Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = food contact regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3236 KiB  
Article
The Plasticizer Dibutyl Phthalate (DBP) Impairs Pregnancy Vascular Health: Insights into Calcium Signaling and Nitric Oxide Involvement
by Ana R. Quelhas, Melissa Mariana and Elisa Cairrao
J. Xenobiot. 2025, 15(4), 127; https://doi.org/10.3390/jox15040127 - 6 Aug 2025
Abstract
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor [...] Read more.
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor properties and considering its ability to cross the placental barrier, it is imperative to study DBP’s vascular effects in pregnancy, given the vulnerability of this period. Thus, this study investigated the potential effects of DBP on the cardiovascular system using umbilical arteries from healthy pregnant women. Specifically, the impact of DBP on the vascular reactivity after both rapid and 24 h DBP exposure was analyzed, as well as the contractility and the cell viability of vascular smooth muscle cells (VSMC). DBP did not exhibit overt cytotoxic effects on VSMCs, possibly due to its adsorption onto polystyrene surfaces, potentially limiting bioavailability. Interestingly, DBP induced vasorelaxation in a concentration-dependent manner. Although mechanistic insights remain to be fully elucidated, the results suggest the involvement of pathways associated with nitric oxide signaling and calcium handling. Overall, DBP exposure appears to modulate arterial tone regulation, which may have implications for vascular function during pregnancy. Full article
Show Figures

Figure 1

21 pages, 903 KiB  
Article
Preliminary Analysis of Printed Polypropylene Foils and Pigments After Thermal Treatment Using DSC and Ames Tests
by Lukas Prielinger, Eva Ortner, Martin Novak, Lea Markart and Bernhard Rainer
Materials 2025, 18(14), 3325; https://doi.org/10.3390/ma18143325 - 15 Jul 2025
Viewed by 354
Abstract
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical [...] Read more.
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical recycling processes and therefore require hazard identification. In this study, virgin polypropylene (PP) foils were printed with different types of inks (UV-cured, water-based) and colour shades. Thermal analysis of printed foils and pigments was performed using differential scanning calorimetry (DSC). Samples were then thermally treated below and above measured thermal events at 120 °C, 160 °C, 200 °C or 240 °C for 30 min. Subsequently, migration tests and miniaturised Ames tests were performed. Four out of thirteen printed foils and all three pigments showed positive results for mutagenicity in miniaturised Ames tests after thermal treatment at 240 °C. Additionally, pre-incubation Plate Ames tests (according to OECD 471) were performed on three pigments and one printed foil, yielding two positive results after thermal treatment at 240 °C. These results indicate that certain ink components form hazardous decomposition products when heated up to a temperature of 240 °C. However, further research is needed to gain a better understanding of the chemical processes that occur during high thermal treatment. Full article
Show Figures

Graphical abstract

29 pages, 897 KiB  
Article
Identification of Potential Migrants in Food Contact Materials Labeled as Bio-Based and/or Biodegradable by GC-MS
by Emma López Sanvicente, Letricia Barbosa-Pereira, Raquel Sendón, Ana Rodríguez Bernaldo de Quirós and Antía Lestido-Cardama
Coatings 2025, 15(7), 751; https://doi.org/10.3390/coatings15070751 - 25 Jun 2025
Viewed by 669
Abstract
Bio-based and/or biodegradable food contact materials are being developed as alternatives to conventional petroleum-based materials. Like other food contact materials, these are subject to regulatory requirements. The characterization of these biomaterials enables the identification of chemical substances that could potentially migrate from these [...] Read more.
Bio-based and/or biodegradable food contact materials are being developed as alternatives to conventional petroleum-based materials. Like other food contact materials, these are subject to regulatory requirements. The characterization of these biomaterials enables the identification of chemical substances that could potentially migrate from these materials into food and may pose a risk to consumer health. In this work, commercial samples of food contact materials labeled as bio-based and/or biodegradable were analyzed. To tentatively identify compounds, two analytical methods were optimized: purge and trap (P&T) for volatile compounds and methanolic extract injection for the determination of semi-volatile compounds, both using gas chromatography coupled with mass spectrometry (GC-MS). Compound toxicity was estimated using an in silico methodology, namely Cramer’s rules. More than 200 compounds of different natures were tentatively identified, but only 29 are included in Regulation (EU) 10/2011 on plastic materials intended to come into contact with food, and 38 of them were classified as high-toxicity compounds. Full article
(This article belongs to the Special Issue Bio-Based and Biodegradable Packaging Materials for Food Contact)
Show Figures

