Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (855)

Search Parameters:
Keywords = forested wetlands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 (registering DOI) - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

22 pages, 3013 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 208
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 327
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

24 pages, 1599 KiB  
Article
Climate-Regulating Industrial Ecosystems: An AI-Optimised Framework for Green Infrastructure Performance
by Shamima Rahman, Ali Ahsan and Nazrul Islam Pramanik
Sustainability 2025, 17(15), 6891; https://doi.org/10.3390/su17156891 - 29 Jul 2025
Viewed by 271
Abstract
This paper presents an Industrial–Ecological Symbiosis Framework that enables industrial operations to achieve quantifiable ecological gains without compromising operational efficiency. The model integrates Mixed-Integer Linear Programming (MILP) with AI-optimised forecasting to allow real-time adjustments to production and resource use. It was tested across [...] Read more.
This paper presents an Industrial–Ecological Symbiosis Framework that enables industrial operations to achieve quantifiable ecological gains without compromising operational efficiency. The model integrates Mixed-Integer Linear Programming (MILP) with AI-optimised forecasting to allow real-time adjustments to production and resource use. It was tested across the apparel manufacturing, metalworking, and mining sectors using publicly available benchmark datasets. The framework delivered consistent improvements: fabric waste was reduced by 10.8%, energy efficiency increased by 15%, and carbon emissions decreased by 14%. These gains were statistically validated and quantified using ecological equivalence metrics, including forest carbon sequestration rates and wetland restoration values. Outputs align with national carbon accounting systems, SDG reporting, and policy frameworks—specifically contributing to SDGs 6, 9, and 11–13. By linking industrial decisions directly to verified environmental outcomes, this study demonstrates how adaptive optimisation can support climate goals while maintaining productivity. The framework offers a reproducible, cross-sectoral solution for sustainable industrial development. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

27 pages, 8755 KiB  
Article
Mapping Wetlands with High-Resolution Planet SuperDove Satellite Imagery: An Assessment of Machine Learning Models Across the Diverse Waterscapes of New Zealand
by Md. Saiful Islam Khan, Maria C. Vega-Corredor and Matthew D. Wilson
Remote Sens. 2025, 17(15), 2626; https://doi.org/10.3390/rs17152626 - 29 Jul 2025
Viewed by 404
Abstract
(1) Background: Wetlands are ecologically significant ecosystems that support biodiversity and contribute to essential environmental functions such as water purification, carbon storage and flood regulation. However, these ecosystems face increasing pressures from land-use change and degradation, prompting the need for scalable and accurate [...] Read more.
(1) Background: Wetlands are ecologically significant ecosystems that support biodiversity and contribute to essential environmental functions such as water purification, carbon storage and flood regulation. However, these ecosystems face increasing pressures from land-use change and degradation, prompting the need for scalable and accurate classification methods to support conservation and policy efforts. In this research, our motivation was to test whether high-spatial-resolution PlanetScope imagery can be used with pixel-based machine learning to support the mapping and monitoring of wetlands at a national scale. (2) Methods: This study compared four machine learning classification models—Random Forest (RF), XGBoost (XGB), Histogram-Based Gradient Boosting (HGB) and a Multi-Layer Perceptron Classifier (MLPC)—to detect and map wetland areas across New Zealand. All models were trained using eight-band SuperDove satellite imagery from PlanetScope, with a spatial resolution of ~3 m, and ancillary geospatial datasets representing topography and soil drainage characteristics, each of which is available globally. (3) Results: All four machine learning models performed well in detecting wetlands from SuperDove imagery and environmental covariates, with varying strengths. The highest accuracy was achieved using all eight image bands alongside features created from supporting geospatial data. For binary wetland classification, the highest F1 scores were recorded by XGB (0.73) and RF/HGB (both 0.72) when including all covariates. MLPC also showed competitive performance (wetland F1 score of 0.71), despite its relatively lower spatial consistency. However, each model over-predicts total wetland area at a national level, an issue which was able to be reduced by increasing the classification probability threshold and spatial filtering. (4) Conclusions: The comparative analysis highlights the strengths and trade-offs of RF, XGB, HGB and MLPC models for wetland classification. While all four methods are viable, RF offers some key advantages, including ease of deployment and transferability, positioning it as a promising candidate for scalable, high-resolution wetland monitoring across diverse ecological settings. Further work is required for verification of small-scale wetlands (<~0.5 ha) and the addition of fine-spatial-scale covariates. Full article
Show Figures

