Modern Animal Traction to Enhance the Supply Chain of Residual Biomass
Abstract
:1. Introduction
2. Literature Review
3. SWOT Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stupak, I.; Lattimore, B.; Titus, B.D.; Smith, C.T. Criteria and indicators for sustainable forest fuel production and harvesting: A review of current standards for sustainable forest management. Biomass Bioenergy 2011, 35, 3287–3308. [Google Scholar] [CrossRef]
- Mafakheri, F.; Nasiri, F. Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions. Energy Policy 2014, 67, 116–126. [Google Scholar] [CrossRef]
- Sharma, B.; Ingalls, R.G.; Jones, C.L.; Khanchi, A. Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future. Renew. Sustain. Energy Rev. 2013, 24, 608–627. [Google Scholar] [CrossRef]
- Yue, D.; You, F.; Snyder, S.W. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput. Chem. Eng. 2014, 66, 36–56. [Google Scholar] [CrossRef]
- Eranki, P.L.; Bals, B.D.; Dale, B.E. Advanced regional biomass processing depots: A key to the logistical challenges of the cellulosic biofuel industry. Biofuels Bioprod. Biorefining 2011, 5, 621–630. [Google Scholar] [CrossRef]
- Salehi, S.; Mehrjerdi, Y.Z.; Sadegheih, A.; Hosseini-Nasab, H. Designing a resilient and sustainable biomass supply chain network through the optimization approach under uncertainty and the disruption. J. Clean. Prod. 2022, 359, 131741. [Google Scholar] [CrossRef]
- Shabani, N.; Akhtari, S.; Sowlati, T. Value chain optimization of forest biomass for bioenergy production: A review. Renew. Sustain. Energy Rev. 2013, 23, 299–311. [Google Scholar] [CrossRef]
- Rentizelas, A.A.; Tolis, A.J.; Tatsiopoulos, I.P. Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Acuna, M.; Sessions, J.; Zamora, R.; Boston, K.; Brown, M.; Ghaffariyan, M.R. Methods to manage and optimize forest biomass supply chains: A review. Curr. For. Rep. 2019, 5, 124–141. [Google Scholar] [CrossRef]
- Florindo, T.; Ferraz, A.I.; Rodrigues, A.C.; Nunes, L.J. Residual biomass recovery in the wine sector: Creation of value chains for vine pruning. Agriculture 2022, 12, 670. [Google Scholar] [CrossRef]
- Spinelli, R.; Visser, R.; Björheden, R.; Röser, D. Recovering energy biomass in conventional forest operations: A review of integrated harvesting systems. Curr. For. Rep. 2019, 5, 90–100. [Google Scholar] [CrossRef]
- Bisson, J.A.; Han, S.-K.; Han, H.-S. Evaluating the system logistics of a centralized biomass recovery operation in Northern California. For. Prod. J. 2016, 66, 88–96. [Google Scholar] [CrossRef]
- Kizha, A.R.; Han, H.-S. Forest residues recovered from whole-tree timber harvesting operations. Eur. J. For. Eng. 2015, 1, 46–55. [Google Scholar]
- Korpinen, O.-J.; Aalto, M.; Kc, R.; Tokola, T.; Ranta, T. Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review. Energies 2023, 16, 893. [Google Scholar] [CrossRef]
- Pérez-Fortes, M.; Laínez-Aguirre, J.M.; Bojarski, A.D.; Puigjaner, L. Optimization of pre-treatment selection for the use of woody waste in co-combustion plants. Chem. Eng. Res. Des. 2014, 92, 1539–1562. [Google Scholar] [CrossRef]
- Zamora, R.; Sessions, J.; Boston, K.; Murphy, G. Economic optimization of forest biomass processing and transport in the Pacific Northwest. For. Sci. 2015, 61, 220–234. [Google Scholar]
- Malladi, K.T.; Sowlati, T. Biomass logistics: A review of important features, optimization modeling and the new trends. Renew. Sustain. Energy Rev. 2018, 94, 587–599. [Google Scholar] [CrossRef]
- Kemmerer, J.; Labelle, E.R. Using harvester data from on-board computers: A review of key findings, opportunities and challenges. Eur. J. For. Res. 2021, 140, 1–17. [Google Scholar] [CrossRef]
