Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = forest biomass supply chain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2373 KB  
Systematic Review
Sustainable Supply Chains in the Forest Bioeconomy: A Systematic Review
by Hamish van der Ven and Kodiak Bear
Sustainability 2025, 17(21), 9738; https://doi.org/10.3390/su17219738 - 31 Oct 2025
Viewed by 741
Abstract
The forest bioeconomy is an emerging global sector that uses forest material to make value-added bioproducts that range from pharmaceuticals to biofuels. Notwithstanding their capacity to advance various United Nations Sustainable Development Goals, forest bioproducts face considerable sustainability challenges in global supply chains [...] Read more.
The forest bioeconomy is an emerging global sector that uses forest material to make value-added bioproducts that range from pharmaceuticals to biofuels. Notwithstanding their capacity to advance various United Nations Sustainable Development Goals, forest bioproducts face considerable sustainability challenges in global supply chains associated with harvesting, processing, and transportation. Using a systematic literature review focused on challenges and solutions to sustainability in forest bioeconomy supply chains, we analyze 81 peer-reviewed studies to identify the primary sustainability challenges and their attendant solutions. We find that economic barriers to scaling the forest bioeconomy are the most commonly studied challenge, while social and environmental challenges are often marginalized. Increasing stakeholder engagement is the most commonly mentioned solution, but the limitations of stakeholder engagement are largely absent from scholarly discourse. Lastly, we identify significant gaps in the literature related to coverage of non-European countries and analysis of key sectors like mass timber construction. The results gesture to the need for more research on under-represented regions and sectors, greater attention to social and environmental supply chain challenges, and deeper engagement with adjacent literatures on the intersection of public policy with sustainable supply chain governance. Full article
Show Figures

Figure 1

19 pages, 4009 KB  
Article
An Integrated GIS–MILP Framework for Cost-Optimal Forest Biomass-to-Bioenergy Supply Chains: A Case Study in Queensland, Australia
by Sam Van Holsbeeck, Mauricio Acuna and Sättar Ezzati
Forests 2025, 16(9), 1467; https://doi.org/10.3390/f16091467 - 15 Sep 2025
Viewed by 679
Abstract
Renewable energy expansion requires cost-effective strategies to integrate underutilized biomass resources into energy systems. In Australia, forest residues represent a significant but largely untapped feedstock that could contribute to a more diversified energy portfolio. This study presents an integrated geospatial and optimization decision-support [...] Read more.
Renewable energy expansion requires cost-effective strategies to integrate underutilized biomass resources into energy systems. In Australia, forest residues represent a significant but largely untapped feedstock that could contribute to a more diversified energy portfolio. This study presents an integrated geospatial and optimization decision-support model designed to minimize the total cost of forest biomass-to-bioenergy supply chains through optimal facility selection and network design. The model combined geographic information systems with mixed-integer linear programming to identify the optimal candidate facility sites based on spatial constraints, biomass availability and infrastructure proximity. These inputs then informed an optimization framework that determined the number, size, and geographical distribution of bioenergy plants. The model was applied to a case study in Queensland, Australia, evaluating two strategic scenarios: (i) a biomass-driven approach that maximizes the use of forest residues; (ii) an energydriven approach that aligns facilities with regional energy consumption patterns. Results indicated that increasing the minimum facility size reduced overall costs by capitalizing on economies of scale. Biomass collection accounted for 81%–83% of total supply chain costs (excluding capital installation), emphasizing the need for logistically efficient sourcing strategies. Furthermore, the system exhibited high sensitivity to transportation distance and biomass availability; energy demands exceeding 400 MW resulted in sharply escalating transport expenses. This study provides a scalable, data-driven framework for the strategic planning of forest-based bioenergy systems. It offers actionable insights for policymakers and industry stakeholders to support the development of robust, cost-effective, and sustainable bioenergy supply chains in Australia and other regions with similar biomass resources. Full article
(This article belongs to the Special Issue Forest-Based Biomass for Bioenergy)
Show Figures

