Impacts of Climate Change in China: Northward Migration of Isohyets and Reduction in Cropland
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Pearson Correlation Analysis
2.3.2. Grey Relational Analysis
2.3.3. Vector Autoregression Model (VAR Model)
3. Results
3.1. Distribution of Annual Average Isotherm
3.2. Distribution of Annual Total Isohyet
3.3. Distribution of Land Cover
3.4. Analysis of Driving Factors
3.4.1. Pearson Correlation Analysis
3.4.2. Grey Correlation Analysis
3.4.3. Impulse Response Analysis Based on the VAR Model
- (1)
- Lag Order Analysis
- (2)
- VAR Model Parameter Estimation
- (3)
- Model Stationary Test
4. Discussion
5. Conclusions
- (1)
- From 1990 to 2020, annual mean isotherms and isohyets shifted northward, with notable migration of the 10 °C and 15 °C isotherms. The 1600 mm isohyet experienced the most pronounced northward expansion, while the 800–1200 mm isohyets migrated northwestward with contracted intervals.
- (2)
- The overall trend shows a decrease in the areas of cropland, shrubs, grassland, and wetland, with a cropland decrease of about 100,000 km2. In contrast, the areas of forests, water, and impervious surfaces have increased year by year. Forests expanded by approximately 100,000 km2, while impervious surfaces experienced the largest increase, reaching approximately 180,000 km2.
- (3)
- Among the meteorological factors, the annual average temperature shows a strong correlation with land use changes. Changes in annual average temperatures have a negative driving effect on cropland, but a positive driving effect on forests. Specifically, for cropland, the contribution of annual average temperature exceeded 8% after the 8th period.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, Q.; Qin, Y.; Liang, M.; Gao, X. Interpretation of the main conclusions and suggestions of IPCC AR6 synthesis report. Environ. Prot. 2023, 51, 82–84. [Google Scholar] [CrossRef]
- Jiang, P.; Pan, X.M.; Zeng, X.Y. Temporal and Spatial Variation of Temperature and Precipitation in Each Agricultural Sub-region of China. Res. Soil Water Conserv. 2020, 27, 270–278. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, W.; Han, Y. Spatio-temporal variation of vegetation precipitation use efficiency and influencing factors in arid and semi-arid areas of China. Acta Ecol. Sin. 2023, 43, 10295–10307. [Google Scholar] [CrossRef]
- Xu, M. Climate Change in China: An Analysis of Temperature and Precipitation Variations Across 2367 Meteorological Stations (1981–2020). Highlights Sci. Eng. Technol. 2024, 88, 430–438. [Google Scholar] [CrossRef]
- Wang, F.; Li, B.; Tian, S.; Zheng, D.; Ge, Q. Updated scheme for eco-geographical regionalization in China. Acta Geogr. Sin. 2024, 79, 3–16. [Google Scholar]
- Tran, T.-N.-D.; Tapas, M.R.; Do, S.K.; Etheridge, R.; Lakshmi, V. Investigating the impacts of climate change on hydroclimatic extremes in the Tar-Pamlico River basin, North Carolina. J. Environ. Manag. 2024, 363, 121375. [Google Scholar] [CrossRef]
