Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = forced aeration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9066 KiB  
Article
Dynamic Modeling of Poultry Litter Composting in High Mountain Climates Using System Identification Techniques
by Alvaro A. Patiño-Forero, Fabian Salazar-Caceres, Harrynson Ramirez-Murillo, Fabiana F. Franceschi, Ricardo Rincón and Geraldynne Sierra-Rueda
Automation 2025, 6(3), 36; https://doi.org/10.3390/automation6030036 - 5 Aug 2025
Abstract
Poultry waste composting is a necessary technique for agricultural farm sustainability. Composting is a dynamic process influenced by multiple variables. Humidity and temperature play fundamental roles in analyzing its different phases according to the environment and composting technique. Current developments for monitoring these [...] Read more.
Poultry waste composting is a necessary technique for agricultural farm sustainability. Composting is a dynamic process influenced by multiple variables. Humidity and temperature play fundamental roles in analyzing its different phases according to the environment and composting technique. Current developments for monitoring these variables include automation via intelligent Internet of Things (IoT)-based sensor networks for variable tracking. These advancements serve as efficient tools for modeling that facilitate the simulation and prediction of composting process variables to improve system efficiency. Therefore, this paper presents the dynamic modeling of composting via forced aeration processes in high-mountain climates, with the intent of estimating biomass temperature dynamics in different phases using system identification techniques. To this end, four dynamic model estimation structures are employed: transfer function (TF), state space (SS), process (P), and Hammerstein–Wiener (HW). The and model quality, fitting results, and standard error metrics of the different models found in each phase are assessed through residual analysis from each structure by validation with real system data. Our results show that the second-order underdamped multiple-input–single-output (MISO) process model with added noise demonstrates the best fit and validation performance. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

16 pages, 2743 KiB  
Article
Optimization of the Organic Matter Content and Temperature in a Bioreactor to Enhance Carbon Monoxide Production During the Initial Phase of Food Waste Composting
by Karolina Sobieraj
Molecules 2025, 30(13), 2807; https://doi.org/10.3390/molecules30132807 - 30 Jun 2025
Viewed by 297
Abstract
Carbon monoxide (CO) is a key reactant in industries like chemicals, pharmaceuticals, and metallurgy, with a projected global market of $8.2 billion by 2032. A novel method of CO production is biowaste composting, but the impact of organic matter content (OMC) on CO [...] Read more.
Carbon monoxide (CO) is a key reactant in industries like chemicals, pharmaceuticals, and metallurgy, with a projected global market of $8.2 billion by 2032. A novel method of CO production is biowaste composting, but the impact of organic matter content (OMC) on CO yield remains unexplored. Since OMC affects composting costs, optimizing it is crucial for economic feasibility. This study aimed to identify the optimal OMC in bioreactors for CO production during food waste composting. A laboratory process was conducted in bioreactors with forced aeration. Food waste (FW) was mixed with gravelite (G) at ratios of 1:0, 1:1, and 1:2 (FW:G), corresponding to 95%, 40%, and 20% dry OMC. Bioreactors were incubated at 45 °C, 60 °C, and 70 °C with ~5% oxygen. The highest CO levels were at 70 °C for FW:G 1:2, with an average of 655 ppm and a maximum of 2000 ppm. Daily CO emissions were highest at 70 °C, reaching up to 1.25 mg. Therefore, the study demonstrated that even a low organic matter content allows for CO production during composting under thermophilic conditions (~70 °C) with limited oxygen. Industrial modeling estimated daily CO yield from 39.25 to 670.61 g, with a 7-day market value between USD 28.89 and USD 175.86. Further studies are needed for large-scale feasibility. Full article
(This article belongs to the Special Issue Innovative Chemical Pathways for CO2 Conversion)
Show Figures