Graphical abstract

27 pages, 739 KiB  
Review
The Fate of Chemical Contaminants in Soil with a View to Potential Risk to Human Health: A Review
by Gianniantonio Petruzzelli, Beatrice Pezzarossa and Francesca Pedron
Environments 2025, 12(6), 183; https://doi.org/10.3390/environments12060183 - 30 May 2025
Cited by 1 | Viewed by 1202
Abstract
This review reports some aspects of soil contaminant chemistry and its fundamental role in shaping the soil–human health relationship. Exposure to soil contaminants can occur through direct pathways, such as ingestion, inhalation, and dermal contact, as well as indirect pathways, including food chain [...] Read more.
This review reports some aspects of soil contaminant chemistry and its fundamental role in shaping the soil–human health relationship. Exposure to soil contaminants can occur through direct pathways, such as ingestion, inhalation, and dermal contact, as well as indirect pathways, including food chain contamination via plant uptake or groundwater leaching. The mobility and persistence of organic and inorganic pollutants in soil are primarily controlled by sorption–desorption processes, which involve a complex interplay of physical and chemical mechanisms. Soil properties, such as pH, organic matter content, clay minerals, and oxide hydroxides, play a crucial role in regulating these processes and determining contaminant behavior. A high sorption capacity enhances the soil’s ability to mitigate pollutant mobility, thereby reducing their infiltration into groundwater and accumulation in the food chain. Soils rich in organic matter and fine-textured minerals, such as clay, can effectively immobilize contaminants, limiting their bioavailability and potential harm to human health. A deeper understanding of how soil characteristics influence contaminant mobility and bioavailability is critical to addressing the hazards of soil pollution for human health. Beyond merely assessing contaminant concentrations, it is essential to consider the dynamic processes governing pollutant fate in soil, as they ultimately shape exposure pathways and health risks. This knowledge is the key to developing more effective strategies for mitigating soil contamination and protecting public health. Full article
(This article belongs to the Special Issue Environments: 10 Years of Science Together)
Show Figures

Figure 1

28 pages, 7014 KiB  
Article
Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction
by Florian Fischer, Veronika Temml and Daniela Schuster
Molecules 2025, 30(10), 2183; https://doi.org/10.3390/molecules30102183 - 16 May 2025
Viewed by 2532
Abstract
Pesticides are essential in agriculture for protecting crops and boosting productivity, but their widespread use may pose significant health risks. Farmworkers face direct exposure through skin contact and inhalation, which may lead to hormonal imbalances, neurological disorders, and elevated cancer risks. Moreover, pesticide [...] Read more.
Pesticides are essential in agriculture for protecting crops and boosting productivity, but their widespread use may pose significant health risks. Farmworkers face direct exposure through skin contact and inhalation, which may lead to hormonal imbalances, neurological disorders, and elevated cancer risks. Moreover, pesticide residues in food and water may affect surrounding communities. One of the lesser investigated issues is immunotoxicity, mostly because the chronic effects of compound exposure are very complex to study. As a case study, this work utilized pharmacophore modeling and virtual screening to identify pesticides that may inhibit Janus kinases (JAK1, JAK2, JAK3) and tyrosine kinase 2 (TYK2), which are pivotal in immune response regulation, and are associated with cancer development and increased infection susceptibility. We identified 64 potential pesticide candidates, 22 of which have previously been detected in the human body, as confirmed by the Human Metabolome Database. These results underscore the critical need for further research into potential immunotoxic and chronic impacts of the respective pesticides on human health. Full article
Show Figures

