Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,264)

Search Parameters:
Keywords = food image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1667 KiB  
Article
Univariate and Multivariate Pattern Analysis Reveals the Effects of Negative Body Image at Fatness on Food-Related Inhibitory Control
by Zihan Xu, Yuchan Xu, Junyao Han, Lechang Sun, Junwei Lian, Zhifang Li, Yong Liu and Jia Zhao
Nutrients 2025, 17(15), 2555; https://doi.org/10.3390/nu17152555 - 5 Aug 2025
Abstract
Background/Objectives: Perceptions of obesity critically influence people’s eating behaviors and responses to food stimuli. However, few studies have investigated the impact of negative body perception on behavioral and neural responses to food stimuli. This study investigates how elevated body dissatisfaction modulates food-related inhibitory [...] Read more.
Background/Objectives: Perceptions of obesity critically influence people’s eating behaviors and responses to food stimuli. However, few studies have investigated the impact of negative body perception on behavioral and neural responses to food stimuli. This study investigates how elevated body dissatisfaction modulates food-related inhibitory control. Methods: Fifty-one participants comprising three cohorts—overweight/obese individuals (OO), normal-weight participants exhibiting high negative body image (HNN), and healthy controls—performed a food-specific inhibitory control task under EEG recording. Results: The results showed that the HNN cohort achieved superior no-go accuracy and enhanced inhibitory control compared to controls. An event-related potentials (ERPs) analysis revealed increased conflict detection (P200) for high-calorie foods and reduced conflict resolution (LPP) in the HNN group, similar to the overweight/obese group. A multivariate pattern analysis (MVPA) identified earlier neural discrimination in the HNN group, suggesting more efficient inhibitory processing. Conclusions: These findings underscore negative body perception as a critical modulator of food-related cognitive control mechanisms. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 56
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

21 pages, 2240 KiB  
Review
A Review of Fluorescent pH Probes: Ratiometric Strategies, Extreme pH Sensing, and Multifunctional Utility
by Weiqiao Xu, Zhenting Ma, Qixin Tian, Yuanqing Chen, Qiumei Jiang and Liang Fan
Chemosensors 2025, 13(8), 280; https://doi.org/10.3390/chemosensors13080280 - 2 Aug 2025
Viewed by 174
Abstract
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer [...] Read more.
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer (ICT), photoinduced electron transfer (PET), and fluorescence resonance energy transfer (FRET)—these probes enable high-sensitivity, reusable, and biocompatible sensing. This review systematically details recent advances, categorizing probes by operational pH range: strongly acidic (0–3), weakly acidic (3–7), strongly alkaline (>12), weakly alkaline (7–11), near-neutral (6–8), and wide-dynamic range. Innovations such as ratiometric detection, organelle-specific targeting (lysosomes, mitochondria), smartphone colorimetry, and dual-analyte response (e.g., pH + Al3+/CN) are highlighted. Applications span real-time cellular imaging (HeLa cells, zebrafish, mice), food quality assessment, environmental monitoring, and industrial diagnostics (e.g., concrete pH). Persistent challenges include extreme-pH sensing (notably alkalinity), photobleaching, dye leakage, and environmental resilience. Future research should prioritize broadening functional pH ranges, enhancing probe stability, and developing wide-range sensing strategies to advance deployment in commercial and industrial online monitoring platforms. Full article
Show Figures

Figure 1

20 pages, 1134 KiB  
Article
Application of Animal- and Plant-Derived Coagulant in Artisanal Italian Caciotta Cheesemaking: Comparison of Sensory, Biochemical, and Rheological Parameters
by Giovanna Lomolino, Stefania Zannoni, Mara Vegro and Alberto De Iseppi
Dairy 2025, 6(4), 43; https://doi.org/10.3390/dairy6040043 - 1 Aug 2025
Viewed by 75
Abstract
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract [...] Read more.
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract (PC) with traditional bovine rennet rich in chymosin (AC) during manufacture and 60-day ripening of Caciotta cheese. Classical compositional assays (ripening index, texture profile, color, solubility) were integrated with scanning electron microscopy, three-dimensional surface reconstruction, and descriptive sensory analysis. AC cheeses displayed slower but sustained proteolysis, yielding a higher and more linear ripening index, softer body, greater solubility, and brighter, more yellow appearance. Imaging revealed a continuous protein matrix with uniformly distributed, larger pores, consistent with a dairy-like sensory profile dominated by milky and umami notes. Conversely, PC cheeses underwent rapid early proteolysis that plateaued, producing firmer, chewier curds with lower solubility and darker color. Micrographs showed a fragmented matrix with smaller, heterogeneous pores; sensory evaluation highlighted vegetal, bitter, and astringent attributes. The data demonstrate that thistle coagulant can successfully replace animal rennet but generates cheeses with distinct structural and sensory fingerprints. The optimization of process parameters is therefore required when targeting specific product styles. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