Graphical abstract

14 pages, 5963 KiB  
Article
A Comparison of Static Aeration and Conventional Turning Windrow Techniques: Physicochemical and Microbial Dynamics in Wine Residue Composting
by Rodrigo Morales-Vera, Alex Echeverría-Vega, Hernán Ríos-Rozas, Francisca Barrera-Valenzuela, Denisse Mellado-Quintanilla, Matthias Piesche, Rosa Roa-Roco and Sebastian Tramon
Fermentation 2025, 11(4), 197; https://doi.org/10.3390/fermentation11040197 - 7 Apr 2025
Viewed by 573
Abstract
Chile, one of the top global wine producers, produces a significant quantity of grape pomace waste, composed primarily of peels and seeds, of which their management includes many environmental challenges. Composting offers a sustainable waste management solution, converting organic waste into a rich [...] Read more.
Chile, one of the top global wine producers, produces a significant quantity of grape pomace waste, composed primarily of peels and seeds, of which their management includes many environmental challenges. Composting offers a sustainable waste management solution, converting organic waste into a rich nutrient and beneficial microorganisms for soil amendment. This study compared traditional turning and static forced aeration composting systems using a mix of grape pomace (70 m3), wheat straw (15 m3), and manure (15 m3). The results show no significant differences in the final compost chemical quality between the two systems. Nevertheless, forced aeration (T1) influenced the bacterial community, particularly during the thermophilic stage, leading to a major differentiation compared to traditional composting (T0). Similar Shannon index values for bacterial diversity across stages suggest that both composting methods support comparable levels of bacterial diversity. However, the fungal communities exhibited more variability, likely due to the differences in temperature and aeration conditions between the windrows, which are known to affect fungal growth and activity. While both composting methods met the Chilean regulatory standards and achieved high-quality compost, the forced aeration system demonstrated advantages in temperature control, microbial diversity, and pathogen suppression, suggesting its potential for more efficient composting in similar agricultural contexts. Full article
Show Figures

Figure 1

19 pages, 3554 KiB  
Article
The Impact Aerobic and Anaerobic Incubations of Poultry Litter Have on Class 1 Integron Resistome and Microbiome
by John J. Maurer, Alexa Hoke, Keshav C. Das, Jian Wu, Mark A. Williams, Sydney Kinstler, Casey Ritz, Gregory P. Pittman, Roy Berghaus and Margie D. Lee
Agriculture 2025, 15(4), 398; https://doi.org/10.3390/agriculture15040398 - 13 Feb 2025
Viewed by 1127
Abstract
Animal manure is a desirable fertilizer because of its rich nitrogen, but it also contains a large and diverse reservoir of antimicrobial resistance (AMR) genes (ARGs). To reduce this AMR reservoir, five treatments (passive aeration, forced aeration, static or anaerobic incubations, autoclaving) were [...] Read more.
Animal manure is a desirable fertilizer because of its rich nitrogen, but it also contains a large and diverse reservoir of antimicrobial resistance (AMR) genes (ARGs). To reduce this AMR reservoir, five treatments (passive aeration, forced aeration, static or anaerobic incubations, autoclaving) were assessed for their impact on the poultry litter resistome. Bacterial DNA was extracted from the litter and the qPCR-estimated copy number of 16S rrs, class1 integrons (intI1) and associated resistance genes (aadA, sul1). Then, 16S amplicon metagenomic sequencing was used to determine community diversity and composition. Depending on incubation conditions, class 1 integrons and their associated ARGs were reduced by 0.5 to 1.0 Log10/g poultry litter. Only autoclaving reduced integrons and associated AMR genes by three Log10. Changes in AMR abundance reflected fluctuations in litter bacteriome composition at the family, genus, and sequence variant level. There was a negative correlation between class 1 integron and AMR genes, with genera belonging to Actinobacteria, Firmicutes, and Proteobacteria phyla. While these poultry litter treatments failed to reduce AMR abundance, aerobic and anaerobic treatments reduced taxons that contained pathogenic species. The approach to remediating resistance in poultry litter may be more effective if is focused on reducing bacterial pathogens. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

