysis. The results indicate that the reclamation effort increased more than twice in 2020 compared with previous years’ reclamation. This phenomenon was mainly affected by the massive increase in coal mining areas by over 40% in 2019. The proposed method provides a practical solution for detecting and monitoring open-pit coal mines while leveraging freely available data for consistent long-term observation. The primary limitation of this approach lies in the use of medium-resolution satellite imagery, which may result in lower precision compared to direct field measurements; however, the ability to integrate historical data with consistent temporal coverage makes it a viable alternative for large-scale and long-term monitoring. Full article
Show Figures

Graphical abstract

20 pages, 19457 KB  
Article
Spatial Decision Support System for Multi-Risk Assessment of Post-Mining Hazards
by Benjamin Haske, Marwan Al Heib, Vinicius Inojosa and Moncef Bouaziz
Mining 2025, 5(1), 17; https://doi.org/10.3390/mining5010017 - 26 Feb 2025
Cited by 4 | Viewed by 1561
Abstract
The closure of coal and lignite mines has the potential to result in long-term environmental risks and socio-economic issues. To solve these, this research aims to improve the hazard assessment and risk management of former mining regions in a European project funded by [...] Read more.
The closure of coal and lignite mines has the potential to result in long-term environmental risks and socio-economic issues. To solve these, this research aims to improve the hazard assessment and risk management of former mining regions in a European project funded by the Research Fund for Coal and Steel. A multidisciplinary approach integrated historic, geological, topographical, environmental, and socio-economic data to create a methodology to support stakeholders at different decision-making levels in risk assessment and possible mitigation. For this purpose, a spatial decision support system was developed using a multi-hazard, multi-risk methodology. The individual hazards (post-mining, natural, and technical) are weighted using expert knowledge, their interaction analyzed, and then combined into a spatial multi-hazard index. Together with the other risk factors of social vulnerability and exposure, a comprehensive spatial risk map can be created automatically for individual regions using open-source components. In addition, GIS and statistical tools enable further analysis and visualization for decision-making by the relevant stakeholders. The methodology was validated through the examination of a first case study conducted in the post-mining region of the southern Ruhr area in Germany. The methodology and tool created significant results in two test scenarios, and will be tested and improved using other European mining sites during the next stages of the project. Full article
(This article belongs to the Special Issue Post-Mining Management)
Show Figures

Figure 1

32 pages, 5695 KB  
Article
Navigating Socio-Technical Challenges in Energy Efficiency: Case Studies on Hybrid Pumped-Hydropower Storage in Poland and Greece
by Mariusz Kruczek, Malgorzata Markowska, Aikaterini Servou, Christos Roumpos, Eleni Mertiri, Priscilla Ernst, Jaroslaw Darmosz and Thomas Kempka
Energies 2025, 18(3), 599; https://doi.org/10.3390/en18030599 - 27 Jan 2025
Cited by 3 | Viewed by 996
Abstract
This study examines the socio-technical challenges and public acceptance of hybrid pumped-hydropower storage (HPHS) technology within the broader context of energy transition in two European coal-mining regions: Western Macedonia, Greece, and the Łódzkie Region, Poland. These regions, deeply rooted in lignite mining, face [...] Read more.
This study examines the socio-technical challenges and public acceptance of hybrid pumped-hydropower storage (HPHS) technology within the broader context of energy transition in two European coal-mining regions: Western Macedonia, Greece, and the Łódzkie Region, Poland. These regions, deeply rooted in lignite mining, face profound socio-economic transformations driven by the EU Green Deal and its commitment to achieving net-zero emissions by 2050. The transition from coal dependency to renewable energy represents not only a critical environmental goal but also a significant socio-economic challenge for local communities, necessitating innovative and inclusive strategies to mitigate impacts and ensure equitable outcomes. The research integrates desk studies with stakeholder surveys (n = 129) to assess public awareness, perceived impacts, and acceptance of HPHS technology as a repurposing solution for decommissioned open-pit lignite mines. Results reveal that while awareness of the energy transition process is high (90% in Western Macedonia and 80% in Łódzkie Region), familiarity with HPHS technology varies significantly (76% and 48%, respectively). Support for implementing HPHS in former mining sites is stronger in Western Macedonia (73%) compared to Łódzkie Region (63%), with knowledge of HPHS correlating positively with acceptance (r = 0.83, p < 0.01). Both regions recognize the environmental benefits of HPHS, including improved air quality and biodiversity; yet, socio-economic challenges such as job losses, reduced income levels, and limited opportunities for reskilling persist, particularly in Łódzkie Region, where 77% of respondents view the energy transition as negatively impacting the labor market. By focusing on regions historically dependent on mining, this study highlights the critical role of addressing the unique needs of communities undergoing systemic transformation. The repurposing of former lignite mines into HPHS facilities offers a promising pathway for balancing environmental objectives with local socio-economic revitalization. However, success requires region-specific strategies, including transparent communication, stakeholder involvement, and targeted investment in workforce adaptation and infrastructure. These findings contribute to the growing discourse on how socially inclusive and technically feasible solutions can drive equitable energy transitions in post-mining regions. Full article
(This article belongs to the Special Issue Energy Efficiency Assessments and Improvements)
Show Figures

Figure 1

Back to TopTop