Figure 1

15 pages, 638 KB  
Article
Polymeric Applications of Cellulose from Tibouchina lepidota (Bonpl.) Baill Extracted from Sustainable Forest Residues
by Dennis Renato Manzano Vela, Rolando Fabian Zabala Vizuete, Ana Carola Flores Mancheno and Edison Marcelo Salas Castelo
Int. J. Mol. Sci. 2025, 26(17), 8592; https://doi.org/10.3390/ijms26178592 - 4 Sep 2025
Viewed by 846
Abstract
The extraction of cellulose from underutilized forest residues can diversify bio-based material supply chains and reduce pressure on commercial pulps. In this study, cellulose was isolated from Tibouchina lepidota (Bonpl.) Baill pruning residues through an alkaline–acid–oxidative protocol, and its suitability for [...] Read more.
The extraction of cellulose from underutilized forest residues can diversify bio-based material supply chains and reduce pressure on commercial pulps. In this study, cellulose was isolated from Tibouchina lepidota (Bonpl.) Baill pruning residues through an alkaline–acid–oxidative protocol, and its suitability for polymeric applications was evaluated. Two granulometric fractions (250 µm and 125 µm) were used; the yields were 4.73 ± 0.12 g and 3.62 ± 0.11 g per 50 g of biomass, equivalent to 90.5% and 92.8% recovery, respectively (fractional remains as bleached pulp after removal of non-cellulosic components). Fourier Transform Infrared spectroscopy (FTIR) showed the disappearance of lignin and hemicelluloses bands and a pronounced β-glucopyranosic signal at 894 cm−1, indicating high purity. Selective solubility in 17.5% NaOH classified the polymer as β-cellulose, suitable for wet spinning and film regeneration. Optical microscopy revealed smooth fibers of 25–50 µm length and 0.5–1 µm diameter, with aspect ratios ≥ 50, indicating favorable morphology for load transfer in composites. Statistical analysis (Shapiro–Wilk, F-test, and Student’s t-test) confirmed the significant influence of particle size on yield (p < 10−15). Overall, T. lepidota residues constitute a viable source of high-purity β-cellulose, whose molecular integrity and microstructure satisfy the requirements of sustainable polymeric manufacturing. Full article
Show Figures

Figure 1

27 pages, 1137 KB  
Article
Enhancing Flexibility in Forest Biomass Procurement: A Matheuristic Approach for Resilient Bioenergy Supply Chains Under Resource Variability
by Reinaldo Gomes, Alexandra Marques, Fábio Neves-Moreira, Carlos Amaral Netto, Ruxanda Godina Silva and Pedro Amorim
Processes 2025, 13(7), 2074; https://doi.org/10.3390/pr13072074 - 30 Jun 2025
Viewed by 711
Abstract
The sustainable utilization of forest biomass for bioenergy production is increasingly challenged by the variability and unpredictability of raw material availability. These challenges are particularly critical in regions like Central Portugal, where seasonality, dispersed resources, and wildfire prevention policies disrupt procurement planning. This [...] Read more.
The sustainable utilization of forest biomass for bioenergy production is increasingly challenged by the variability and unpredictability of raw material availability. These challenges are particularly critical in regions like Central Portugal, where seasonality, dispersed resources, and wildfire prevention policies disrupt procurement planning. This study investigates two flexibility strategies—dynamic network reconfiguration and operations postponement—as policy relevant tools to enhance resilience in forest-to-bioenergy supply chains. A novel mathematical model, the mobile Facility Location Problem with dynamic Operations Assignment (mFLP-dOA), is proposed and solved using a scalable matheuristic approach. Applying the model to a real case study, we demonstrate that incorporating temporary intermediate nodes and adaptable processing schedules can reduce costs by up to 17% while improving operational responsiveness and reducing non-productive machine time. The findings offer strategic insights for policymakers, biomass operators, and regional planners aiming to design more adaptive and cost-effective biomass supply systems, particularly under environmental risk scenarios such as summer operation bans. This work supports evidence-based planning and investment in flexible logistics infrastructure for cleaner and more resilient bioenergy supply chains. Full article
(This article belongs to the Special Issue Research on Biomass Energy and Resource Utilization Technology)
Show Figures