- Tran, T.N.; Lakshmi, V. Enhancing human resilience against climate change: Assessment of hydroclimatic extremes and sea level rise impacts on the Eastern Shore of Virginia, United States. Sci. Total Environ. 2024, 947, 174289. [Google Scholar] [CrossRef]
- Franzke, C.L.E.; Lee, J.-Y.; O’Kane, T.; Merryfield, W.; Zhang, X. Extreme Weather and Climate Events: Dynamics, Predictability and Ensemble Simulations. Asia-Pac. J. Atmos. Sci. 2023, 59, 1–2. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Shooshtari, S.J.; Parteli, E.J.R. Long-term assessment of land-use and climate change on water scarcity in an arid basin in Iran. Ecol. Model. 2022, 467, 109934. [Google Scholar] [CrossRef]
- Chegnizadeh, A.; Rabieifar, H.; Ebrahimi, H.; Nayeri, M.Z. Evaluating The hydrological response due to the changes in climate and land use on streamflow in the Karkheh basin, Iran. J. Water Clim. Change 2022, 13, 4054–4068. [Google Scholar] [CrossRef]
- Huang, J.; Deng, X.; Qi, Y.; Wang, P.; Jian, Y. Impact of Climate Change and Human Activities on the Changes in Net Primary Ecosystem Productivity in Henan Province. Environ. Sci. 2025, 1–20. [Google Scholar] [CrossRef]
- Cui, N.; Yin, Q. Impacts of Climate Change on Grain Production in Northeast China and Countermeasures. J. Catastrophology 2022, 37, 52–57. [Google Scholar]
- Zhao, H.; Cui, Y.; Li, M.; Kang, X.; Li, W.; Han, Y.; Yang, J.; Wang, Y. Impacts of climate change and human activities on net primary productivity of vegetation in Ningxia, Northwest China. Chin. J. Appl. Ecol. 2025, 1–16. [Google Scholar] [CrossRef]
- Zewdu, D.; Krishnan, C.M.; Raj, P.P.N.; Makadi, Y.C.; Barati, M.K.; Arlikatti, S. Interactions of land use, land cover, and climate change: A case study of Raichur District, Karnataka, India. Environ. Chall. 2025, 19, 101166. [Google Scholar] [CrossRef]
- Kennedy, J.; Hurtt, G.C.; Liang, X.-Z.; Chini, L.; Ma, L. Changing cropland in changing climates: Quantifying two decades of global cropland changes. Environ. Res. Lett. 2023, 18, 064010. [Google Scholar] [CrossRef]
- Ding, X.; Ye, C. Eco-environmental effects of ‘production-cology-living’ land use transformation and the analysis of terrain gradient in poyang lake city cluster. Res. Soil Water Conserv. 2024, 31, 315–326. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, H.; Yang, J.; Jiang, Y.; Zhang, R. Land use pattern and multifunctional spatiotemporal evolution in the northwest plateau of sichuan based on “production-living-ecosystem” space. Sci. Technol. Manag. Land Resour. 2022, 39, 1–14. [Google Scholar]
- Lou, J.; Dang, X.; Meng, Z.; Zhang, H.; Song, H. Land use change and driving force analysis of the ten tributaries basin in the yellow river basin from 1986 to 2020. J. Soil Water Conserv. 2024, 38, 319–327+336. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Kirti, C.; Dhrubajyoti, S.; Jatan, D. Assessment of the land use/land cover and climate change impact on the hydrological regime of the Kulsi River catchment, Northeast India. Sustain. Water Resour. Manag. 2024, 10, 60. [Google Scholar]