Figure 1

24 pages, 3509 KiB  
Article
Water: The Central Theme of the Proposed Sonora Estuarine Biocultural Corridor of Northwestern Mexico
by Diana Luque-Agraz, Martha A. Flores-Cuamea, Alessia Kachadourian-Marras, Lara Cornejo-Denman and Arthur D. Murphy
Water 2025, 17(15), 2227; https://doi.org/10.3390/w17152227 - 26 Jul 2025
Viewed by 367
Abstract
The Sonora Estuarine Biocultural Corridor (CBES) is made up of six coastal wetlands with mangrove forest, internationally certified as Ramsar Sites. Four are part of indigenous territories whose inhabitants have serious development lags and low water security. Five are within one or more [...] Read more.
The Sonora Estuarine Biocultural Corridor (CBES) is made up of six coastal wetlands with mangrove forest, internationally certified as Ramsar Sites. Four are part of indigenous territories whose inhabitants have serious development lags and low water security. Five are within one or more of six irrigation districts of national relevance. The objective is to learn about the socio-environmental problems of the CBES, focused on the issue of water, as well as community proposals for solutions. Intercultural, mixed methodology approach. Prospecting visits were carried out in the six estuaries of the CBES, and 84 semi-structured interviews were conducted with experts from all social sectors who know the problems of the CBES in three (out of six) estuaries associated with indigenous territories. The main problem is centered on the issue of water: they receive contaminated water from agroindustry, aquaculture, and the municipal service; the fresh water of the rivers is almost nil, rainfall has decreased while the heat increases, and marine and terrestrial biodiversity decreases. This affects the food and economic security of the local population and generates conflicts between the different productive activities. A multisectoral organization that integrates the six estuaries would improve community wellbeing and, in turn, climate resilience. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

24 pages, 12938 KiB  
Article
Spatial Distribution of Mangrove Forest Carbon Stocks in Marismas Nacionales, Mexico: Contributions to Climate Change Adaptation and Mitigation
by Carlos Troche-Souza, Edgar Villeda-Chávez, Berenice Vázquez-Balderas, Samuel Velázquez-Salazar, Víctor Hugo Vázquez-Morán, Oscar Gerardo Rosas-Aceves and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1224; https://doi.org/10.3390/f16081224 - 25 Jul 2025
Viewed by 679
Abstract
Mangrove forests are widely recognized for their effectiveness as carbon sinks and serve as critical ecosystems for mitigating the effects of climate change. Current research lacks comprehensive, large-scale carbon storage datasets for wetland ecosystems, particularly across Mexico and other understudied regions worldwide. Therefore, [...] Read more.
Mangrove forests are widely recognized for their effectiveness as carbon sinks and serve as critical ecosystems for mitigating the effects of climate change. Current research lacks comprehensive, large-scale carbon storage datasets for wetland ecosystems, particularly across Mexico and other understudied regions worldwide. Therefore, the objective of this study was to develop a high spatial resolution map of carbon stocks, encompassing both aboveground and belowground components, within the Marismas Nacionales system, which is the largest mangrove complex in northeastern Pacific Mexico. Our approach integrates primary field data collected during 2023–2024 and incorporates some historical plot measurements (2011–present) to enhance spatial coverage. These were combined with contemporary remote sensing data, including Sentinel-1, Sentinel-2, and LiDAR, analyzed using Random Forest algorithms. Our spatial models achieved strong predictive accuracy (R2 = 0.94–0.95), effectively resolving fine-scale variations driven by canopy structure, hydrologic regime, and spectral heterogeneity. The application of Local Indicators of Spatial Association (LISA) revealed the presence of carbon “hotspots,” which encompass 33% of the total area but contribute to 46% of the overall carbon stocks, amounting to 21.5 Tg C. Notably, elevated concentrations of carbon stocks are observed in the central regions, including the Agua Brava Lagoon and at the southern portion of the study area, where pristine mangrove stands thrive. Also, our analysis reveals that 74.6% of these carbon hotspots fall within existing protected areas, demonstrating relatively effective—though incomplete—conservation coverage across the Marismas Nacionales wetlands. We further identified important cold spots and ecotones that represent priority areas for rehabilitation and adaptive management. These findings establish a transferable framework for enhancing national carbon accounting while advancing nature-based solutions that support both climate mitigation and adaptation goals. Full article
Show Figures