Figure 1

30 pages, 4703 KB  
Article
Governance-Centred Industrial Symbiosis for Circular Economy Transitions: A Rural Forest Biomass Hub Framework Proposal
by Joel Joaquim de Santana Filho, Pedro Dinis Gaspar, Arminda do Paço and Sara M. Marcelino
Sustainability 2025, 17(12), 5659; https://doi.org/10.3390/su17125659 - 19 Jun 2025
Cited by 8 | Viewed by 2883
Abstract
This study examines the establishment of a Hub for Circular Economy and Industrial Symbiosis (HUB-CEIS) centred on a forest biomass waste plant in Fundão, Portugal, presenting an innovative model for rural industrial symbiosis, circular economy governance, and sustainable waste management. Designed as a [...] Read more.
This study examines the establishment of a Hub for Circular Economy and Industrial Symbiosis (HUB-CEIS) centred on a forest biomass waste plant in Fundão, Portugal, presenting an innovative model for rural industrial symbiosis, circular economy governance, and sustainable waste management. Designed as a strategic node within a reverse supply chain, the hub facilitates the conversion of solid waste into renewable energy and high-value co-products, including green hydrogen, tailored for industrial and agricultural applications, with an estimated 120 ktCO2/year reduction and 60 direct jobs. Aligned with the United Nations (UN) Sustainable Development Goals (SDGs) and the Paris Agreement, this initiative addresses global challenges such as decarbonization, resource efficiency, and the energy transition. Employing a mixed research methodology, this study integrates a comprehensive literature review, in-depth stakeholder interviews, and comparative case study analysis to formulate a governance framework fostering regional partnerships between industry, government, and local communities. The findings highlight Fundão’s potential to become a benchmark for rural industrial symbiosis, offering a replicable model for circularity in non-urban contexts, with a projected investment of USD 60 M. Special emphasis is placed on the green hydrogen value chain, positioning it as a key enabler for regional sustainability. This research underscores the importance of cross-sectoral collaboration in achieving scalable and efficient waste recovery processes. By delivering practical insights and a robust governance structure, the study contributes to the circular economy literature, providing actionable strategies for implementing rural reverse supply chains. Beyond validating waste valorization and renewable energy production, the proposed hub establishes a blueprint for sustainable rural industrial development, promoting long-term industrial symbiosis integration. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

16 pages, 1854 KB  
Article
Sustainable Heat Production for Fossil Fuel Replacement—Life Cycle Assessment for Plant Biomass Renewable Energy Sources
by Isabel Brás, Massimiliano Fabbricino, José Ferreira, Elisabete Silva and Vincenzo Mignano
Sustainability 2025, 17(7), 3109; https://doi.org/10.3390/su17073109 - 1 Apr 2025
Cited by 3 | Viewed by 1335
Abstract
This study aims to assess the environmental impact of using wood-based biomass as a high-efficiency fuel alternative to fossil fuels for heat production. To achieve this, the life cycle of biomass transformation, utilization, and disposal was analyzed using the life cycle assessment (LCA) [...] Read more.
This study aims to assess the environmental impact of using wood-based biomass as a high-efficiency fuel alternative to fossil fuels for heat production. To achieve this, the life cycle of biomass transformation, utilization, and disposal was analyzed using the life cycle assessment (LCA) methodology with SimaPro 9.5.0.2 PhD software. The system boundaries included extraction, processing, transportation, combustion, and waste management, following a cradle-to-gate approach. A comparative analysis was conducted between natural gas, the most widely used conventional heating fuel, and two biomass-based fuels: wood pellets and wood chips. The results indicate that biomass utilization reduces greenhouse gas emissions (−19%) and fossil resource depletion (−16%) while providing environmental benefits across all assessed impact categories analyzed, except for land use (+96%). Biomass is also to be preferred for forest waste management, ease of supply, and energy independence. However, critical life cycle phases, such as raw material processing and transportation, were found to contribute significantly to human health and ecosystem well-being. To mitigate these effects, optimizing combustion efficiency, improving supply chain logistics, and promoting sustainable forestry practices are recommended. These findings highlight the potential of biomass as a viable renewable energy source and provide insights into strategies for minimizing its environmental footprint. Full article
Show Figures

