Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (51,299)

Search Parameters:
Keywords = food studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 638 KiB  
Communication
Millet in Bioregenerative Life Support Systems: Hypergravity Resilience and Predictive Yield Models
by Tatiana S. Aniskina, Arkady N. Kudritsky, Olga A. Shchuklina, Nikita E. Andreev and Ekaterina N. Baranova
Life 2025, 15(8), 1261; https://doi.org/10.3390/life15081261 (registering DOI) - 7 Aug 2025
Abstract
The prospects for long-distance space flights are becoming increasingly realistic, and one of the key factors for their implementation is the creation of sustainable systems for producing food on site. Therefore, the aim of our work is to assess the prospects for using [...] Read more.
The prospects for long-distance space flights are becoming increasingly realistic, and one of the key factors for their implementation is the creation of sustainable systems for producing food on site. Therefore, the aim of our work is to assess the prospects for using millet in biological life support systems and to create predictive models of yield components for automating plant cultivation control. The study found that stress from hypergravity (800 g, 1200 g, 2000 g, and 3000 g) in the early stages of millet germination does not affect seedlings or yield. In a closed system, millet yield reached 0.31 kg/m2, the weight of 1000 seeds was 8.61 g, and the yield index was 0.06. The paper describes 40 quantitative traits, including six leaf and trichome traits and nine grain traits from the lower, middle and upper parts of the inflorescence. The compiled predictive regression equations allow predicting the accumulation of biomass in seedlings on the 10th and 20th days of cultivation, as well as the weight of 1000 seeds, the number of productive inflorescences, the total above-ground mass, and the number and weight of grains per plant. These equations open up opportunities for the development of computer vision and high-speed plant phenotyping programs that will allow automatic correction of the plant cultivation process and modeling of the required yield. Predicting biomass yield will also be useful in assessing the load on the waste-free processing system for plant waste at planetary stations. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

15 pages, 3707 KiB  
Article
Biodegradation of Both Ethanol and Acetaldehyde by Acetobacter ghanensis JN01
by Hongyan Liu, Jingjing Wang, Qianqian Xu, Xiaoyu Cao, Xinyue Du, Kun Lin and Hai Yan
Catalysts 2025, 15(8), 756; https://doi.org/10.3390/catal15080756 (registering DOI) - 7 Aug 2025
Abstract
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was [...] Read more.
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was successfully isolated from the traditional fermented food Jiaosu and identified as Acetobacter ghanensis JN01 based on average nucleotide identity (ANI) analysis. Initial ethanol of 1 g/L was completely biodegraded within 4 h, while initial acetaldehyde of 1 g/L was also rapidly removed at 2 or 1 h by whole cells or cell-free extracts (CEs) of JN01, respectively, which indicated that JN01 indeed has a strong ability in the biodegradation of both ethanol and acetaldehyde. Whole-genome sequencing revealed a 2.85 Mb draft genome of JN01 with 57.0% guanine–cytosine (GC) content and the key metabolic genes (adh1, adh2, and aldh) encoding involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), co-located with NADH dehydrogenase genes and ethanol-responsive regulatory motifs, supporting the metabolic pathway of transforming ethanol to acetaldehyde, and, subsequently, converting acetaldehyde to acetic acid. Furthermore, selected in vitro safety-related traits of JN01 were also assessed, which is very important in the development of microbial catalysts against both ethanol and acetaldehyde. Full article
(This article belongs to the Section Biocatalysis)
20 pages, 3001 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
48 pages, 3035 KiB  
Review
A Review of Indian-Based Drones in the Agriculture Sector: Issues, Challenges, and Solutions
by Ranjit Singh and Saurabh Singh
Sensors 2025, 25(15), 4876; https://doi.org/10.3390/s25154876 (registering DOI) - 7 Aug 2025
Abstract
In the current era, Indian agriculture faces a significant demand for increased food production, which has led to the integration of advanced technologies to enhance efficiency and productivity. Drones have emerged as transformative tools for enhancing precision agriculture, reducing costs, and improving sustainability. [...] Read more.