Graphical abstract

25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Viewed by 299
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Graphical abstract

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Viewed by 468
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

15 pages, 1319 KiB  
Article
Pyrogenic Transformation and Carbon Sequestration in Forested Bog Soils of the Middle Taiga in Northeastern European Russia
by Nikolay M. Gorbach, Viktor V. Startsev, Evgenia V. Yakovleva, Anton S. Mazur and Alexey A. Dymov
Soil Syst. 2025, 9(3), 74; https://doi.org/10.3390/soilsystems9030074 - 11 Jul 2025
Viewed by 225
Abstract
A comprehensive paleoecological study of a forested bog located in the middle taiga subzone of northeastern European Russia was carried out. According to the 14C radiocarbon dating and botanical composition analysis, the bog began forming 8200 calibrated years ago, evolving in three [...] Read more.
A comprehensive paleoecological study of a forested bog located in the middle taiga subzone of northeastern European Russia was carried out. According to the 14C radiocarbon dating and botanical composition analysis, the bog began forming 8200 calibrated years ago, evolving in three stages from grassy wetlands to its current state as a pine-Sphagnum peatland. Analysis revealed substantial carbon storage (81.4 kg m−2) within the peat deposit. Macrocharcoal particles were consistently present throughout the peat deposits, demonstrating continuous fire activity across the bog’s developing. High charcoal particle accumulation rates occurred not only during warm periods like the Holocene thermal maximum but also during colder and wetter periods. These periods include recent centuries, when high charcoal accumulation rates are likely due to increased human activity. Statistical analysis showed significant relationships between macrocharcoal content and several peat characteristics: higher charcoal levels correlated with increased soil carbon (r = 0.6), greater aromatic compounds (r = 0.8), and elevated polycyclic aromatic hydrocarbons (r = 0.7), all with p < 0.05. These findings highlight how fire has consistently shaped this ecosystem’s development and carbon storage capacity over millennia, with apparent intensification during recent centuries potentially linked to anthropogenic influences on fire regimes in the boreal zone. Full article
Show Figures

Figure 1

23 pages, 3778 KiB  
Article
Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning
by Fuchao Li, Tian Nan, Huang Zhang, Kun Luo, Kui Xiang and Yi Peng
Land 2025, 14(7), 1435; https://doi.org/10.3390/land14071435 - 9 Jul 2025
Viewed by 349
Abstract
This study focuses on the Dongting Lake region in China and evaluates ecological vulnerability using the Sensitivity–Resilience–Pressure (SRP) framework, integrated with Spatial Principal Component Analysis (SPCA) to calculate the Ecological Vulnerability Index (EVI). The EVI values were classified into five levels using the [...] Read more.
This study focuses on the Dongting Lake region in China and evaluates ecological vulnerability using the Sensitivity–Resilience–Pressure (SRP) framework, integrated with Spatial Principal Component Analysis (SPCA) to calculate the Ecological Vulnerability Index (EVI). The EVI values were classified into five levels using the Natural Breaks (Jenks) method, and spatial autocorrelation analysis was applied to reveal spatial differentiation patterns. The Geodetector model was used to analyze the driving mechanisms of natural and socioeconomic factors on EVI, identifying key influencing variables. Furthermore, the LightGBM algorithm was used for feature optimization, followed by the construction of six machine learning models—Multilayer Perceptron (MLP), Extremely Randomized Trees (ET), Decision Tree (DT), Random Forest (RF), LightGBM, and K-Nearest Neighbors (KNN)—to conduct multi-class classification of ecological vulnerability. Model performance was assessed using ROC–AUC, accuracy, recall, confusion matrix, and Kappa coefficient, and the best-performing model was interpreted using SHAP (SHapley Additive exPlanations). The results indicate that: ① ecological vulnerability increased progressively from the core wetlands and riparian corridors to the transitional zones in the surrounding hills and mountains; ② a significant spatial clustering of ecological vulnerability was observed, with a Moran’s I index of 0.78; ③ Geodetector analysis identified the interaction between NPP (q = 0.329) and precipitation (PRE, q = 0.268) as the dominant factor (q = 0.50) influencing spatial variation of EVI; ④ the Random Forest model achieved the best classification performance (AUC = 0.954, F1 score = 0.78), and SHAP analysis showed that NPP and PRE made the most significant contributions to model predictions. This study proposes a multi-method integrated decision support framework for assessing ecological vulnerability in lake wetland ecosystems. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