16 pages, 5857 KiB  
Article
Effect of In Situ Aeration on Ultrafiltration Membrane Fouling Control in Treating Seasonal High-Turbidity Surface Water
by Jiaoying Luo, Yating Hu, Xishou Guo, Ao Wang, Chenghai Lin, Yaru Zhang, Haochun Wang, Yanrui Wang and Xiaobin Tang
Water 2024, 16(15), 2195; https://doi.org/10.3390/w16152195 - 2 Aug 2024
Cited by 4 | Viewed by 1937
Abstract
Direct ultrafiltration (UF) is anticipated to be a promising technology for rural water supply due to its stable permeate quality and ease of automatic operation & maintenance. However, seasonal high turbidity in the surface water resources caused severe membrane fouling, resulting in the [...] Read more.
Direct ultrafiltration (UF) is anticipated to be a promising technology for rural water supply due to its stable permeate quality and ease of automatic operation & maintenance. However, seasonal high turbidity in the surface water resources caused severe membrane fouling, resulting in the requirement of frequent cleaning of the UF process, and limiting the broad application of the direct UF in treating rural surface water. To address this issue, this study investigated the feasibility and mechanism of in situ aeration in alleviating the UF membrane fouling in treating surface water with high turbidity (200, 500, and 800 NTU). The results indicated that with the weak aeration (0.4 m3/(m2·min)), the concentration of polysaccharides accumulated on the membrane surface was high, and serious membrane fouling was observed. With medium aeration (0.8 and 1.2 m3/(m2·min)), bubble shear force could effectively reduce the foulants accumulated on the membrane surface to alleviate the membrane fouling. During the whole experiment, the optimal group (1.2 m3/(m2·min)) showed a 45% lower TMP compared to the control. However, strong aeration (1.6 m3/(m2·min)) caused floc breakage and was less conducive to the membrane fouling control compared to the medium aeration. Furthermore, under in situ aeration, the contents of polysaccharide accumulated on the membrane surface and deposited in the membrane pores were reduced by 8.85%~49.29%, and the structures of the cake layer turned out to be porous and permeable, implying that in situ aeration could significantly modify the structure and composition of the cake layer, contributing to the UF membrane fouling control in treating the seasonal high-turbidity surface water. These findings will provide novel approaches for the application of UF technology in rural water supply. Full article
(This article belongs to the Special Issue Application of Membrane-Based Technology in Water Treatment)
Show Figures

Figure 1

25 pages, 3714 KiB  
Article
Evaluating the Performance of Yarrowia lipolytica 2.2ab in Solid-State Fermentation under Bench-Scale Conditions in a Packed-Tray Bioreactor
by Alejandro Barrios-Nolasco, Carlos Omar Castillo-Araiza, Sergio Huerta-Ochoa, María Isabel Reyes-Arreozola, José Juan Buenrostro-Figueroa and Lilia Arely Prado-Barragán
Fermentation 2024, 10(7), 344; https://doi.org/10.3390/fermentation10070344 - 29 Jun 2024
Cited by 4 | Viewed by 1816
Abstract
Solid-State Fermentation (SSF) offers a valuable process for converting agri-food by-products (AFBP) into high-value metabolites, with Yarrowia lipolytica 2.2ab (Yl2.2ab) showing significant potential under laboratory-scale controlled conditions; however, its assessment in larger-scale bioreactor scenarios is needed. This work evaluates Yl2.2ab’s [...] Read more.
Solid-State Fermentation (SSF) offers a valuable process for converting agri-food by-products (AFBP) into high-value metabolites, with Yarrowia lipolytica 2.2ab (Yl2.2ab) showing significant potential under laboratory-scale controlled conditions; however, its assessment in larger-scale bioreactor scenarios is needed. This work evaluates Yl2.2ab’s performance in a bench-scale custom-designed packed-tray bioreactor. Key features of this bioreactor design include a short packing length, a wall-cooling system, and forced aeration, enhancing hydrodynamics and heat and mass transfer within the tray. Preliminary studies under both abiotic and biotic conditions assessed Yl2.2ab’s adaptability to extreme temperature variations. The results indicated effective oxygen transport but poor heat transfer within the tray bed, with Yl2.2ab leading to a maximum growth rate of 28.15 mgx gssdb−1 h−1 and maximum production of proteases of 40.10 U gssdb−1 h−1, even when temperatures at the packed-tray outlet were around 49 °C. Hybrid-based modeling, incorporating Computational Fluid Dynamics (CFD) and Pseudo-Continuous Simulations (PCSs), elucidated that the forced-aeration system successfully maintained necessary oxygen levels in the bed. However, the low thermal conductivity of AFBP posed challenges for heat transfer. The bioreactor design presents promising avenues for scaling up SSF to valorize AFBP using Yl2.2ab’s extremophilic capabilities. Full article
Show Figures