Figure 1

33 pages, 3634 KB  
Review
Biopolymers Derived from Forest Biomass for the Sustainable Textile Industry
by Juliana C. Dias, Susana Marques, Pedro C. Branco, Thomas Rodrigues, Cristiana A. V. Torres, Filomena Freitas, Dmitry V. Evtyugin and Carla J. Silva
Forests 2025, 16(1), 163; https://doi.org/10.3390/f16010163 - 16 Jan 2025
Cited by 8 | Viewed by 3115
Abstract
In line with environmental awareness movements and social concerns, the textile industry is prioritizing sustainability in its strategic planning, product decisions, and brand initiatives. The use of non-biodegradable materials, obtained from non-renewable sources, contributes heavily to environmental pollution throughout the textile production chain. [...] Read more.
In line with environmental awareness movements and social concerns, the textile industry is prioritizing sustainability in its strategic planning, product decisions, and brand initiatives. The use of non-biodegradable materials, obtained from non-renewable sources, contributes heavily to environmental pollution throughout the textile production chain. As sustainable alternatives, considerable efforts are being made to incorporate biodegradable biopolymers derived from residual biomass, with reasonable production costs, to replace or reduce the use of synthetic petrochemical-based polymers. However, the commercial deployment of these biopolymers is dependent on high biomass availability and a cost-effective supply. Residual forest biomass, with lignocellulosic composition and seasonably available at low cost, constitutes an attractive renewable resource that might be used as raw material. Thus, this review aims at carrying out a comprehensive analysis of the existing literature on the use of residual forest biomass as a source of new biomaterials for the textile industry, identifying current gaps or problems. Three specific biopolymers are considered: lignin that is recovered from forest biomass, and the bacterial biopolymers poly(hydroxyalkanoates) (PHAs) and bacterial cellulose (BC), which can be produced from sugar-rich hydrolysates derived from the polysaccharide fractions of forest biomass. Lignin, PHA, and BC can find use in textile applications, for example, to develop fibers or technical textiles, thus replacing the currently used synthetic materials. This approach will considerably contribute to improving the sustainability of the textile industry by reducing the amount of non-biodegradable materials upon disposal of textiles, reducing their environmental impact. Moreover, the integration of residual forest biomass as renewable raw material to produce advanced biomaterials for the textile industry is consistent with the principles of the circular economy and the bioeconomy and offers potential for the development of innovative materials for this industry. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

15 pages, 2165 KB  
Article
Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland
by Jan Banaś, Katarzyna Utnik-Banaś and Stanisław Zięba
Energies 2024, 17(13), 3136; https://doi.org/10.3390/en17133136 - 26 Jun 2024
Cited by 3 | Viewed by 2373
Abstract
The growing demand for social and regulatory forest ecosystem services can significantly modify the availability and cost of biomass for energy purposes. This article presents a model for optimizing biomass supply chains using a linear programming framework integrated with a geographic information system [...] Read more.
The growing demand for social and regulatory forest ecosystem services can significantly modify the availability and cost of biomass for energy purposes. This article presents a model for optimizing biomass supply chains using a linear programming framework integrated with a geographic information system (GIS). Based on a given type of biomass resource, its calorific value, price, distance from the power plant, and transportation costs, the model identifies the optimal source of biomass, allowing it to cover the demand for the required total energy value with the lowest possible costs. The case study includes the Połaniec power plant in southeastern Poland and potential sources of forest biomass and agricultural straw within 100 km of the plant. The impact of constraints on the availability and cost of biomass was analyzed in the following scenarios: (1) all forest and agriculture biomass is available, (2) forest area in Natura 2000 network is excluded, and (3) firewood and forests with dominated ecological and social function are excluded. Unit costs of biomass varied depending on biomass availability and energy demands. The lowest unit costs of biomass (3.19 EUR/MJ) were for energy demand at the level of 1 TJ yearly for all kinds of biomass and the highest (4.91 EUR/MJ) for ecological and social constraints and energy demand 4 TJ. As energy demand increased, unit costs increased, and the ability to meet this demand with just one type of biomass decreased. The energy biomass sector can utilize the model to benefit both biomass producers and their final buyers. Full article
(This article belongs to the Special Issue Sustainable Biomass Energy Production and Utilization)
Show Figures