23 pages, 3427 KiB  
Article
Visual Narratives and Digital Engagement: Decoding Seoul and Tokyo’s Tourism Identity Through Instagram Analytics
by Seung Chul Yoo and Seung Mi Kang
Tour. Hosp. 2025, 6(3), 149; https://doi.org/10.3390/tourhosp6030149 - 1 Aug 2025
Viewed by 203
Abstract
Social media platforms like Instagram significantly shape destination images and influence tourist behavior. Understanding how different cities are represented and perceived on these platforms is crucial for effective tourism marketing. This study provides a comparative analysis of Instagram content and engagement patterns in [...] Read more.
Social media platforms like Instagram significantly shape destination images and influence tourist behavior. Understanding how different cities are represented and perceived on these platforms is crucial for effective tourism marketing. This study provides a comparative analysis of Instagram content and engagement patterns in Seoul and Tokyo, two major Asian metropolises, to derive actionable marketing insights. We collected and analyzed 59,944 public Instagram posts geotagged or location-tagged within Seoul (n = 29,985) and Tokyo (n = 29,959). We employed a mixed-methods approach involving content categorization using a fine-tuned convolutional neural network (CNN) model, engagement metric analysis (likes, comments), Valence Aware Dictionary and sEntiment Reasoner (VADER) sentiment analysis and thematic classification of comments, geospatial analysis (Kernel Density Estimation [KDE], Moran’s I), and predictive modeling (Gradient Boosting with SHapley Additive exPlanations [SHAP] value analysis). A validation analysis using balanced samples (n = 2000 each) was conducted to address Tokyo’s lower geotagged data proportion. While both cities showed ‘Person’ as the dominant content category, notable differences emerged. Tokyo exhibited higher like-based engagement across categories, particularly for ‘Animal’ and ‘Food’ content, while Seoul generated slightly more comments, often expressing stronger sentiment. Qualitative comment analysis revealed Seoul comments focused more on emotional reactions, whereas Tokyo comments were often shorter, appreciative remarks. Geospatial analysis identified distinct hotspots. The validation analysis confirmed these spatial patterns despite Tokyo’s data limitations. Predictive modeling highlighted hashtag counts as the key engagement driver in Seoul and the presence of people in Tokyo. Seoul and Tokyo project distinct visual narratives and elicit different engagement patterns on Instagram. These findings offer practical implications for destination marketers, suggesting tailored content strategies and location-based campaigns targeting identified hotspots and specific content themes. This study underscores the value of integrating quantitative and qualitative analyses of social media data for nuanced destination marketing insights. Full article
Show Figures

Figure 1

19 pages, 1889 KiB  
Article
Infrared Thermographic Signal Analysis of Bioactive Edible Oils Using CNNs for Quality Assessment
by Danilo Pratticò and Filippo Laganà
Signals 2025, 6(3), 38; https://doi.org/10.3390/signals6030038 - 1 Aug 2025
Viewed by 160
Abstract
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed [...] Read more.
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed study aims to evaluate the quality of four bioactive oils (olive oil, sunflower oil, tomato seed oil, and pumpkin seed oil) by analysing their thermal behaviour through infrared (IR) imaging. The study designed a customised electronic system to acquire thermographic signals under controlled temperature and humidity conditions. The acquisition system was used to extract thermal data. Analysis of the acquired thermal signals revealed characteristic heat absorption profiles used to infer differences in oil properties related to stability and degradation potential. A hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) units was used to classify and differentiate the oils based on stability, thermal reactivity, and potential health benefits. A signal analysis showed that the AI-based method improves both the accuracy (achieving an F1-score of 93.66%) and the repeatability of quality assessments, providing a non-invasive and intelligent framework for the validation and traceability of nutritional compounds. Full article
Show Figures