Figure 1

25 pages, 7148 KiB  
Article
Seismic Performance of Full-Scale Autoclaved Aerated Concrete Panel-Assembled Walls: Experimental Study and Numerical Modeling
by Xiaowei Li, Dongwen Ma, Qidi Zhang, Zhaoqiang Zhang, Han Bao and Yong Yao
Buildings 2024, 14(5), 1333; https://doi.org/10.3390/buildings14051333 - 8 May 2024
Cited by 1 | Viewed by 1578
Abstract
Prefabricated panel-assembled wall systems, comprising a confining frame and infill lightweight panels of autoclaved aerated concrete (AAC), are widely employed in framed structures. Different from studies on a main frame with infill walls, this study aimed to explore the seismic performance of partition [...] Read more.
Prefabricated panel-assembled wall systems, comprising a confining frame and infill lightweight panels of autoclaved aerated concrete (AAC), are widely employed in framed structures. Different from studies on a main frame with infill walls, this study aimed to explore the seismic performance of partition walls, which were fabricated with AAC panel-assembled walls and located outside of the main frames. Two full-scale specimens, one with a door opening and the other without, were constructed and cyclic loading tests were executed to examine the failure modes, hysteresis characteristics, envelope curves, ductility, strength and stiffness degradation, as well as energy dissipation capacity of the AAC panel-assembled walls. Additionally, a restoring-force model for the panel-assembled walls was developed and a method for predicting the lateral load-bearing capacity of the AAC panel-assembled walls was proposed. The findings indicated that the panels enhanced the system’s lateral resistance, energy dissipation capacity, and deformation capability. The door frame increased the initial stiffness, peak lateral load and energy dissipation capacity of the AAC panel-assembled wall compared to the wall without a door frame. Compared to the specimen without a door frame, the peak lateral load of the specimen with a door frame increased by 19.7–30.1%. The deformation capacity of the panel-assembled walls aligned with the requirements for concrete framed structures. Full article
(This article belongs to the Special Issue Recent Study on Seismic Performance of Building Structures)
Show Figures

Figure 1

18 pages, 9579 KiB  
Article
Simplified Model Study of Autoclaved Aerated Concrete Masonry Flexible Connection Infilled Frames with Basalt Fiber Grating Strips
by Xin Wang, Lihong Xiong and Zhuoxin Wang
Buildings 2024, 14(4), 1033; https://doi.org/10.3390/buildings14041033 - 8 Apr 2024
Viewed by 1487
Abstract
Infilled walls and frames typically employ closely spaced rigid connection, which, under seismic actions, can lead to adverse effects such as amplified seismic responses, overall torsion, and the formation of weak layers in the structure. Flexible connection isolating the infilled walls from the [...] Read more.
Infilled walls and frames typically employ closely spaced rigid connection, which, under seismic actions, can lead to adverse effects such as amplified seismic responses, overall torsion, and the formation of weak layers in the structure. Flexible connection isolating the infilled walls from the frames can effectively mitigate the adverse effects of rigid connections. In order to reduce the structural mass and seismic impacts, Autoclaved Aerated Concrete (AAC) masonry flexible connection infilled walls have been widely researched. However, most AAC masonry flexible connection infilled walls require complex process operations for AAC blocks, which is not conducive to practical applications in engineering. Therefore, an AAC flexible connection infilled wall with Basalt Fiber Grating (BFG) strips instead of steel bars, with simplified process operations, has been proposed. Existing finite element models for BFG strip-reinforced AAC masonry flexible connection infilled walls employ solid elements, which are difficult to apply to large-scale structural simulations; moreover, existing simplified models for flexible connection infilled walls cannot simulate out-of-plane loading. In this paper, based on homogenization methods, using simplified elements to simulate components, a simplified model for the BFG strip-reinforced AAC masonry flexible connection infilled frame is proposed. Utilizing this model, stress analyses under both in-plane and out-of-plane loading are conducted and compared with corresponding experimental results. The results indicate that the in-plane simplified model (ISM) fits well with the experimental results in terms of hysteresis curves, with similar relationships between stiffness degradation and strength attenuation. The displacement force curve of the out-of-plane simplified model (OSM) before reaching the peak load is in good agreement with the experimental results. The maximum plastic range of OSM is 5% smaller than the test results, and it can be considered that the plastic ranges of the two are comparable, manifesting the models’ capability to adequately manifest arching behavior. The simplified model enables simulation of out-of-plane loading and provides a new approach for modeling large-scale frame structures with flexible connection infilled wall. Full article
(This article belongs to the Special Issue Research on the Seismic Performance of Reinforced Concrete Structures)
Show Figures