- Quan, L.a.; Jin, S.; Chen, J.; Li, T. Evolution and Driving Forces of Ecological Service Value in Anhui Based on Landsat Land Use and Land Cover Change. Remote Sens. 2024, 16, 269. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.Y.; Kuang, W.H.; Xu, X.L.; Zhang, S.W.; Yan, C.Z.; Li, R.D.; Wu, S.X.; Hu, Y.F.; Du, G.M.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Perring, M.P.; Pieter, D.F.; Lander, B.; Maes, S.L.; Leen, D.; Haben, B.; Carón, M.M.; Kris, V. Global environmental change effects on ecosystems: The importance of land-use legacies. Glob. Change Biol. 2016, 22, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Fang, X.; Jiang, X.; Zhu, Q.; Jin, J.; Ren, L.; Yan, Y. Spatiotemporal characteristics of land use/cover changes in the Yellow River Basin over the past 40 years. J. Soil Water Conserv. 2024, 38, 165–177+189. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Yu, Q.; Huang, H. An analysis of land use change and driving forces in the Yellow River Basin from 1995 to 2018. J. Northwest For. Univ. 2022, 37, 113–121. [Google Scholar]
- Gao, X.; Cheng, W.; Wang, N.; Liu, Q.; Ma, T.; Chen, Y.; Zhou, C. Spatio-temporal distribution and transformationof cropland in geomorphologic regions of China during 1990–2015. J. Geogr. Sci. 2019, 29, 180–196. [Google Scholar] [CrossRef]
- Zhang, X.; Ceng, Y.; Gao, Z.; Li, Y.; Sun, G.; Liu, W. Response of eco-environmental quality to climate change and land use in Loess Plateau from 2000 to 2020. Bull. Soil Water Conserv. 2023, 43, 234–244. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Samyuktha, N.; Rao, P.J.; Ramu, N. Correlation analysis of land surface temperature on landsat-8 data of Visakhapatnam Urban Area, Andhra Pradesh, India. Earth Sci. Inform. 2022, 15, 1963–1975. [Google Scholar]
- Wu, Q.; Tan, J.; Guo, F.; Li, H.; Chen, S. Multi-scale relationship between land surface temperature and landscape pattern based on wavelet coherence: The case of metropolitan Beijing, China. Remote Sens. 2019, 11, 3021. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, H.; Cheng, H.; Zheng, H. Application of Correlation Analysis Based on Principal Components in the Study of Global Temperature Changes. Iran. J. Energy Environ. 2023, 14, 336–345. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Yang, Y.; Li, F.; Dai, R.; Li, J.; Wang, M.; Li, Z. The Impact of Land Use Structure Change on Utilization Performance in Henan Province, China. Int. J. Environ. Res. Public Health 2023, 20, 4251. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhou, Z.; Zou, Y.; Bakhtiyor, P.; Siddique, K.H.M. Watershed drought and ecosystem services: Spatiotemporal characteristics and gray relational analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 43. [Google Scholar] [CrossRef]
- Li, X.; Xu, X.; Wang, X.; Xu, S.; Tian, W.; Tian, J.; He, C. Assessing the effects of spatial scales on regional evapotranspiration estimation by the SEBAL Model and multiple satellite datasets: A case study in the agro-pastoral ecotone, Northwestern China. Remote Sens. 2021, 13, 1524. [Google Scholar] [CrossRef]
- Fayyaz, S.; Moeinaddini, M.; Pourebrahim, S.; Khoshnevisan, B.; Kazemi, A.; Toufighi, S.P.; Schjønberg, M.S.; Birkved, M. Assessing environmental enhancement scenarios in a petrochemical port: A comprehensive comparison using a hybrid LCA-GRM model. J. Clean. Prod. 2024, 445, 141079. [Google Scholar] [CrossRef]