Figure 1

16 pages, 1265 KiB  
Article
Enhancing Stability of Boesenbergia rotunda Bioactive Compounds: Microencapsulation via Spray-Drying and Its Physicochemical Evaluation
by Fahmi Ilman Fahrudin, Suphat Phongthai and Pilairuk Intipunya
Foods 2025, 14(15), 2699; https://doi.org/10.3390/foods14152699 - 31 Jul 2025
Viewed by 228
Abstract
This study aimed to microencapsulate Boesenbergia rotunda (fingerroot) extract using maltodextrin (MD) and gum arabic (GA) as wall materials via spray-drying to improve powder physicochemical properties and protect bioactive compounds. MD and GA were employed as wall materials in varying ratios (MD:GA of [...] Read more.
This study aimed to microencapsulate Boesenbergia rotunda (fingerroot) extract using maltodextrin (MD) and gum arabic (GA) as wall materials via spray-drying to improve powder physicochemical properties and protect bioactive compounds. MD and GA were employed as wall materials in varying ratios (MD:GA of 1:0, 0:1, 1:1, 2:1, 1:2) to evaluate their effects on the physicochemical properties of the resulting microcapsules. Spray-dried microcapsules were evaluated for morphology, flowability, particle size distribution, moisture content, hygroscopicity, solubility, encapsulation efficiency, major bioactive compound retention, and thermal stability. The extract encapsulation using MD:GA at 1:1 ratio (MD1GA1) demonstrated a favorable balance, with high solubility (98.70%), low moisture content (8.69%), low hygroscopicity (5.08%), and uniform particle morphology, despite its moderate EE (75.06%). SEM images revealed spherical particles with fewer surface indentations in MD-rich formulations. Microencapsulation effectively retained pinostrobin and pinocembrin in all formulations with pinostrobin consistently retained at a higher value, indicating its higher stability. The balanced profile of physical and functional properties of fingerroot extract with MD1GA1 microcapsule makes it a promising candidate for food and nutraceutical applications. Full article
Show Figures

Graphical abstract

32 pages, 1971 KiB  
Review
Research Progress in the Detection of Mycotoxins in Cereals and Their Products by Vibrational Spectroscopy
by Jihong Deng, Mingxing Zhao and Hui Jiang
Foods 2025, 14(15), 2688; https://doi.org/10.3390/foods14152688 - 30 Jul 2025
Viewed by 160
Abstract
Grains and their derivatives play a crucial role as staple foods for the global population. Identifying grains in the food chain that are free from mycotoxin contamination is essential. Researchers have explored various traditional detection methods to address this concern. However, as grain [...] Read more.
Grains and their derivatives play a crucial role as staple foods for the global population. Identifying grains in the food chain that are free from mycotoxin contamination is essential. Researchers have explored various traditional detection methods to address this concern. However, as grain consumption becomes increasingly time-sensitive and dynamic, traditional approaches face growing limitations. In recent years, emerging techniques—particularly molecular-based vibrational spectroscopy methods such as visible–near-infrared (Vis–NIR), near-infrared (NIR), Raman, mid-infrared (MIR) spectroscopy, and hyperspectral imaging (HSI)—have been applied to assess fungal contamination in grains and their products. This review summarizes research advances and applications of vibrational spectroscopy in detecting mycotoxins in grains from 2019 to 2025. The fundamentals of their work, information acquisition characteristics and their applicability in food matrices were outlined. The findings indicate that vibrational spectroscopy techniques can serve as valuable tools for identifying fungal contamination risks during the production, transportation, and storage of grains and related products, with each technique suited to specific applications. Given the close link between grain-based foods and humans, future efforts should further enhance the practicality of vibrational spectroscopy by simultaneously optimizing spectral analysis strategies across multiple aspects, including chemometrics, model transfer, and data-driven artificial intelligence. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