Figure 1

13 pages, 2221 KiB  
Article
The Impact of Decreased Atmospheric Pressure on Forced Aeration of Discharged Flow
by Yijiao Guo, Luchen Zhang, Lei Yu, Shaoze Luo, Chuang Liu and Yuan Liu
Water 2024, 16(2), 353; https://doi.org/10.3390/w16020353 - 21 Jan 2024
Cited by 1 | Viewed by 1703
Abstract
To account for changes in the performance of spillway aerator structures of high-altitude dams, depressurization generalized model experiments and theoretical analyses were conducted in this study. Measurements were taken for ventilation hole air velocity, cavity subpressure, cavity length, and air concentration in crucial [...] Read more.
To account for changes in the performance of spillway aerator structures of high-altitude dams, depressurization generalized model experiments and theoretical analyses were conducted in this study. Measurements were taken for ventilation hole air velocity, cavity subpressure, cavity length, and air concentration in crucial regions. The study proposed correction formulas for the aeration coefficient and water air concentration in aerator devices operating under low atmospheric pressure. The pressure range of the experiments was between 26.3 kPa and 101.3 kPa. The results indicated that with decreasing atmospheric pressure, ventilation hole air velocity, ventilation volume, cavity subpressure, and water air concentration all showed a decreasing trend. For every 15 kPa decrease in pressure, ventilation hole air velocity decreased by approximately 24%. When the atmospheric pressure dropped from 101.3 kPa to 26.3 kPa, the cavity subpressure decreased and eventually approached zero. The maximum reduction in air concentration was 14.9% in the cavity backwater area, 38.5% at the cavity end, and 38.3% in the downstream bubble escape segment. The proposed correction formulas could be used for a rapid estimation of ventilation volume and air concentration in low-pressure environments. This research provides a scientific basis for the design of aeration devices in water projects located in high-altitude regions. Full article
(This article belongs to the Special Issue Advanced Research on Hydraulic Engineering and Hydrological Modelling)
Show Figures