- Babalos, V.; Stavroyiannis, S. Pension funds and stock market development in OECD countries: Novel evidence from a panel VAR. Financ. Res. Lett. 2020, 34, 101247. [Google Scholar] [CrossRef]
- Cornell, C.; Mitchell, L.; Roughan, M. Rank is all you need: Development and analysis of robust causal networks. Appl. Netw. Sci. 2024, 9, 39. [Google Scholar] [CrossRef]
- Fan, Z.; Yue, T.; Chen, C.; Sun, X. Spatial Change Trends of Temperature and Precipitation in China. J. Geo-Inf. Sci. 2011, 13, 526–533. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, S.; Shen, X.; Fan, G. Observed Changes of Rain-Season Precipitation in China from 1960 to 2018. Int. J. Environ. Res. Public Health 2021, 18, 10031. [Google Scholar] [CrossRef]
- Patil, R.; Surawar, M. Impact of Urban Heat Island on Formation of Precipitation in Indian Western Coastal Cities. J. Contemp. Urban Aff. 2023, 7, 38–55. [Google Scholar] [CrossRef]
- Zhu, K.; Cheng, Y.; Zhou, Q.; Kápolnai, Z.; Dávid, L.D. The contributions of climate and land use/cover changes to water yield services considering geographic scale. Heliyon 2023, 9, e20115. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yi, Y.; Kang, H.; Wang, B.; Shi, M.; Liu, C. Temporal and spatial variations of land use and the driving factors in the middle reaches of the Yangtze River in the past 25 years. Acta Ecol. Sin. 2019, 39, 1877–1886. [Google Scholar]
- Huang, Y.; Li, G.; Zhao, Y.; Yang, J.; Li, Y. Analysis of the Characteristics and Causes of Land Degradation and Development in Coastal China (1982–2015). Remote Sens. 2023, 15, 2249. [Google Scholar] [CrossRef]
- Gao, P.; Gao, Y.; Ou, Y.; McJeon, H.; Iyer, G.; Ye, S.; Yang, X.; Song, C. Heterogeneous pressure on croplands from land-based strategies to meet the 1.5 °C target. Nat. Clim. Change 2025, 15, 420–427. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Zhang, P. Rising temperature threatens China’s cropland. Environ. Res. Lett. 2022, 17, 084042. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Liu, J.; Wang, L.; Li, Y. Research progress on cambium activity and radial growth dynamics monitoring of coniferous species. Chin. J. Appl. Ecol. 2024, 35, 1223–1232. [Google Scholar] [CrossRef]
- Li, T.; Luo, P.; Xiong, Q.; Yang, H.; Gu, X.; Qiu, Y.; Lin, B.; Liu, Y.; Lai, C. Spatial heterogeneity of tree diversity response to climate warming in montane forests. Ecol. Evol. 2021, 11, 931–941. [Google Scholar] [CrossRef]
- Baker, J.C.A.; Castilho de Souza, D.; Kubota, P.Y.; Buermann, W.; Coelho, C.A.S.; Andrews, M.B.; Gloor, M.; Garcia-Carreras, L.; Figueroa, S.N.; Spracklen, D.V. An Assessment of Land–Atmosphere Interactions over South America Using Satellites, Reanalysis, and Two Global Climate Models. J. Hydrometeorol. 2021, 22, 905–922. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Peng, H.; Lyu, X. Impact of Individual Rainfall on the Changes of Soil Water Content in Deep Layer of Different Land Uses. Res. Soil Water Conserv. 2023, 30, 69–75. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, W.; Yan, J.; Zhang, W.; Gou, F.; Wang, C.; Liang, X. Vegetation Growth Response and Trends after Water Deficit Exposure in the Loess Plateau, China. Remote Sens. 2023, 15, 2593. [Google Scholar] [CrossRef]