In the current era, Indian agriculture faces a significant demand for increased food production, which has led to the integration of advanced technologies to enhance efficiency and productivity. Drones have emerged as transformative tools for enhancing precision agriculture, reducing costs, and improving sustainability. This study provides a comprehensive review of drone adoption in Indian agriculture by examining its effects on precision farming, crop monitoring, and pesticide application. This research evaluates technological advancements, regulatory frameworks, infrastructure, farmers’ perceptions, and the financial accessibility of drone technology in the Indian agricultural context. Key findings indicate that, while drone adoption enhances efficiency and sustainability, challenges such as high costs, lack of training, and regulatory barriers hinder widespread implementation. This paper also explores the growing market for agricultural drones in India, highlighting key industry players and projected market growth. Furthermore, it addresses regional differences in adoption rates and emphasizes the increasing social acceptance of drones among Indian farmers. To bridge the gap between potential and practice, the study proposes several policy and institutional recommendations, including government-led financial incentives, training programs, and public–private partnerships to facilitate drone integration. Moreover, this review article also highlights technological advancements, such as AI and IoT, in agriculture. Finally, open issues and future research directions for drones are discussed. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

13 pages, 718 KiB  
Article
Evaluation and Verification of Starch Decomposition by Microbial Hydrolytic Enzymes
by Makoto Takaya, Manzo Uchigasaki, Koji Itonaga and Koichi Ara
Water 2025, 17(15), 2354; https://doi.org/10.3390/w17152354 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the Enzyme Biofilm Method (EBM), a biological wastewater treatment technology previously developed by the authors. EBM employs microbial-derived hydrolytic enzyme groups in the initial treatment stage to break down high-molecular-weight organic matter—such as starch, proteins, and fats—into low-molecular-weight compounds. These [...] Read more.
This study investigates the Enzyme Biofilm Method (EBM), a biological wastewater treatment technology previously developed by the authors. EBM employs microbial-derived hydrolytic enzyme groups in the initial treatment stage to break down high-molecular-weight organic matter—such as starch, proteins, and fats—into low-molecular-weight compounds. These compounds enhance the growth of native microorganisms, promoting biofilm formation on carriers and improving treatment efficiency. Over the past decade, EBM has been practically applied in food factory wastewater facilities handling high organic loads. The enzyme groups used in EBM are derived from cultures of Bacillus mojavensis, Saccharomyces cariocanus, and Lacticaseibacillus paracasei. To clarify the system’s mechanism and ensure its practical viability, this study focused on starch—a prevalent and recalcitrant component of food wastewater—using two evaluation approaches. Verification 1: Field testing at a starch factory showed that adding enzyme groups to the equalization tank effectively reduced biological oxygen demand (BOD) through starch degradation. Verification 2: Laboratory experiments confirmed that the enzyme groups possess both amylase and maltase activities, sequentially breaking down starch into glucose. The resulting glucose supports microbial growth, facilitating biofilm formation and BOD reduction. These findings confirm EBM’s potential as a sustainable and effective solution for treating high-strength food industry wastewater. Full article
(This article belongs to the Special Issue Advanced Biological Wastewater Treatment and Nutrient Removal)
21 pages, 2047 KiB  
Article
Sustainable Management of Fruit By-Products Through Design Thinking: Development of an Innovative Food Product
by Sylwia Sady, Alfred Błaszczyk, Bogdan Pachołek, Anna Muzykiewicz-Szymańska, Anna Nowak, Justyna Syguła-Cholewińska, Tomasz Sawoszczuk, Stanisław Popek, Małgorzata Krzywonos, Agnieszka Piekara and Dominika Jakubowska
Sustainability 2025, 17(15), 7164; https://doi.org/10.3390/su17157164 (registering DOI) - 7 Aug 2025
Abstract
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing [...] Read more.
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing by-products from chokeberry processing, thereby contributing to circularity in food systems. The integration of design thinking with fermentation of chokeberry pomace is presented in this study as an approach to developing value-added food ingredients. Qualitative consumer research (focus group interviews, n = 36) identified preferences and expectations regarding functional foods containing by-products. Conducted by an interdisciplinary team, the project followed five stages, involving both qualitative and quantitative research. Liquid surface fermentation was performed using Aspergillus niger, selected for its proven ability to enhance the antioxidant capacity and polyphenol content of plant matrices. The optimal process was 2-day fermentation under controlled pH conditions with glucose supplementation, which significantly enhanced the quality and nutritional value of the final product. Antioxidant activity (ABTS, FRAP, CUPRAC assays), total polyphenols, anthocyanins, and proanthocyanidins were determined, showing significant increases compared to non-fermented controls. The outcome was the development of a dried, fermented chokeberry pomace product that meets consumer expectations and fulfils sustainability goals through waste reduction and innovative reuse of fruit processing by-products. Full article
(This article belongs to the Special Issue Innovative Technologies in Food Engineering Towards Sustainability)
14 pages, 2041 KiB  
Article
Tuning Corn Zein-Chitosan Biocomposites via Mild Alkaline Treatment: Structural and Physicochemical Property Insights
by Nagireddy Poluri, Creston Singer, David Salas-de la Cruz and Xiao Hu
Polymers 2025, 17(15), 2161; https://doi.org/10.3390/polym17152161 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning [...] Read more.