- Martinez-Valencia, L.; Camenzind, D.; Wigmosta, M.; Garcia-Perez, M.; Wolcott, M. Biomass supply chain equipment for renewable fuels production: A review. Biomass Bioenergy 2021, 148, 106054. [Google Scholar] [CrossRef]
- Colantoni, A.; Monarca, D.; Laurendi, V.; Villarini, M.; Gambella, F.; Cecchini, M. Smart machines, remote sensing, precision farming, processes, mechatronic, materials and policies for safety and health aspects. Agriculture 2018, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Benos, L.; Tsaopoulos, D.; Bochtis, D. A review on ergonomics in agriculture. part II: Mechanized operations. Appl. Sci. 2020, 10, 3484. [Google Scholar] [CrossRef]
- Picchio, R.; Proto, A.R.; Civitarese, V.; Di Marzio, N.; Latterini, F. Recent contributions of some fields of the electronics in development of forest operations technologies. Electronics 2019, 8, 1465. [Google Scholar] [CrossRef] [Green Version]
- Bogucki, P. Animal traction and household economies in Neolithic Europe. Antiquity 1993, 67, 492–503. [Google Scholar] [CrossRef]
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braidwood, R.J. The agricultural revolution. Sci. Am. 1960, 203, 130–152. [Google Scholar] [CrossRef]
- Zeder, M.A. Central questions in the domestication of plants and animals. Evol. Anthropol. Issues News Rev. 2006, 15, 105–117. [Google Scholar] [CrossRef]
- Campbell, J.R.; Kenealy, M.D.; Campbell, K.L. Animal Sciences: The Biology, Care, and Production of Domestic Animals; Waveland Press: Long Grove, IL, USA, 2009. [Google Scholar]
- Lin, M. Cattle Traction in the Making of Early Civilisations in North China. In Origins of Cattle Traction and the Making of Early Civilisations in North China; Springer: Berlin/Heidelberg, Germany, 2022; pp. 181–200. [Google Scholar]
- White, L.A. Energy and the evolution of culture. Am. Anthropol. 1943, 45, 335–356. [Google Scholar] [CrossRef]
- Negrete, J.C. Agricultural mechanization key to recovery of agriculture of developing countries. ACTA Sci. Agric. 2018, 2, 168–169. [Google Scholar]
- Samuel, R. Mechanization and hand labour in industrializing Britain. In The Industrial Revolution and Work in Nineteenth-Century Europe; Routledge: New York, NY, USA, 2003; pp. 27–45. [Google Scholar]
- Aguilera, E.; Guzmán, G.I.; de Molina, M.G.; Soto, D.; Infante-Amate, J. From animals to machines. The impact of mechanization on the carbon footprint of traction in Spanish agriculture: 1900–2014. J. Clean. Prod. 2019, 221, 295–305. [Google Scholar] [CrossRef]
- Greenberg, D. Reassessing the Power Patterns of the Industrial Revolution: An Anglo-American Comparison. Am. Hist. Rev. 1982, 87, 1237–1261. [Google Scholar] [CrossRef]
- Nourse, E.G. Some economic and social accompaniments of the mechanization of agriculture. Am. Econ. Rev. 1930, 20, 114–132. [Google Scholar]
- Lesorogol, C.K. Asset building through community participation: Restocking pastoralists following drought in northern Kenya. Soc. Work Public Health 2009, 24, 178–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Ma, W.; Li, G. Draft animals, farm machines and sustainable agricultural production: Insight from China. Sustainability 2018, 10, 3015. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Laurel, H.; Rossel, D. Current status of animal traction in Mexico. Agric. Mech. Asia Afr. Lat. Am. 2007, 38, 83. [Google Scholar]
- Brown, A.F. The animals powering the world: Promoting working animal welfare in resource-poor contexts. In Changing Human Behaviour to Enhance Animal Welfare; Sommerville, R., Ed.; CABI: Delemont, Switzerland, 2021; pp. 141–160. [Google Scholar]
- Ramaswamy, N. Draught animal power–socio-economic factors. In Draught Animal Power for Production: Proceedings of the an International Workshop Held at James Cook University, Townsville, Australia, 10–16 July 1985; pp. 20–25.