Figure 1

22 pages, 5117 KiB  
Article
Studying Flotation of Gold Microdispersions with Carrier Minerals and Pulp Aeration with a Steam–Air Mixture
by Sergei Ivanovich Evdokimov, Nikolay S. Golikov, Alexey F. Pryalukhin, Viktor V. Kondratiev, Anatolii Mishedchenko, Alexandra Vl. Kuzina, Natalia Nikolaevna Bryukhanova and Antonina I. Karlina
Minerals 2024, 14(1), 108; https://doi.org/10.3390/min14010108 - 19 Jan 2024
Cited by 9 | Viewed by 1796
Abstract
This work is aimed at obtaining new knowledge in the field of interactions of polydisperse hydrophobic surfaces in order to increase the extraction of mineral microdispersions via flotation. The effect of high velocity and the probability of aggregating fine particles with large ones [...] Read more.
This work is aimed at obtaining new knowledge in the field of interactions of polydisperse hydrophobic surfaces in order to increase the extraction of mineral microdispersions via flotation. The effect of high velocity and the probability of aggregating fine particles with large ones are used to increase the extraction of finely dispersed gold in this work. Large particles act as carrier minerals, which are intentionally introduced into a pulp. The novelty of this work lies in the fact that a rougher concentrate is used as the carrier mineral. For this purpose, it is isolated from three parallel pulp streams by mixing the rougher concentrate, isolated from the first stream of raw materials, with an initial feed of the second stream; accordingly, the rougher concentrate of the second stream is mixed with the initial feed of the third stream, and the finished rougher concentrate is obtained. In this mode of extracting the rougher concentrate, the content of the extracted metal increases from stream to stream, which contributes to the growth in its content in the end product. Moreover, in order to supplement forces involved in the separation of minerals with surface forces of structural origin in the third flotation stream, the pulp is aerated for a short time (about 15%–25% of the total) with air bubbles filled with a heat carrier, i.e., hot water vapor. Within this accepted flotation method, the influence that the surface currents occurring in the wetting film have on its thinning and breakthrough kinetics is proposed to be in the form of a correction to a length of a liquid slip in the hydrophobic gap. The value of the correction is expressed as a fraction of the limiting thickness of the wetting film, determined by the condition of its thickness invariability when the streams are equal in an interphase gap: outflowing (due to an action of the downforce) and inflowing (Marangoni flows and a thermo-osmotic stream). Gold flotation experiments are performed on samples of gold-bearing ore obtained from two deposits with conditions that simulate a continuous process. Technological advantages of this developed scheme and a flotation mode of gold microdispersions are shown in comparison with the basic technology. The purpose of this work is to conduct comparative tests on the basic and developed technologies using samples of gold-bearing ore obtained from the Natalka and Olimpiada deposits. Through the use of the developed technology, an increase in gold extraction of 7.99% and in concentrate quality (from 5.09 to 100.3 g/t) is achieved when the yield of the concentrate decreases from 1.86 to 1.30%, which reduces the costs associated with its expensive metallurgical processing. Full article
(This article belongs to the Special Issue Design, Modeling, Optimization and Control of Flotation Process)
Show Figures

Figure 1

14 pages, 2009 KiB  
Article
Evaluation of the Effectiveness of Aeration and Chlorination during Washing to Reduce E. coli O157:H7, Salmonella enterica, and L. innocua on Cucumbers and Bell Peppers
by Julysa A. Benitez, Jyoti Aryal, Ivannova Lituma, Juan Moreira and Achyut Adhikari
Foods 2024, 13(1), 146; https://doi.org/10.3390/foods13010146 - 31 Dec 2023
Cited by 2 | Viewed by 2664
Abstract
The attachment strength of bacteria to surfaces can affect the efficacy of sanitizers during washing. This study aimed to determine the effectiveness of chlorination and aeration in the removal of pathogens from the surface of produce. Cucumbers and bell peppers were inoculated with [...] Read more.
The attachment strength of bacteria to surfaces can affect the efficacy of sanitizers during washing. This study aimed to determine the effectiveness of chlorination and aeration in the removal of pathogens from the surface of produce. Cucumbers and bell peppers were inoculated with Listeria innocua, Escherichia coli O157:H7, or Salmonella enterica; afterwards, the produce was washed with or without chlorinated water (100 ppm) for 3 min in combination with or without aeration. Cucumbers washed with chlorinated water, with or without aeration, presented significant reductions of L. innocua (3.65 log CFU/cm2 and 1.13 log CFU/cm2, respectively) (p < 0.05). Similarly, bell peppers washed in chlorinated water with aeration (1.91 log CFU/g) and without aeration (2.49 log CFU/g) presented significant reductions of L. innocua. A significant reduction of L. innocua was observed on bell peppers washed with non-chlorinated water with aeration (2.49 log CFU/g) (p < 0.05). Non-chlorinated water was also effective in significantly reducing the level of Salmonella enterica (p < 0.05) on cucumbers and bell peppers. Washing with chlorinated water with aeration reduced Salmonella enterica levels from 4.45 log CFU/cm2 on cucumbers to below the detectable limit (0.16 log CFU/cm2). The highest reduction of Salmonella enterica from bell peppers occurred after washing with chlorinated water with aeration (2.48 log CFU/g). E. coli O157:H7, L. innocua, and Salmonella enterica levels present in non-chlorinated water after washing contaminated produce with or without aeration were significantly greater than those in chlorinated water (p < 0.05). After treatment, the population levels of all pathogens in chlorinated water with or without aeration were below the detectable limit for bell peppers (<1.10 log CFU/mL) and cucumbers (<1.20 log CFU/mL). Using chlorine in combination with forced aeration during washing minimizes cross-contamination of bacterial pathogens. Full article
Show Figures