Figure 1

18 pages, 1191 KiB  
Article
Formation of Polycyclic Aromatic Hydrocarbons on Grilled Pork Neck Loins as Affected by Different Marinades and Grill Types
by Marta Ciecierska, Urszula Komorowska, Marcin Bryła and Marek Roszko
Foods 2025, 14(10), 1673; https://doi.org/10.3390/foods14101673 - 9 May 2025
Viewed by 724
Abstract
Processing methods affect the quality and, most importantly, safety of meat. The effects of various marinades, a kind of green processing technology commonly used in Poland, on PAH contamination in pork neck loins, the most frequently grilled pork meat, were investigated, including universal, [...] Read more.
Processing methods affect the quality and, most importantly, safety of meat. The effects of various marinades, a kind of green processing technology commonly used in Poland, on PAH contamination in pork neck loins, the most frequently grilled pork meat, were investigated, including universal, pork, and honey mustard, as well as the most popular grilling tools. It is important to note that no such data have been published so far. Our previous study focused on poultry meat, another commonly grilled meat. PAH analysis was conducted using the QuEChERS–HPLC–FLD/DAD method and confirmed by the GC/MS method. Weight loss and changes in individual color parameters after grilling were also analyzed. Grilling on a charcoal grill without an aluminum tray caused statistically the greatest PAH contents. Some of these samples, according to Commission Regulation (EU) No. 915/2023 restrictions, should not be consumed by humans due to the high content of B[a]P (5.26–6.51 µg/kg). The lowest contamination levels overall were determined for the ceramic contact grill. Studies have also shown that the universal and pork marinades can reduce PAH contamination by about 24–29% for 4 heavy PAHs and by 31–32% for 15 PAHs, whereas the honey mustard marinade increases their accumulation in grilled products by 13% for 4 PAHs and 12% for 15 PAHs. Carefully choosing the grilling equipment, such as using electric grills instead of charcoal or using aluminum trays when grilling with charcoal and marinating the meat before grilling, is essential for food producers and consumers. These practices can significantly reduce the harmful health effects of PAHs, making them vital steps toward safer food preparation. Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products: 3rd Edition)
Show Figures

Graphical abstract

22 pages, 7929 KiB  
Article
Transcriptome Sequencing Reveals Survival Strategies and Pathogenic Potential of Vibrio parahaemolyticus Under Gastric Acid Stress
by Shiying Ji, Jinlin Jiang, Zhiyong Song, Yu Zhou, Lu Chen, Shiying Tang, Yingjie Pan, Yong Zhao and Haiquan Liu
Biology 2025, 14(4), 396; https://doi.org/10.3390/biology14040396 - 10 Apr 2025
Viewed by 660
Abstract
As a common food-borne pathogen, Vibrio parahaemolyticus comes into direct or indirect contact with gastric acid after ingestion. However, the mechanisms by which Vibrio parahaemolyticus passes through the gastric acid barrier, recovers, and causes pathogenicity remain unclear. In this study, static in vitro [...] Read more.
As a common food-borne pathogen, Vibrio parahaemolyticus comes into direct or indirect contact with gastric acid after ingestion. However, the mechanisms by which Vibrio parahaemolyticus passes through the gastric acid barrier, recovers, and causes pathogenicity remain unclear. In this study, static in vitro digestion simulation experiments showed that some strains can pass through the gastric acid barrier by utilizing microacid tolerance mechanisms and altering their survival state. Food digestion simulation experiments showed that food matrices could help bacteria escape gastric acid stress, with significantly different survival rates observed for bacteria in various food matrices after exposure to gastric acid. Interestingly, surviving Vibrio parahaemolyticus showed a significantly shorter growth lag time (LT) during recovery. Transcriptome sequencing (RNA-seq) analyses indicated that the bacteria adapted to gastric acid stress by regulating the two-component system through stress proteins secreted via the ribosomal pathway. Pathogenic Vibrio parahaemolyticus that successfully passes through the gastric acid barrier potentially exhibits enhanced pathogenicity during recovery due to the significant upregulation of virulence genes such as tdh and yscF. This study provides a scientific basis for revealing the tolerance mechanisms of food-borne pathogens represented by Vibrio parahaemolyticus in the human body. Full article
Show Figures

Figure 1

27 pages, 2136 KiB  
Review
Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment
by Yang Yang, Jin Wang, Shali Tang, Jia Qiu, Yan Luo, Chun Yang, Xiaojing Lai, Qian Wang and Hui Cao
Molecules 2025, 30(5), 994; https://doi.org/10.3390/molecules30050994 - 21 Feb 2025
Cited by 6 | Viewed by 3674
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in the production of consumer products globally due to the excellent water and oil resistance and anti-fouling properties. The multiple toxic effects of some PFASs also pose a threat to human health and ecosystem, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) have been widely used in the production of consumer products globally due to the excellent water and oil resistance and anti-fouling properties. The multiple toxic effects of some PFASs also pose a threat to human health and ecosystem, and the frequent use of certain consumer products increased the risk of human exposure to PFASs. More data on the occurrence, concentration, and migration of PFASs in consumer products is urgently needed to address the possible risks posed by exposure to consumer products. This paper reviews the PFAS concentrations found, the migration characteristics known, and the exposure risks of PFASs arising from several types of consumer products over the last five years. The types of consumer products considered here include food contact materials, textiles, and disposable personal hygiene products. The influence of different factors on the migration process of PFASs from these products are summarized and discussed. Additionally, the main approaches and models of exposure assessment are evaluated and summarized. Current challenges and future research prospects in this field are discussed with a view to providing guidance for the future assessment and regulation of PFASs in consumer products. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