16 pages, 2066 KiB  
Article
The Impact of Open Forest Habitats on Psychological Well-Being
by Emilia Janeczko, Krzysztof Czyżyk, Małgorzata Woźnicka and Anna Wiśniewska
Sustainability 2025, 17(13), 6233; https://doi.org/10.3390/su17136233 - 7 Jul 2025
Viewed by 509
Abstract
Open habitats in forests perform several important functions. In addition to enriching biodiversity, they have an impact on the diversification of the forest landscape, and through complex processes and trophic relationships, they provide greater sustainability in forest communities. It turns out that they [...] Read more.
Open habitats in forests perform several important functions. In addition to enriching biodiversity, they have an impact on the diversification of the forest landscape, and through complex processes and trophic relationships, they provide greater sustainability in forest communities. It turns out that they are also important not only for the functioning of nature, but also due to their regenerative properties, through which people can improve their well-being and recover their mental balance. The purpose of this study was to determine whether and to what extent mid-forest open dunes and wetlands are able to provide people with feelings of relaxation and mental renewal. The study was conducted in June 2024 in one of the forest complexes located in the suburban zone of Warsaw. The experiment was conducted with the participation of 52 young adult volunteers. The experiment used a pre–posttest method. The subjects’ mood and well-being were determined using four psychological questionnaires: the Positive and Negative Affect Schedule (PANAS), Restorative Outcome Scale (ROS), Subjective Vitality Scale (SVS), and Profile of Mood States (POMSs). The key findings from the research conducted are as follows: compared to the control sample (before entering the forest), exposure to all three variants of greenery had a restorative effect on the experimental participants; the water environment had the most favorable effect compared to the control sample (before entering the forest); and exposure to this environment provided the greatest increase in positive feelings and the greatest decrease in negative feelings. Research has shown that areas important for preserving forest biodiversity are also important for humans because of their high restorative properties. Preserving non-forest enclaves in forests and promoting their regenerative values for humans can be one nature-based solution to improve people’s health and well-being, especially for people living in urban areas. Full article
(This article belongs to the Special Issue Sustainable Forestry for a Sustainable Future)
Show Figures

Figure 1

15 pages, 3677 KiB  
Article
Spatial–Temporal Restructuring of Regional Landscape Patterns and Associated Carbon Effects: Evidence from Xiong’an New Area
by Yi-Hang Gao, Bo Han, Hong-Wei Liu, Yao-Nan Bai and Zhuang Li
Sustainability 2025, 17(13), 6224; https://doi.org/10.3390/su17136224 - 7 Jul 2025
Viewed by 290
Abstract
China’s accelerated urbanization has instigated construction land expansion and ecological land attrition, aggravating the carbon emission disequilibrium. Notably, the “land carbon emission elasticity coefficient” in urban agglomerations far exceeds international benchmarks, underscoring the contradiction between spatial expansion and low-carbon goals. Existing research predominantly [...] Read more.
China’s accelerated urbanization has instigated construction land expansion and ecological land attrition, aggravating the carbon emission disequilibrium. Notably, the “land carbon emission elasticity coefficient” in urban agglomerations far exceeds international benchmarks, underscoring the contradiction between spatial expansion and low-carbon goals. Existing research predominantly centers on single-spatial-type or static-model analyses, lacking cross-scale mechanism exploration, policy heterogeneity consideration, and differentiated carbon metabolism assessment across functional spaces. This study takes Xiong’an New Area as a case, delineating the spatiotemporal evolution of land use and carbon emissions during 2017–2023. Construction land expanded by 26.8%, propelling an 11-fold escalation in carbon emissions, while emission intensity decreased by 11.4% due to energy efficiency improvements and renewable energy adoption. Cultivated land reduction (31.8%) caused a 73.4% decline in agricultural emissions, and ecological land network restructuring (65.3% forest expansion and wetland restoration) significantly enhanced carbon sequestration. This research validates a governance paradigm prioritizing “structural optimization” over “scale expansion”—synergizing construction land intensification with ecological restoration to decelerate emission growth and strengthen carbon sink systems. Full article
Show Figures