Figure 1

14 pages, 5203 KiB  
Article
Effect of Aeration on the Cavitation Characteristics of the Control Valve in Hydro-Driven Ship Lifts
by Jiao Wang, Yaan Hu, Liang Chen, Ruichang Hu and Hao Yuan
Water 2023, 15(22), 4014; https://doi.org/10.3390/w15224014 - 19 Nov 2023
Cited by 5 | Viewed by 2092
Abstract
In hydro-driven ship lifts, plunger valves and fixed cone valves are the most suitable structures for achieving accurate flow control under a wide range of flow conditions. In order to inhibit cavitation in these valve structures, experiments were conducted in which forced aeration [...] Read more.
In hydro-driven ship lifts, plunger valves and fixed cone valves are the most suitable structures for achieving accurate flow control under a wide range of flow conditions. In order to inhibit cavitation in these valve structures, experiments were conducted in which forced aeration was applied before the valve. The cavitation phenomena and aerated flow regime were observed through a transparent glass pipe, and the cavitation noise characteristics were recorded using a hydrophone. The test results show that aeration can reduce the valve working cavitation number, albeit to a limited degree (<5%). Based on the sound velocity theory of aerated flow and the experimental results, the relationship between the aeration concentration and the cavitation inhibition efficiency was obtained. When the aeration concentration is approximately 0.1%, cavitation can be significantly inhibited via forced aeration before the valve. Once the aeration concentration reaches 0.9%, the cavitation inhibition efficiency becomes saturated. The research results presented in this paper provide a reference for the cavitation inhibition of industrial valves. Full article
(This article belongs to the Special Issue Hydro-Sediment Dynamics in Vegetated Rivers)
Show Figures

Figure 1

14 pages, 4181 KiB  
Article
Comparative Study of Membrane Fouling with Aeration Shear Stress in Filtration of Different Substances
by Weihao Yao, Bing Wang and Kaisong Zhang
Membranes 2023, 13(11), 867; https://doi.org/10.3390/membranes13110867 - 1 Nov 2023
Cited by 4 | Viewed by 2358
Abstract
The formation process of membrane fouling is complex and diverse, which is an important problem that needs to be overcome in membrane applications. In this paper, three foulant systems consisting of humic acid, humic acid plus Ca2+ and humic acid plus Ca [...] Read more.
The formation process of membrane fouling is complex and diverse, which is an important problem that needs to be overcome in membrane applications. In this paper, three foulant systems consisting of humic acid, humic acid plus Ca2+ and humic acid plus Ca2+ plus yeast were selected to compare membrane fouling processes with different aeration intensities. The aim was to establish the quantitative relationship between membrane fouling rate and shear stress, respectively, in a large-scale flat sheet MBR (FSMBR). The shear stress values at different aeration intensities were obtained using computational fluid dynamics (CFD). The membrane fouling rate during the filtration of different substances was measured by performing experiments. The comparison results showed that the membrane fouling rate varied greatly during the filtration of different substances. With the help of particle size distribution, the effect of different shear forces on floc size was further explored. Using the dual control of fouling rate and floc size, the recommended aeration intensity was 6~8 L/(m2·min). Full article
Show Figures