25 pages, 26404 KiB  
Review
Review of Deep Learning Applications for Detecting Special Components in Agricultural Products
by Yifeng Zhao and Qingqing Xie
Computers 2025, 14(8), 309; https://doi.org/10.3390/computers14080309 - 30 Jul 2025
Viewed by 312
Abstract
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications [...] Read more.
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications across three core domains: contaminant surveillance (heavy metals, pesticides, and mycotoxins), nutritional component quantification (soluble solids, polyphenols, and pigments), and structural/biomarker assessment (disease symptoms, gel properties, and physiological traits). Emerging hybrid architectures—including attention-enhanced convolutional neural networks (CNNs) for lesion localization, wavelet-coupled autoencoders for spectral denoising, and multi-task learning frameworks for joint parameter prediction—demonstrate unprecedented accuracy in decoding complex agricultural matrices. Particularly noteworthy are sensor fusion strategies integrating hyperspectral imaging (HSI), Raman spectroscopy, and microwave detection with deep feature extraction, achieving industrial-grade performance (RPD > 3.0) while reducing detection time by 30–100× versus conventional methods. Nevertheless, persistent barriers in the “black-box” nature of complex models, severe lack of standardized data and protocols, computational inefficiency, and poor field robustness hinder the reliable deployment and adoption of DL for detecting special components in agricultural products. This review provides an essential foundation and roadmap for future research to bridge the gap between laboratory DL models and their effective, trusted application in real-world agricultural settings. Full article
(This article belongs to the Special Issue Deep Learning and Explainable Artificial Intelligence)
Show Figures

Figure 1

22 pages, 3506 KiB  
Review
Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables
by Haiyan He, Zhoutao Li, Qian Qin, Yue Yu, Yuanxin Guo, Sheng Cai and Zhanming Li
Foods 2025, 14(15), 2679; https://doi.org/10.3390/foods14152679 - 30 Jul 2025
Viewed by 318
Abstract
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and [...] Read more.
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and equipment. In recent years, the combination of spectroscopic techniques and imaging technologies with machine learning algorithms has developed rapidly, providing a new attempt to solve this problem. This review focuses on the research progress of the combination of spectroscopic techniques (near-infrared spectroscopy (NIRS), hyperspectral imaging technology (HSI), surface-enhanced Raman scattering (SERS), laser-induced breakdown spectroscopy (LIBS), and imaging techniques (visible light (VIS) imaging, NIRS imaging, HSI technology, terahertz imaging) with machine learning algorithms in the detection of pesticide residues in fruits and vegetables. It also explores the huge challenges faced by the application of spectroscopic and imaging technologies combined with machine learning algorithms in the intelligent perception of pesticide residues in fruits and vegetables: the performance of machine learning models requires further enhancement, the fusion of imaging and spectral data presents technical difficulties, and the commercialization of hardware devices remains underdeveloped. This review has proposed an innovative method that integrates spectral and image data, enhancing the accuracy of pesticide residue detection through the construction of interpretable machine learning algorithms, and providing support for the intelligent sensing and analysis of agricultural and food products. Full article
Show Figures