- Li, T.; Ma, F.; Wang, J.; Qiu, P.; Zhang, N.; Guo, W.; Xu, J.; Dai, T. Study on the Mechanism of Rainfall-Runoff Induced Nitrogen and Phosphorus Loss in Hilly Slopes of Black Soil Area, China. Water 2023, 15, 3148. [Google Scholar] [CrossRef]
- Rupngam, T.; Messiga, A.J. Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate. Sustainability 2024, 16, 6141. [Google Scholar] [CrossRef]
- Xia, Z.; Xie, Y.; Wang, T. Land Use and Spatial and Temporal Change of Normalized Difference Vegetation Index(NDVI) in Shenfu Mining Area and Their Driving Factors Analysis. Chin. Agric. Sci. Bull. 2021, 37, 97–105. [Google Scholar]
- Zhang, R.; Yan, F.; Xiao, S.; He, R. Precipitation Effects of Land Use Change in the Upper and Middle Reaches of the Yellow River Basin. J. Shanxi Agric. Sci. 2023, 51, 1078–1087. [Google Scholar]
Year | Cropland | Forest | Shrub | Grassland | Water | Impervious | Wetland |
---|---|---|---|---|---|---|---|
1990 | 245.94 | 284.15 | 5.65 | 365.51 | 16.20 | 13.39 | 1.17 |
2000 | 243.70 | 288.12 | 4.39 | 357.57 | 16.91 | 18.98 | 0.36 |
2010 | 236.67 | 292.26 | 4.17 | 358.58 | 18.47 | 24.91 | 0.23 |
2020 | 236.05 | 294.07 | 3.46 | 352.41 | 18.71 | 31.38 | 0.24 |
PRCP(mm) | TAVG (°C) | SUN (h) | Cropland | Forest | Shrub | Grassland | Water | Impervious | Wetland | |
---|---|---|---|---|---|---|---|---|---|---|
PRCP(mm) | 1 (***) | |||||||||
TAVG(°C) | −0.35 (*) | 1 (***) | ||||||||
SUN(h) | 0.332 | −0.283 | 1 (***) | |||||||
Cropland | −0.209 | 0.549 (***) | 0.068 | 1 (***) | ||||||
Forest | 0.305 | −0.665 (***) | 0.018 | −0.955 (***) | 1 (***) | |||||
Shrub | −0.441 (**) | 0.787 (***) | −0.193 | 0.809 (***) | −0.904 (***) | |||||
Grassland | −0.423 (**) | 0.87 (***) | −0.318 | 0.585 (***) | −0.742 (***) | 0.916 (***) | 1 (***) | |||
Water | 0.2 | −0.64 (***) | 0 | −0.956 (***) | 0.889 (***) | −0.823 (***) | −0.64 (***) | 1 (***) | ||
Impervious | 0.397 (*) | −0.801 (***) | 0.131 | −0.881 (***) | 0.939 (***) | −0.975 (***) | −0.879 (***) | 0.902 (***) | 1 (***) | |
Wetland | −0.118 | 0.483 (**) | 0.051 | 0.86 (***) | −0.727 (***) | 0.676 (***) | 0.487 (**) | −0.949 (***) | −0.773 (***) | 1 (***) |
PRCP | TAVG | SUN | ||||
---|---|---|---|---|---|---|
Evaluation Item | Correlation Degree | Ranking | Correlation Degree | Ranking | Correlation Degree | Ranking |
Forest | 0.896 | 1 | 0.905 | 3 | 0.912 | 1 |
Water | 0.889 | 2 | 0.848 | 5 | 0.892 | 4 |
Grassland | 0.882 | 3 | 0.932 | 2 | 0.905 | 2 |
Cropland | 0.877 | 4 | 0.933 | 1 | 0.895 | 3 |
Shrub | 0.797 | 5 | 0.889 | 4 | 0.802 | 5 |
Impervious | 0.742 | 6 | 0.659 | 7 | 0.681 | 6 |
Wetland | 0.707 | 7 | 0.706 | 6 | 0.641 | 7 |
Class of Land | Order Number | AIC | BIC | FPE | HQIC |
---|---|---|---|---|---|
Cropland | 0 | 50.416 | 50.615 | 7.86 × 1021 | 50.459 |
1 | 47.081 | 48.076 * | 2.9 × 1020 | 47.297 | |
2 | 46.878 | 48.669 | 2.89 × 1020 | 47.267 | |