Figure 1

11 pages, 1251 KiB  
Article
Quantitative CT at Follow-Up of COVID-19 Pneumonia: Relationship with Pulmonary Function Tests
by Davide Colombi, Marcello Petrini, Camilla Risoli, Angelo Mangia, Gianluca Milanese, Mario Silva, Cosimo Franco, Nicola Sverzellati and Emanuele Michieletti
Diagnostics 2023, 13(21), 3328; https://doi.org/10.3390/diagnostics13213328 - 27 Oct 2023
Cited by 3 | Viewed by 1561
Abstract
Background: The role of quantitative chest computed tomography (CT) is controversial in the follow-up of patients with COVID-19 pneumonia. The aim of this study was to test during the follow-up of COVID-19 pneumonia the association between pulmonary function tests (PFTs) and quantitative parameters [...] Read more.
Background: The role of quantitative chest computed tomography (CT) is controversial in the follow-up of patients with COVID-19 pneumonia. The aim of this study was to test during the follow-up of COVID-19 pneumonia the association between pulmonary function tests (PFTs) and quantitative parameters extrapolated from follow-up (FU) CT scans performed at least 6 months after COVID-19 onset. Methods: The study included patients older than 18 years old, admitted to the emergency department of our institution between 29 February 2020 and 31 December 2020, with a diagnosis of COVID-19 pneumonia, who underwent chest CT at admission and FU CT at least 6 months later; PFTs were performed within 6 months of FU CT. At FU CT, quantitative parameters of well-aerated lung and pneumonia extent were identified both visually and by software using CT density thresholds. The association between PFTs and quantitative parameters was tested by the calculation of the Spearman’s coefficient of rank correlation (rho). Results: The study included 40 patients (38% females; median age 63 years old, IQR, 56–71 years old). A significant correlation was identified between low attenuation areas% (%LAAs) <950 Hounsfield units (HU) and both forced expiratory volume in 1s/forced vital capacity (FEV1/FVC) ratio (rho −0.410, 95% CIs −0.639–−0.112, p = 0.008) and %DLCO (rho −0.426, 95% CIs −0.678–−0.084, p = 0.017). The remaining quantitative parameters failed to demonstrate a significant association with PFTs (p > 0.05). Conclusions: At follow-up, CT scans performed at least 6 months after COVID-19 pneumonia onset showed %LAAs that were inversely associated with %DLCO and could be considered a marker of irreversible lung damage. Full article
(This article belongs to the Special Issue Quantitative Imaging in COVID-19)
Show Figures

Figure 1

25 pages, 2010 KiB  
Article
Corn-Based Gluten-Free Snacks Supplemented with Various Dried Fruits: Characteristics of Physical Properties and Effect of Variables
by Monika Różańska-Boczula, Agnieszka Wójtowicz, Magdalena Piszcz, Jakub Soja, Piotr Lewko, Szymon Ignaciuk, Marek Milanowski, Karol Kupryaniuk and Kamila Kasprzak-Drozd
Appl. Sci. 2023, 13(19), 10678; https://doi.org/10.3390/app131910678 - 26 Sep 2023
Cited by 6 | Viewed by 1564
Abstract
The market of extruded products is constantly growing and the incorporation of fruit items into their recipe, can made a crisp snack product a healthy one of acceptable flavor. The subject of this work is the evaluation of the effects of production screw [...] Read more.
The market of extruded products is constantly growing and the incorporation of fruit items into their recipe, can made a crisp snack product a healthy one of acceptable flavor. The subject of this work is the evaluation of the effects of production screw speed, fruit type and amount on selected physical properties (expansion index, bulk density, water absorption and solubility, texture profile and color balance) of corn-based gluten-free crisps supplemented with various amounts (0–20%) of dried fruits (apple, white mulberry, goji berry, elderberry, blackberry) processed at variable screw speeds (80, 100 and 120 rpm). This work demonstrates that it is possible to obtain marketable extruded snacks with natural color coming from the incorporated dried fruits and with adequate expansion and texture if addition was up to 10% of all the tested fruits. Moreover, very good aeration, crispy texture and acceptable natural color was found if dried elderberry and blackberry were added to snacks even at 15 and 20%. Application of 15 or 20% of apple, white mulberry and goji berries showed similar color profiles and caused decrease in texture and expansion of snacks. The rotational screw speed effect differs significantly only in hardness and cutting force of the supplemented corn crisps. Full article
Show Figures

Figure 1

Back to TopTop