- Alves, R.R.N. The ethnozoological role of working animals in traction and transport. In Ethnozoology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 339–349. [Google Scholar]
- Falvey, J.L. An Introduction to Working Animals; MPW Australia: Melbourne, Australia, 1985. [Google Scholar]
- Sansoucy, R. Livestock-a driving force for food security and sustainable development. World 1995, 3074, 1035. [Google Scholar]
- Van Damme, P. La traction animate. Philippe Lhoste, Michel Hauard & Eric Vall. CTA Wageningen, 2010. Afr. Focus 2011, 24, 156. [Google Scholar]
- Jansen, J. Agriculture, Energy and Sustainability. Case Studies of a Local Farming Community in Sweden; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2000. [Google Scholar]
- Gantner, R.; Baban, M.; Glavas, H.; Ivanovic, M.; Schlechter, P.; Sumanovac, L.; Zimmer, D. Indices of sustainability of horse traction in agriculture. Econ. East. Croat. Yesterday Today Tommorow 2014, 3, 616–626. [Google Scholar]
- Rodrigues, J.; Schlechter, P.; Spychiger, H.; Spinelli, R.; Oliveira, N.; Figueiredo, T. The XXI century mountains: Sustainable management of mountainous areas based on animal traction. Open Agric. 2017, 2, 300–307. [Google Scholar] [CrossRef]
- Eriksen, S.N. Defining local food: Constructing a new taxonomy–three domains of proximity. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 47–55. [Google Scholar] [CrossRef]
- Kayombo, B.; Lal, R. Effects of soil compaction by rolling on soil structure and development of maize in no-till and disc ploughing systems on a Tropical Alfisol. Soil Tillage Res. 1986, 7, 117–134. [Google Scholar] [CrossRef]
- García-Tomillo, A.; Figueiredo, T.d.; Almeida, A.; Rodrigues, J.; Dafonte Dafonte, J.; Paz-González, A.; Nunes, J.; Hernandez, Z. Comparing effects of tillage treatments performed with animal traction on soil physical properties and soil electrical resistivity: Preliminary experimental results. Open Agric. 2017, 2, 317–328. [Google Scholar] [CrossRef]
- Santos, R.; Figueiredo, T.d.; Fonseca, F.; Costa, O.V. Efeito de mobilizações com tração animal em propriedades físicas do solo: Um estudo experimental em Bragança, Nordeste de Portugal. In Encontro Anual das Ciências do Solo (EACS 2019); Instituto Politecnico de Braganza: Braganza, Portugal, 2019. [Google Scholar]
- Figueiredo, T.d.; García-Tomillo, A.; Almeida, A.; Rodrigues, J.B.; Paz-Gonzalez, A.; Dafonte, J.; Nunes, J.; Hernández, Z.; Bandeira, D.H. Efeito sobre propriedades hidráulicas do solo de mobilizações com tração animal: Resultados de ensaio no NE Portugal. In Proceedings of the IX Congresso Ibérico de Agroengenharia: Livro de Atas, Braganza, Portugal, 4–6 September 2017; pp. 993–1000. [Google Scholar]
- Fuller, R.; Aye, L. Human and animal power—The forgotten renewables. Renew. Energy 2012, 48, 326–332. [Google Scholar] [CrossRef]
- Arias, C.A.B.; Abarzuza, L.L.; Bartolomé, R.A.L.; Fagúndez, J.; Varela, E.R.D.; Varela, R.A.D. Uso de tracción animal en labores selvícolas para la restauración de turberas en Galicia. Rev. Montes 2022, 149, 25–31. [Google Scholar]
Collection | Transportation | Recovery |
---|---|---|
Tree cutting | Loading | Preprocessing 2 |
Cutting branches and treetops | Transport | Processing |
Debarking | Unloading | |
Biomass forwarding 1 | ||
Formation of the log loading spot |
Strengths |
|
Weaknesses |
|
Opportunities |
|
Threats |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Nogueira, J.; Rodrigues, J.B.; Azevedo, J.C.; Oliveira, E.; de Figueiredo, T.; Picos, J. Modern Animal Traction to Enhance the Supply Chain of Residual Biomass. AgriEngineering 2023, 5, 1039-1050. https://doi.org/10.3390/agriengineering5020065
Nunes LJR, Nogueira J, Rodrigues JB, Azevedo JC, Oliveira E, de Figueiredo T, Picos J. Modern Animal Traction to Enhance the Supply Chain of Residual Biomass. AgriEngineering. 2023; 5(2):1039-1050. https://doi.org/10.3390/agriengineering5020065
Chicago/Turabian StyleNunes, Leonel J. R., Joana Nogueira, João B. Rodrigues, João C. Azevedo, Emanuel Oliveira, Tomás de Figueiredo, and Juan Picos. 2023. "Modern Animal Traction to Enhance the Supply Chain of Residual Biomass" AgriEngineering 5, no. 2: 1039-1050. https://doi.org/10.3390/agriengineering5020065
APA StyleNunes, L. J. R., Nogueira, J., Rodrigues, J. B., Azevedo, J. C., Oliveira, E., de Figueiredo, T., & Picos, J. (2023). Modern Animal Traction to Enhance the Supply Chain of Residual Biomass. AgriEngineering, 5(2), 1039-1050. https://doi.org/10.3390/agriengineering5020065