Graphical abstract

27 pages, 1440 KB  
Review
Research Trends and Future Direction for Utilization of Woody Biomass in Japan
by Junnan Zhou and Tomohiro Tabata
Appl. Sci. 2024, 14(5), 2205; https://doi.org/10.3390/app14052205 - 6 Mar 2024
Cited by 4 | Viewed by 3567
Abstract
After nearly a decade of rapid development, woody biomass has been widely used in Japan for power generation and heating. However, it has faced bottlenecks in recent years, leading to a decline in its popularity. This study aimed to elucidate the current status [...] Read more.
After nearly a decade of rapid development, woody biomass has been widely used in Japan for power generation and heating. However, it has faced bottlenecks in recent years, leading to a decline in its popularity. This study aimed to elucidate the current status of woody biomass utilization in Japan by reviewing relevant research papers on upstream resource supply and downstream case studies in the supply chain. The supply potential of woody biomass estimated by reviewed articles ranges from 1.2 to 5.5 m3/year/ha, yet a significant portion of this potential cannot be exploited. The utilization of government subsidies, mechanization, and aggregated forests can substantially enhance the availability. The utilization of woody biomass has garnered widespread attention from the Japanese government and private enterprises, presenting an economic impact ranging from 66 to 249 million JPY/t, along with a GHG emission reduction spanning from −17.29 to 202.44 kg-CO2eq/GJ. However, balancing cost and scale remains the primary challenge facing woody biomass utilization in Japan. Full article
(This article belongs to the Special Issue Sustainable Biomass Energy: Recent Technologies and Applications)
Show Figures

Figure 1

19 pages, 2614 KB  
Article
Towards a Bioeconomy: Supplying Forest Residues for the Australian Market
by Leanda C. Garvie, David J. Lee and Biljana Kulišić
Energies 2024, 17(2), 397; https://doi.org/10.3390/en17020397 - 12 Jan 2024
Cited by 2 | Viewed by 2685
Abstract
Australia has abundant volumes of forest residues that are a potential feedstock for supplying biomass as a renewable carbon carrier to the market. However, there remains an underutilization of this resource, even in mature bioeconomy markets. Several existing or perceived barriers can be [...] Read more.
Australia has abundant volumes of forest residues that are a potential feedstock for supplying biomass as a renewable carbon carrier to the market. However, there remains an underutilization of this resource, even in mature bioeconomy markets. Several existing or perceived barriers can be attributed to the underdeveloped, forest-based bioeconomy in Australia. One of these is the limited understanding of feedstock supply costs. In this study, two ranking approaches were applied to identify the optimal biomass feedstock supply chain from field to conversion plant gate. A panel of experts embedded in the Australian bioeconomy were employed to first assign ranks to biomass supply chain items by cost intensity. Then, a layer of analytic hierarchical process (AHP) was used to weigh and rank various biomass supply pathways by efficiency. The results reveal that biomass extraction ranks the highest and biomass feedstock storage ranks the lowest, relative to other supply chain costs. Extracting and chipping material in the field attracted the most support from the experts in terms of efficiency, followed by transporting and chipping at the roadside and, finally, transporting and chipping at the conversion plant. This study provides insights for designers of the forest-based bioeconomy in Australia into relative cost drivers that may be applied to investment and industry decisions. It also provides a framework to support further investigations into forest biomass development and the management of biomass as a renewable carbon carrier at a time when Australia is transitioning from an energy policy focused on fossil fuels to a renewable energy strategy. Full article
Show Figures

Figure 1

25 pages, 3111 KB  
Article
Forest Supply Chain for Bioenergy: An Approach for Biomass Study in the Framework of a Circular Bioeconomy
by Silvina M. Manrique, Carolina R. Subelza, María Antonia Toro, Quelbis R. Quintero Bertel and Raúl J. Tauro
Energies 2023, 16(20), 7140; https://doi.org/10.3390/en16207140 - 18 Oct 2023
Cited by 3 | Viewed by 2628
Abstract
To ensure the long-term viability of a circular bioeconomy based on native forests, it is crucial to enhance our understanding and overcome existing disparities in knowledge and application throughout the entire value chain of forest products. The objective of this article is to [...] Read more.
To ensure the long-term viability of a circular bioeconomy based on native forests, it is crucial to enhance our understanding and overcome existing disparities in knowledge and application throughout the entire value chain of forest products. The objective of this article is to contribute towards this goal and facilitate the proper management of forest biomass. Firstly, a methodology is proposed for the study of biomass throughout the native forest value chain, identifying the main steps, criteria, and variables to consider. This approach is evaluated through a case study in Argentina, where over 2370 tons of biomass are wasted annually. A series of strategies for analyzing the most suitable uses and applications for this biomass are examined. Finally, some key approaches for the promotion of a circular and sustainable forest bioeconomy are identified. While it is true that there is still a long way to go before small rural economies can make a more efficient and comprehensive use of their resources (potentially including small biorefineries) with appropriate cascade use schemes, moving towards biomass energy use constitutes a practical and concrete alternative today. This proposal provides tools for accelerating this necessary ecological and energy transition. Full article
(This article belongs to the Special Issue Rural Renewable Energy Utilization and Electrification II)
Show Figures