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Both untreated and sodium hydroxide (NaOH)-treated films were evaluated to assess changes in physicochemical properties. FTIR analysis revealed that NaOH treatment promoted deprotonation of chitosan’s amine groups, partial removal of ionic residues, and increased deacetylation, collectively enhancing hydrogen bonding and resulting in a denser molecular network. Simultaneously, partial unfolding of zein’s α-helical structures improved conformational flexibility and strengthened interactions with chitosan. These molecular-level changes led to improved thermal stability, reduced degradation, and the development of porous microstructures. Controlled NaOH treatment thus provides an effective strategy to tailor the physicochemical properties of zein–chitosan composite films, supporting their potential in sustainable food packaging, wound healing, and drug delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
10 pages, 210 KiB  
Article
Adverse Events and Drug Interactions Associated with Elexacaftor/Tezacaftor/Ivacaftor Treatment: A Descriptive Study Across Australian, Canadian, and American Adverse Event Databases
by Theeba Thiruchelvam, Chiao Xin Lim, Courtney Munro, Vincent Chan, Geshani Jayasuria, Kingsley P. Coulthard, Peter A. B. Wark and Vijayaprakash Suppiah
Life 2025, 15(8), 1256; https://doi.org/10.3390/life15081256 (registering DOI) - 7 Aug 2025
Abstract
People with cystic fibrosis may experience polypharmacy, which can increase the risk of drug induced complications such as adverse events and drug–drug interactions. This study aimed to examine the prevalence of adverse events and to identify potential drug–drug interactions associated with elexacaftor/tezacaftor/ivacaftor (ETI). [...] Read more.
People with cystic fibrosis may experience polypharmacy, which can increase the risk of drug induced complications such as adverse events and drug–drug interactions. This study aimed to examine the prevalence of adverse events and to identify potential drug–drug interactions associated with elexacaftor/tezacaftor/ivacaftor (ETI). Three databases, the Australian Therapeutic Goods Administration Database of Adverse Event Notification (TGA DAEN), the Canada Vigilance Adverse Reaction Online Database (CVAROD), and the USA Food and Drug Administration Adverse Event Reporting System (FAERS) Database were searched for spontaneous ETI adverse events between 2019 and 2024. Descriptive analysis of the data was undertaken. The FAERS database was analysed to identify adverse events of interest such as anxiety and depression and concomitant drugs prescribed with ETI. A total of 10,628 ETI associated adverse events were identified in all system organ classes. The incidence of psychiatric adverse events ranged from 7 to 15% across the three databases. Potential drug–drug interactions with CYP 3A4/5 strong inhibitors and strong inducers were identified from the FAERS database and azole antifungals were implicated in several ETI dose modifications. The prevalence and types of ETI adverse events were varied and use of concomitant drugs with potential drug interactions was significant, requiring more research to manage them. Full article
(This article belongs to the Special Issue Cystic Fibrosis: A Disease with a New Face)
17 pages, 848 KiB  
Article
Influence of Various Fruit Preservation Methods on the Phenolic Composition and Antioxidant Activity of Prunus spinosa L. Fruit Extract
by Valentina Sallustio, Joana Marto, Lidia Maria Gonçalves, Manuela Mandrone, Ilaria Chiocchio, Michele Protti, Laura Mercolini, Barbara Luppi, Federica Bigucci, Angela Abruzzo and Teresa Cerchiara
Plants 2025, 14(15), 2454; https://doi.org/10.3390/plants14152454 (registering DOI) - 7 Aug 2025
Abstract
Wild edible plants, historically valued for their medicinal properties, can be a sustainable source of food, cosmetics, and pharmaceuticals. The blue berries of Prunus spinosa L., known as blackthorns, have antioxidant, astringent, and antimicrobial benefits. To preserve these properties after harvesting, understanding the [...] Read more.