Figure 1

16 pages, 5245 KiB  
Article
Automatic Detection of Foraging Hens in a Cage-Free Environment with Computer Vision Technology
by Samin Dahal, Xiao Yang, Bidur Paneru, Anjan Dhungana and Lilong Chai
Poultry 2025, 4(3), 34; https://doi.org/10.3390/poultry4030034 - 30 Jul 2025
Viewed by 191
Abstract
Foraging behavior in hens is an important indicator of animal welfare. It involves both the search for food and exploration of the environment, which provides necessary enrichment. In addition, it has been inversely linked to damaging behaviors such as severe feather pecking. Conventional [...] Read more.
Foraging behavior in hens is an important indicator of animal welfare. It involves both the search for food and exploration of the environment, which provides necessary enrichment. In addition, it has been inversely linked to damaging behaviors such as severe feather pecking. Conventional studies rely on manual observation to investigate foraging location, duration, timing, and frequency. However, this approach is labor-intensive, time-consuming, and subject to human bias. Our study developed computer vision-based methods to automatically detect foraging hens in a cage-free research environment and compared their performance. A cage-free room was divided into four pens, two larger pens measuring 2.9 m × 2.3 m with 30 hens each and two smaller pens measuring 2.3 m × 1.8 m with 18 hens each. Cameras were positioned vertically, 2.75 m above the floor, recording the videos at 15 frames per second. Out of 4886 images, 70% were used for model training, 20% for validation, and 10% for testing. We trained multiple You Only Look Once (YOLO) object detection models from YOLOv9, YOLOv10, and YOLO11 series for 100 epochs each. All the models achieved precision, recall, and mean average precision at 0.5 intersection over union (mAP@0.5) above 75%. YOLOv9c achieved the highest precision (83.9%), YOLO11x achieved the highest recall (86.7%), and YOLO11m achieved the highest mAP@0.5 (89.5%). These results demonstrate the use of computer vision to automatically detect complex poultry behavior, such as foraging, making it more efficient. Full article
Show Figures

Figure 1

19 pages, 1844 KiB  
Article
Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon
by Lucy Deba Enomah, Joni Downs, Michael Acheampong, Qiuyan Yu and Shirley Tanyi
Remote Sens. 2025, 17(15), 2631; https://doi.org/10.3390/rs17152631 - 29 Jul 2025
Viewed by 269
Abstract
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its [...] Read more.
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its implications for food security and livelihood. This study seeks to identify and quantify recent LULC changes in Limbe, Cameroon, and to measure rates of conversion between agricultural, forest, and urban lands between 1986 and 2020 using remote sensing and GIS. Also, there is a deficiency of research employing these data to evaluate the efficiency of LULC satellite data and a lack of awareness by local stakeholders regarding the impact on LULC change. The changes were identified in four classes utilizing maximum supervised classification in ENVI and ArcGIS environments. The classification result reveals that the 2020 image has the highest overall accuracy of 94.6 while the 2002 image has an overall accuracy of 89.2%. The overall gain for agriculture was approximately 4.6 km2, urban had an overall gain of nearly 12.7 km2, while the overall loss for forest was −16.9 km2 during this period. Much of the land area previously occupied by forest is declining as pressures for urban areas and new settlements increase. This study’s findings have significant policy implications for sustainable land use and food security. It also provides a spatial method for monitoring LULC variations that can be used as a framework by stakeholders who are interested in environmentally conscious development and sustainable land use practices. Full article
Show Figures

Figure 1

23 pages, 3864 KiB  
Article
Seeing Is Craving: Neural Dynamics of Appetitive Processing During Food-Cue Video Watching and Its Impact on Obesity
by Jinfeng Han, Kaixiang Zhuang, Debo Dong, Shaorui Wang, Feng Zhou, Yan Jiang and Hong Chen
Nutrients 2025, 17(15), 2449; https://doi.org/10.3390/nu17152449 - 27 Jul 2025
Viewed by 321
Abstract
Background/Objectives: Digital food-related videos significantly influence cravings, appetite, and weight outcomes; however, the dynamic neural mechanisms underlying appetite fluctuations during naturalistic viewing remain unclear. This study aimed to identify neural activity patterns associated with moment-to-moment appetite changes during naturalistic food-cue video viewing [...] Read more.
Background/Objectives: Digital food-related videos significantly influence cravings, appetite, and weight outcomes; however, the dynamic neural mechanisms underlying appetite fluctuations during naturalistic viewing remain unclear. This study aimed to identify neural activity patterns associated with moment-to-moment appetite changes during naturalistic food-cue video viewing and to examine their relationships with cravings and weight-related outcomes. Methods: Functional magnetic resonance imaging (fMRI) data were collected from 58 healthy female participants as they viewed naturalistic food-cue videos. Participants concurrently provided continuous ratings of their appetite levels throughout video viewing. Hidden Markov Modeling (HMM), combined with machine learning regression techniques, was employed to identify distinct neural states reflecting dynamic appetite fluctuations. Findings were independently validated using a shorter-duration food-cue video viewing task. Results: Distinct neural states characterized by heightened activation in default mode and frontoparietal networks consistently corresponded with increases in appetite ratings. Importantly, the higher expression of these appetite-related neural states correlated positively with participants’ Body Mass Index (BMI) and post-viewing food cravings. Furthermore, these neural states mediated the relationship between BMI and food craving levels. Longitudinal analyses revealed that the expression levels of appetite-related neural states predicted participants’ BMI trajectories over a subsequent six-month period. Participants experiencing BMI increases exhibited a significantly greater expression of these neural states compared to those whose BMI remained stable. Conclusions: Our findings elucidate how digital food cues dynamically modulate neural processes associated with appetite. These neural markers may serve as early indicators of obesity risk, offering valuable insights into the psychological and neurobiological mechanisms linking everyday media exposure to food cravings and weight management. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