Figure 1

22 pages, 8988 KB  
Article
Estimation of the Overmature Wood Stock and the Projection of the Maximum Wood Mobilization Potential up to 2100 in Hungary
by Attila Borovics, Tamás Mertl, Éva Király and Péter Kottek
Forests 2023, 14(8), 1516; https://doi.org/10.3390/f14081516 - 25 Jul 2023
Cited by 9 | Viewed by 2555
Abstract
The demand for woody biomass as a key raw material of the developing circular bioeconomy is expected to increase. This has led to the need of increased timber productivity and the search for new procurement methods, new assortments, and innovative supply chains. Timber [...] Read more.
The demand for woody biomass as a key raw material of the developing circular bioeconomy is expected to increase. This has led to the need of increased timber productivity and the search for new procurement methods, new assortments, and innovative supply chains. Timber is regarded as a climate-friendly resource, which can contribute to climate change mitigation through long-term carbon storage and through the substitution of fossil products and fossil fuels. Thus, it is of high importance to assess the amount of timber that can be harvested without compromising sustainability concerns. In this paper, we examined the amount of the wood stock accumulated in overmature stands in Hungary. We define overmature stands being those stands where the actual age of the stand is over its cutting age prescribed by the forest authority. According to our results, 11.5% of the standing volume in Hungary is overmature, and the wood stock of overmature stands has increased by more than 250% in the last 40 years. The importance of the overmature forests is enormous, as they represent an unused wood stock reserve, which could be available to meet the growing demand for timber. In our study, we also conducted a simple yield table-based projection on the maximum amount of timber available for harvest in the period 2020–2100 based on the data of the national forestry database and the cutting ages prescribed by the forest authority in the forest management plans. According to our results, even without new afforestation, more timber becomes available for harvest annually in the 2020–2100 period than the level of the average harvests of the last five historic years. In the 2020–2050 period, an additional 56% of timber is projected to become available for harvest as a maximum. This means a maximum additional potential of 4059 thousand m3, even without the harvesting of the stands, which were already overmature in the starting year of the projection. In the first part of the projection period, industrial wood available for harvest is forecasted to be above the average historic level of industrial wood production. However, in the second part of the projection period, the industrial wood yield shows a decreasing tendency and even drops below the 2017–2021 average. The decreasing availability of industrial roundwood in the second part of the projection period points out the importance of innovation in the wood industry. The inclusion of drought tolerant species, which are nowadays less used for industrial purposes seems inevitable in the production of high-quality wood products. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

13 pages, 1461 KB  
Review
Pellet Production from Pruning and Alternative Forest Biomass: A Review of the Most Recent Research Findings
by Rodolfo Picchio, Nicolò Di Marzio, Luca Cozzolino, Rachele Venanzi, Walter Stefanoni, Leonardo Bianchini, Luigi Pari and Francesco Latterini
Materials 2023, 16(13), 4689; https://doi.org/10.3390/ma16134689 - 29 Jun 2023
Cited by 15 | Viewed by 3463
Abstract
Typically, coniferous sawdust from debarked stems is used to make pellets. Given the high lignin content, which ensures strong binding and high calorific values, this feedstock provides the best quality available. However, finding alternative feedstocks for pellet production is crucial if small-scale pellet [...] Read more.
Typically, coniferous sawdust from debarked stems is used to make pellets. Given the high lignin content, which ensures strong binding and high calorific values, this feedstock provides the best quality available. However, finding alternative feedstocks for pellet production is crucial if small-scale pellet production is to be developed and used to support the economy and energy independence of rural communities. These communities have to be able to create pellets devoid of additives and without biomass pre-processing so that the feedstock price remains low. The features of pellets made from other sources of forest biomass, such as different types of waste, broadleaf species, and pruning biomass, have attracted some attention in this context. This review sought to provide an overview of the most recent (2019–2023) knowledge on the subject and to bring into consideration potential feedstocks for the growth of small-scale pellet production. Findings from the literature show that poor bulk density and mechanical durability are the most frequent issues when making pellets from different feedstocks. All of the tested alternative biomass typologies have these shortcomings, which are also a result of the use of low-performance pelletizers in small-scale production, preventing the achievement of adequate mechanical qualities. Pellets made from pruning biomass, coniferous residues, and wood from short-rotation coppice plants all have significant flaws in terms of ash content and, in some cases, nitrogen, sulfur, and chlorine content as well. All things considered, research suggests that broadleaf wood from beech and oak trees, collected through routine forest management activities, makes the best feasible feedstock for small-scale pellet production. Despite having poor mechanical qualities, these feedstocks can provide pellets with a low ash level. High ash content is a significant disadvantage when considering pellet manufacture and use on a small scale since it can significantly raise maintenance costs, compromising the supply chain’s ability to operate cost-effectively. Pellets with low bulk density and low mechanical durability can be successfully used in a small-scale supply chain with the advantages of reducing travel distance from the production site and storage time. Full article
(This article belongs to the Special Issue Mechanical Processing of Granular and Fibrous Materials)
Show Figures