Wild edible plants, historically valued for their medicinal properties, can be a sustainable source of food, cosmetics, and pharmaceuticals. The blue berries of Prunus spinosa L., known as blackthorns, have antioxidant, astringent, and antimicrobial benefits. To preserve these properties after harvesting, understanding the best storage methods is essential. In this study, blackthorns were preserved using different methods (air-drying, freezing, or freeze-drying) to determine the optimal procedure for preserving their antioxidant activity. The fruits were extracted using a 50:50 (V/V) mixture of ethanol and water. The different extracts were phytochemically characterized for their phenolic content and antioxidant activity. The Folin–Ciocalteu test revealed total phenolic contents of 7.97 ± 0.04, 13.99 ± 0.04, and 7.39 ± 0.08 (mg GAE/g raw material) for the three types of extracts, respectively. The total flavonoid contents were 2.42 ± 0.16, 3.14 ± 0.15, and 2.32 ± 0.03 (mg QE/g raw material), respectively. In line with the polyphenol analysis, the antioxidant activity as determined by DPPH method was higher for the frozen extract, with a value of 91.78 ± 0.80%, which was confirmed by the ROS test on keratinocytes. These results show that both air-drying and freeze-drying processes negatively impact the preservation of antioxidant activity in blackthorns, suggesting that freezing may be the best preservation method before bioactive compound extraction. Full article
(This article belongs to the Special Issue Bioactives from Plants: From Extraction to Functional Food Innovation)
19 pages, 1159 KiB  
Article
Determining the Effect of Different Concentrations of Spent Coffee Grounds on the Metabolomic Profile of Swiss Chard
by Thabiso Motseo and Lufuno Ethel Nemadodzi
Int. J. Plant Biol. 2025, 16(3), 88; https://doi.org/10.3390/ijpb16030088 (registering DOI) - 7 Aug 2025
Abstract
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and [...] Read more.
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and has been proven to be detrimental to the soil in the long run. Hence, there is a growing need to use organic waste material, such as spent coffee grounds (SCGs), to grow crops. Spent coffee grounds are made of depleted coffee beans that contain important soluble compounds. This study aimed to determine the influence of different levels (0.32 g, 0.63 g, 0.92 g, and 1.20 g) of spent coffee grounds on the metabolomic profile of Swiss chard. The 1H-nuclear magnetic resonance (NMR) results showed that Swiss chard grown with different levels of SCGs contains a total of 10 metabolites, which included growth-promoting metabolites (trehalose; betaine), defense mechanism metabolites (alanine; cartinine), energy-reserve metabolites (sucrose; 1,6 Anhydro-β-D-glucose), root metabolites (thymine), stress-related metabolites (2-deoxyadenosine), caffeine metabo-lites (1,3 Dimethylurate), and body-odor metabolites (trimethylamine). Interestingly, caprate, with the abovementioned metabolites, was detected in Swiss chard grown without the application of SCGs. The findings of the current study suggest that SCGs are an ideal organic material for growing Swiss chard for its healthy metabolites. Full article
24 pages, 3924 KiB  
Article
Effects of Zinc-Layered Filler Incorporation Routes on the Antimicrobial, Mechanical, and Physical Properties of Calcium Caseinate Biopolymeric Films
by Maria E. Becerra, Reynell Pérez-Blanco, Oscar Giraldo, Lucia Medina-Pimentel and Christhy V. Ruiz
Molecules 2025, 30(15), 3307; https://doi.org/10.3390/molecules30153307 (registering DOI) - 7 Aug 2025
Abstract
As the demand for sustainable materials continues to grow, calcium caseinate (Cas) biopolymer films have emerged as promising alternatives to fossil-based plastics. However, their mechanical fragility and high-water sensitivity limit their application in packaging. In this study, we reinforced Cas films with zinc [...] Read more.