3 | 45.918 * | 48.504 | 2.02 × 1020 * | 46.479 * | |
Forest | 0 | 49.786 | 49.985 | 4.19 × 1021 | 49.829 |
1 | 46.686 | 47.681 * | 1.96 × 1020 | 46.902 | |
2 | 46.287 | 48.078 | 1.6 × 1020 | 46.676 | |
3 | 45.146 * | 47.733 | 9.32 × 1019 * | 45.707 * | |
Grassland | 0 | 49.148 | 49.347 | 2.21 × 1021 | 49.192 |
1 | 47.076 | 48.070 | 2.89 × 1020 | 47.291 | |
2 | 46.097 * | 47.888 * | 1.33 × 1020 * | 46.486 * | |
3 | 46.604 | 49.190 | 4.01 × 1020 | 47.165 |
Indicators | Cropland | TAVG (°C) | PRCP (mm) | SUN (h) |
---|---|---|---|---|
Constant | 115,791,048.891 | −5.242 | 1277.066 | −308.888 |
(0.994) | (−0.909) | (1.829) | (−0.079) | |
L1 Cropland | 0.972 ** | 0.000 | 0.000 | 0.000 |
(19.446) | (1.837) | (0.298) | (1.122) | |
L1 TAVG (°C) | −3,462,212.556 | 0.617 ** | −40.557 * | −175.015 |
(−1.040) | (3.746) | (−2.033) | (−1.560) | |
L1 PRCP (mm) | 20,631.250 | −0.003 | −0.290 | 0.166 |
(0.545) | (−1.368) | (−1.277) | (0.130) | |
L1 SUN (h) | −3621.175 | 0.000 | −0.043 | −0.149 |
(−0.491) | (0.508) | (−0.984) | (−0.602) |
Indicators | Forest | TAVG (°C) | PRCP (mm) | SUN (h) |
---|---|---|---|---|
Constant | −135,566,461.890 | 34.812 * | 514.636 | 12,026.825 |
(−0.546) | (2.458) | (0.292) | (1.189) | |
L1 Forest | 1.029 ** | −0.000 * | 0.000 | −0.000 |
(15.542) | (−2.204) | (0.546) | (−0.848) | |
L1 TAVG (°C) | 2,601,863.612 | 0.535 ** | −29.518 | −174.012 |
(0.850) | (3.062) | (−1.358) | (−1.395) | |
L1 PRCP (mm) | 5892.773 | −0.002 | −0.309 | 0.208 |
(0.185) | (−1.259) | (−1.364) | (0.160) | |
L1 SUN (h) | 1252.559 | 0.000 | −0.033 | −0.126 |
(0.204) | (0.473) | (−0.748) | (−0.504) |
Indicators | Grassland | TAVG (°C) | PRCP (mm) | SUN (h) |
---|---|---|---|---|
Constant | 1,147,261,817 | −4.613 | 4693.669 | −20,655.047 |
(1.891) | (−0.143) | (1.671) | (−1.051) | |
L2 Grassland | −0.698 ** | −0.000 | −0.000 | 0.000 * |
(−2.912) | (−1.369) | (−0.323) | (2.313) | |
L2 TAVG (°C) | 13,144,985.009 * | 0.315 | −46.521 | −620.418 ** |
(2.207) | (0.998) | (−1.687) | (−3.216) | |
L2 PRCP (mm) | −131,017.355 ** | −0.002 | 0.042 | 1.116 |
(−3.371) | (−0.791) | (0.235) | (0.886) | |
L2 SUN (h) | 5074.483 | 0.000 | 0.018 | −0.142 |
(0.739) | (0.880) | (0.562) | (−0.640) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, S.; Shi, X.; Wang, C.; Li, L.; Liu, S.; Li, D. Impacts of Climate Change in China: Northward Migration of Isohyets and Reduction in Cropland. Land 2025, 14, 1417. https://doi.org/10.3390/land14071417
Li X, Liu S, Shi X, Wang C, Li L, Liu S, Li D. Impacts of Climate Change in China: Northward Migration of Isohyets and Reduction in Cropland. Land. 2025; 14(7):1417. https://doi.org/10.3390/land14071417
Chicago/Turabian StyleLi, Xinyu, Siming Liu, Xinjie Shi, Chunyu Wang, Ling Li, Siyuan Liu, and Donghao Li. 2025. "Impacts of Climate Change in China: Northward Migration of Isohyets and Reduction in Cropland" Land 14, no. 7: 1417. https://doi.org/10.3390/land14071417
APA StyleLi, X., Liu, S., Shi, X., Wang, C., Li, L., Liu, S., & Li, D. (2025). Impacts of Climate Change in China: Northward Migration of Isohyets and Reduction in Cropland. Land, 14(7), 1417. https://doi.org/10.3390/land14071417