Figure 1

12 pages, 3417 KB  
Article
Modern Animal Traction to Enhance the Supply Chain of Residual Biomass
by Leonel J. R. Nunes, Joana Nogueira, João B. Rodrigues, João C. Azevedo, Emanuel Oliveira, Tomás de Figueiredo and Juan Picos
AgriEngineering 2023, 5(2), 1039-1050; https://doi.org/10.3390/agriengineering5020065 - 2 Jun 2023
Cited by 9 | Viewed by 2873
Abstract
Throughout history, the use of animals for agricultural and forestry work has been closely associated with human societies, with multiple references to animal power being utilized for various tasks since the Neolithic period. However, the advent of industrialization has fundamentally transformed the reality [...] Read more.
Throughout history, the use of animals for agricultural and forestry work has been closely associated with human societies, with multiple references to animal power being utilized for various tasks since the Neolithic period. However, the advent of industrialization has fundamentally transformed the reality of society, leading to a significant shift towards the mechanization of processes. Despite this, animal traction continues to play an important role as a workforce in many developing countries and developed nations, where there is a renewed interest in the use of animal traction, particularly for tasks intended to have a reduced environmental impact and a smaller carbon footprint. The present study conducted a SWOT analysis to examine the potential of animal traction as an alternative for the recovery processes of forest residual woody biomass, particularly when the use of mechanical equipment is not feasible. This can contribute to the creation of value chains for residual products, which can be harnessed for energy recovery. The utilization of modern animal traction can promote the sustainable development of projects at the local and regional level, with efficient utilization of endogenous resources and the creation of value for residual forest woody biomass. This approach can thus facilitate the optimization of supply chains, from biomass to energy. Full article
Show Figures

Figure 1

25 pages, 7087 KB  
Article
Managing Disruptions in a Biomass Supply Chain: A Decision Support System Based on Simulation/Optimisation
by Henrique Piqueiro, Reinaldo Gomes, Romão Santos and Jorge Pinho de Sousa
Sustainability 2023, 15(9), 7650; https://doi.org/10.3390/su15097650 - 6 May 2023
Cited by 13 | Viewed by 4199
Abstract
To design and deploy their supply chains, companies must naturally take quite different decisions, some being strategic or tactical, and others of an operational nature. This work resulted in a decision support system for optimising a biomass supply chain in Portugal, allowing a [...] Read more.
To design and deploy their supply chains, companies must naturally take quite different decisions, some being strategic or tactical, and others of an operational nature. This work resulted in a decision support system for optimising a biomass supply chain in Portugal, allowing a more efficient operations management, and enhancing the design process. Uncertainty and variability in the biomass supply chain is a critical issue that needs to be considered in the production planning of bioenergy plants. A simulation/optimisation framework was developed to support decision-making, by combining plans generated by a resource allocation optimisation model with the simulation of disruptive wildfire scenarios in the forest biomass supply chain. Different scenarios have been generated to address uncertainty and variability in the quantity and quality of raw materials in the different supply nodes. Computational results show that this simulation/optimisation approach can have a significant impact in the operations efficiency, particularly when disruptions occur closer to the end of the planning horizon. The approach seems to be easily scalable and easy to extend to other sectors. Full article
(This article belongs to the Special Issue Advances in Sustainable Operations and Supply Chain Management)
Show Figures

Figure 1

Back to TopTop