As the demand for sustainable materials continues to grow, calcium caseinate (Cas) biopolymer films have emerged as promising alternatives to fossil-based plastics. However, their mechanical fragility and high-water sensitivity limit their application in packaging. In this study, we reinforced Cas films with zinc hydroxide nitrate (ZHN) using two incorporation methods: wet (ZHN-w) and dry (ZHN-d). We evaluated how each method affected the dispersion of the filler and, consequently, the functional properties of the films. To our knowledge, this is the first report of ZHN being used in biopolymeric films. Structural and morphological analyses showed better dispersion of ZHN in the wet-incorporated films. These samples exhibited a substantial increase in tensile strength, from 0.75 ± 0.00 MPa to 9.62 ± 2.45 MPa, along with a marked improvement in Young’s modulus. The films also became less soluble in water, more resistant to swelling, and structurally more cohesive. In antimicrobial tests, the ZHN-w films showed stronger inhibition against E. coli and S. aureus. Overall, this approach offers a simple and effective way to enhance protein-based films using food-safe materials, making them suitable for active and bio-based packaging applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

14 pages, 514 KiB  
Case Report
Thallium Exposure Secondary to Commercial Kale Chip Consumption: California Case Highlights Opportunities for Improved Surveillance and Toxicological Understanding
by Asha Choudhury, Jefferson Fowles, Russell Bartlett, Mark D. Miller, Timur Durrani, Robert Harrison and Tracy Barreau
Int. J. Environ. Res. Public Health 2025, 22(8), 1235; https://doi.org/10.3390/ijerph22081235 (registering DOI) - 7 Aug 2025
Abstract
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels [...] Read more.
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels noted among a mother (peak 5.6 µg/g creatinine; adult reference: ≤0.4 µg/g creatinine) and her three young children (peak 10.5 µg/g creatinine; child reference: ≤0.8 µg/g creatinine). Objectives: This case report identifies questions raised after a public health investigation linked a household’s thallium exposure to a commercially available food product. We provide an overview of the public health investigation. We then explore concerns, such as gaps in toxicological data and limited surveillance of thallium in the food supply, which make management of individual and population exposure risks challenging. Methods: We highlight findings from a cross-agency investigation, including a household exposure survey, sampling of possible environmental and dietary exposures (ICP-MS analysis measured thallium in kale chips at 1.98 mg/kg and 2.15 mg/kg), and monitoring of symptoms and urine thallium levels after the source was removed. We use regulatory and research findings to describe the challenges and opportunities in characterizing the scale of thallium in our food supply and effects of dietary exposures on health. Discussion: Thallium can bioaccumulate in our food system, particularly in brassica vegetables like kale. Thallium concentration in foods can also be affected by manufacturing processes, such as dehydration. We have limited surveillance data nationally regarding this metal in our food supply. Dietary reviews internationally show increased thallium intake in toddlers. Limited information is available about low-dose or chronic exposures, particularly among children, although emerging evidence shows that there might be risks associated at lower levels than previously thought. Improved toxicological studies are needed to guide reference doses and food safety standards. Promising action towards enhanced monitoring of thallium is being pursued by food safety agencies internationally, and research is underway to deepen our understanding of thallium toxicity. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

15 pages, 1774 KiB  
Article
Study on the Effect of pH Modulation on Lactic Acid Production by Electro-Fermentation of Food Waste
by Nuohan Wang, Jianguo Liu, Yongsheng Li, Yuanyuan Ren, Xiaona Wang, Tianlong Zheng and Qunhui Wang
Sustainability 2025, 17(15), 7160; https://doi.org/10.3390/su17157160 - 7 Aug 2025
Abstract
Lactic acid (LA) synthesis through fermentation of food waste (FW) is an emerging techniques for utilizing perishable organic wastes with high value. Using food waste collected from a cafeteria as the substrate for fermentation, the current study was conducted by applying a micro [...] Read more.
Lactic acid (LA) synthesis through fermentation of food waste (FW) is an emerging techniques for utilizing perishable organic wastes with high value. Using food waste collected from a cafeteria as the substrate for fermentation, the current study was conducted by applying a micro electric field to the conventional LA fermentation process and performing open-ended electro-fermentation (EF) without sterilization and lactobacilli inoculation. Furthermore, the effects of pH adjustment on LA production were examined. The findings demonstrated that electrical stimulation enhances the electron transfer rate within the system, accelerates REDOX reactions, and thereby intensifies the lactic acid production process. The pH-regulated group produced LA and dissolved organic materials at considerably higher rates than the control group, which did not receive any pH modification. The maximum LA concentration and organic matter dissolution in the experimental group, where the pH was set to 7 every 12 h of fermentation, were 33.9 and 38.4 g/L, respectively. These values were 208 and 203% higher than those in the control group, indicating that the pH adjustment greatly aided the solubilization and hydrolysis of macromolecules. Among the several hydrolyzing bacteria (Actinobacteriota) that were enriched, Lactobacillus predominated, but Bifidobacterium also became a major genus in the neutral-acidic environment, and its abundance grew dramatically. This study provides a scientific basis for optimizing the LA process of FW. Full article
Show Figures

Graphical abstract

21 pages, 961 KiB  
Article
A Mixed-Method Assessment of Drivers and Barriers for Substituting Dairy with Plant-Based Alternatives by Danish Adults
by Beatriz Philippi Rosane, Lise Tjørring, Annika Ley, Derek Victor Byrne, Barbara Vad Andersen, Susanne Gjedsted Bügel and Sophie Wennerscheid
Foods 2025, 14(15), 2755; https://doi.org/10.3390/foods14152755 - 7 Aug 2025
Abstract
The market for plant-based alternatives to animal foods has increased rapidly in the past decade, mainly due to consumer demand. Little evidence is available regarding nutritional impacts, drivers, and barriers to using these products as substitutes for animal foods in real-life conditions. This [...] Read more.