23 pages, 4210 KiB  
Article
Analysis of Relevance and Appeal of Visual Presentation of Meat Products Generated Using Artificial Intelligence
by Lucija Brina Arvaj, Tatjana Šubic and Jure Ahtik
Appl. Sci. 2025, 15(15), 8328; https://doi.org/10.3390/app15158328 - 26 Jul 2025
Viewed by 307
Abstract
This article examines the application of generative artificial intelligence (GenAI) in visualizing meat products and evaluates its potential for use in the food industry. The study compares AI-generated images with conventional photographs in terms of professional accuracy and visual appeal. In a cited [...] Read more.
This article examines the application of generative artificial intelligence (GenAI) in visualizing meat products and evaluates its potential for use in the food industry. The study compares AI-generated images with conventional photographs in terms of professional accuracy and visual appeal. In a cited preliminary study, images of ten selected meat dishes were generated and evaluated by food technology professionals through a survey focused on realism and technical adequacy. Following this, comparable photographs were taken, and a second survey gathered feedback from the public on the appeal of both image types. Results revealed that while AI-generated images often lacked accuracy in texture, color, and structure, particularly for complex meat products, they were generally rated as more visually appealing by the public. This indicates that although current GenAI tools are not yet suitable for precise professional representation of meat products, they show strong potential for use in marketing and promotional content, where aesthetic appeal may outweigh technical accuracy. The findings suggest that with further development, AI-generated visuals could become more viable for professional applications in the food industry. In such cases, using accurate photographic references remains essential to ensure credibility and realism in food-related visual communication. Full article
Show Figures

Figure 1

14 pages, 4243 KiB  
Article
Evaluation of the Effects of Food and Fasting on Signal Intensities from the Gut Region in Mice During Magnetic Particle Imaging (MPI)
by Saeed Shanehsazzadeh and Andre Bongers
Magnetochemistry 2025, 11(8), 63; https://doi.org/10.3390/magnetochemistry11080063 - 25 Jul 2025
Viewed by 283
Abstract
Gastrointestinal signals present a major challenge in magnetic particle imaging (MPI) because of their strong background interference. This study aimed to evaluate and compare the gut MPI signal in mice fed six commercially available diets in Australia, including Gordon’s Specialty Stock Feeds (normal [...] Read more.
Gastrointestinal signals present a major challenge in magnetic particle imaging (MPI) because of their strong background interference. This study aimed to evaluate and compare the gut MPI signal in mice fed six commercially available diets in Australia, including Gordon’s Specialty Stock Feeds (normal and low iron), Specialty Feeds (normal and low iron), a Western diet, and Gubra-Amylin NASH (GAN diet). We also assessed the impact of 24 h fasting on gut signal reduction. Each diet group included three mice, and the gut signal intensity was monitored over seven days. The results indicated that the standard diet produced signal intensities approximately eight times greater than those of the low-iron diet from specialty feeds and over eleven times greater than those of the GAN or Western diets. Notably, switching to GAN or Western diets led to a tenfold reduction in the gut signal within 24 h, a decrease comparable to that achieved by fasting. These findings suggest that dietary modification—particularly the use of low-iron diets—can effectively minimize gastrointestinal signals in MPI, reducing background interference by up to 90%. This simple dietary adjustment offers a practical and noninvasive method for improving image clarity and experimental reliability in preclinical MPI studies. Full article
Show Figures

Figure 1

Back to TopTop