Figure 1

16 pages, 4280 KiB  
Article
Impacts of Climate Change in China: Northward Migration of Isohyets and Reduction in Cropland
by Xinyu Li, Siming Liu, Xinjie Shi, Chunyu Wang, Ling Li, Siyuan Liu and Donghao Li
Land 2025, 14(7), 1417; https://doi.org/10.3390/land14071417 - 5 Jul 2025
Viewed by 481
Abstract
Changes in the environment and in land use interconnect and interact. To ascertain the impact of meteorological factors, namely temperature, precipitation, and sunshine, on land use changes, an analysis was conducted using meteorological data and the China land use dataset spanning from 1990 [...] Read more.
Changes in the environment and in land use interconnect and interact. To ascertain the impact of meteorological factors, namely temperature, precipitation, and sunshine, on land use changes, an analysis was conducted using meteorological data and the China land use dataset spanning from 1990 to 2020. Pearson correlation analysis, grey correlation degree, and vector regression model were employed to assess the influence of meteorological factors on land use alterations and to pinpoint the primary driving forces. The findings reveal the following: (1) The spatial distribution of isohyets and isotherms is shifting towards the north, with the most significant northward movement observed in the 1600 mm isohyets and 15 °C isotherm contours. (2) Overall, the areas of croplands, shrubs, grasslands, and wetlands are decreasing, notably, with a reduction of approximately 100,000 km2 in cropland, while forests, water, and impervious surfaces are expanding annually. (3) Temperature and precipitation exhibit notable impacts on various land use types, with temperature exerting the most substantial influence on changes in cropland area, contributing to 8% of the observed variations. This study can provide a scientific basis for the rational optimization and allocation of land resources under changing environmental conditions. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

23 pages, 5627 KiB  
Article
Evaluation of Noah-MP Land Surface Model-Simulated Water and Carbon Fluxes Using the FLUXNET Dataset
by Bofeng Pan, Xiaolu Wu and Xitian Cai
Land 2025, 14(7), 1400; https://doi.org/10.3390/land14071400 - 3 Jul 2025
Viewed by 382
Abstract
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales [...] Read more.
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales and vegetation types. This study systematically evaluates the performance of the newly modernized Noah-MP LSM version 5.0 in simulating water and carbon fluxes, specifically ET and GPP, across temporal scales ranging from half-hourly (capturing diurnal cycles) to annual using observational data from 105 sites within the globally FLUXNET2015 dataset. The results reveal that Noah-MP effectively captured the overall variability of both ET and GPP, particularly at short temporal scales. The model successfully simulated the diurnal and seasonal cycles of both fluxes, though cumulative errors increased at the annual scale. Diurnally, the largest simulation biases typically occurred around noon; while, seasonally, biases were smallest in winter. Performance varied significantly across vegetation types. For ET, the simulations were most accurate for open shrublands and deciduous broadleaf forests, while showing the largest deviation for woody savannas. Conversely, GPP simulations were most accurate for wetlands and closed shrublands, showing the largest deviation for evergreen broadleaf forests. Furthermore, an in-depth analysis stratified by the climate background revealed that ET simulations failed to capture inter-annual variability in the temperate and continental zones, while GPP was severely overestimated in arid and temperate climates. This study identifies the strengths and weaknesses of Noah-MP in simulating water and carbon fluxes, providing valuable insights for future model improvements. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

Back to TopTop