The market for plant-based alternatives to animal foods has increased rapidly in the past decade, mainly due to consumer demand. Little evidence is available regarding nutritional impacts, drivers, and barriers to using these products as substitutes for animal foods in real-life conditions. This pilot study followed 16 Danish adults (30 ± 11 years old; 11 females) for 4 weeks with substituting milk, cheese, and yogurt with plant-based analogues to dairy (PBADs) and assessed their drivers and barriers to applying the intervention with a mixed-method approach. PBADs are constantly compared to their animal counterparts, both regarding product characteristics, such as price and sensory properties, as well as cultural roles and subjective memories. The mixed methods showed dairy attachment, price, and taste were the main barriers to consuming PBAD, while changes in life and social circles were drivers (qualitative data). As for the liking of PBADs, plant-based yoghurt was the preferred intervention product (73.5/100, p < 0.05), followed by plant-based drinks (65.9/100), while plant-based cheese was the lowest rated (47.9/100, p < 0.05). As for dietary changes, a lower average intake of sugars, saturated fatty acids, cholesterol, calcium, phosphorus, and zinc was observed after the intervention. Additionally, this study describes the attachment of the study population to milk and dairy products. It shows that choosing dairy is beyond nourishment but is connected to tradition, culture, pleasure, memories, and a sense of belonging. In contrast, there is no history or attachment to PBADs. Full article
Show Figures

Figure 1

24 pages, 3032 KiB  
Article
Conjugation of Pea Peptides and D-Xylose via Maillard Glycosylation and Its Functionality to Antagonize Alcohol-Induced Liver Injury in Zebrafish
by Guanlong Li, Xiaolan Liu, Siyu Diao and Xiqun Zheng
Nutrients 2025, 17(15), 2570; https://doi.org/10.3390/nu17152570 - 7 Aug 2025
Abstract
Background: In this study, the preparation of pea glycopeptides based on the Maillard glycosylation pathway (PPH-M) and its antagonistic mechanism against alcoholic liver injury in zebrafish were studied. Results: The results showed that the conjugation of D-xylose significantly improved the antioxidant activity of [...] Read more.
Background: In this study, the preparation of pea glycopeptides based on the Maillard glycosylation pathway (PPH-M) and its antagonistic mechanism against alcoholic liver injury in zebrafish were studied. Results: The results showed that the conjugation of D-xylose significantly improved the antioxidant activity of pea protein hydrolysates (PPHs). The structural characterization indicated that PPH was successfully covalent binding to D-xylose, which was mainly manifested as a stretching vibration change in Fourier transform infrared spectroscopy (FTIR) and molecular size increase. Scanning electron microscopy (SEM) and zeta potential also confirmed the covalently bound of the two. In addition, a model of alcohol-induced liver injury in zebrafish was established. Through the intervention of different doses of PPH-M, it was found that the intervention of PPH-M could significantly increase superoxide dismutase (SOD) activity, reduce malondialdehyde (MDA) content, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activity, and significantly improve alcohol-induced liver injury in zebrafish. The protective effect of PPH-M was also confirmed by liver pathology and fluorescence microscopy. Finally, reverse transcription-polymerase chain reaction (qRT-PCR) results indicated that PPH-M could significantly regulate the expression level of antioxidant-related mRNA. PPH-M could also regulate the expression of the Keap1/Nrf2 signaling pathway and up-regulated glutathione synthesis signaling pathway to antagonize alcohol-induced liver injury in zebrafish. Conclusion: This study revealed the mechanism of PPH-M antagonized alcoholic liver injury and laid a theoretical foundation for its development as functional foods. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

Back to TopTop