15 pages, 7570 KiB  
Article
Antibiofilm Activity of Amomum tsaoko Essential Oil on Staphylococcus aureus and Its Application in Pork Preservation
by Zhifeng Yan, Junrui Guo, Qiming Chen, Sibao Wan, Zhen Qin and Haiyan Gao
Foods 2025, 14(4), 662; https://doi.org/10.3390/foods14040662 - 15 Feb 2025
Cited by 1 | Viewed by 912
Abstract
Staphylococcus aureus (S. aureus) can contaminate food by forming biofilms, leading to significant food safety concerns. Amomum tsaoko essential oil (AEO) has been shown to be an effective plant-derived antibacterial agent. This study investigated the antibiofilm activity of AEO and evaluated [...] Read more.
Staphylococcus aureus (S. aureus) can contaminate food by forming biofilms, leading to significant food safety concerns. Amomum tsaoko essential oil (AEO) has been shown to be an effective plant-derived antibacterial agent. This study investigated the antibiofilm activity of AEO and evaluated its potential benefit in pork preservation. The results showed that AEO solution (2 mg/mL) can effectively remove the biofilm of S. aureus on food contact materials, achieving a removal rate of over 90%. Scanning electron microscopy (SEM) revealed that the S. aureus biofilm structure was disrupted after treatment with AEO. Meanwhile, AEO treatment significantly reduced the initial formation of S. aureus biofilms and extracellular polymeric substance (EPS) production. In addition, AEO down-regulated the expression of key biofilm-associated genes, including icaA, icaB, agrA, cidA, cidB, and cidC, thereby regulating formation. AEO also exhibited significant antibiofilm activity in pork preservation, effectively controlling key indicators associated with pork spoilage. This study revealed the potential of AEO in food preservation, demonstrating its ability to disrupt S. aureus biofilms by inhibiting initial formation, reducing the release of EPS secretion, and regulating the expression of biofilm-associated genes. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 8908 KiB  
Article
Carbon Nanoparticle-Loaded PLA Nanofibers via Electrospinning for Food Packaging
by Pietro Di Matteo, Francesco Barbero, Enrique Giménez-Torres, Ivana Fenoglio, Elena Destro, Valentina Brunella and Águeda Sonseca Olalla
J. Compos. Sci. 2025, 9(1), 25; https://doi.org/10.3390/jcs9010025 - 7 Jan 2025
Cited by 1 | Viewed by 1467
Abstract
The development of nanocomposite materials for food packaging applications requires a precise balance of material functionality, safety, and regulatory compliance. In this work, the design, manufacturing, optimization, feasibility, and safety profile of polylactic acid (PLA) nanofibers filled with biocompatible carbon nanoparticles (CNP) and [...] Read more.
The development of nanocomposite materials for food packaging applications requires a precise balance of material functionality, safety, and regulatory compliance. In this work, the design, manufacturing, optimization, feasibility, and safety profile of polylactic acid (PLA) nanofibers filled with biocompatible carbon nanoparticles (CNP) and copper-loaded (CNP-Cu) nanoparticles by electrospinning are presented. To ensure nanoparticle compatibility with the PLA solvent system and achieve a uniform dispersion of the nanoparticles within nanofibers, dynamic light scattering analysis was employed, while the incorporation efficiency was demonstrated by building a novel UV–vis spectroscopy analytical method. Morphological analysis, performed through FE-SEM and TEM, confirmed the homogeneous distribution of CNP and CNP-Cu nanoparticles without aggregation. Migration studies in aqueous food simulants were also carried out to assess the material’s safety profile. The results showed minimal nanoparticle release, and the calculated copper migration was well within the limits set by European Commission Regulation (EU) No. 10/2011 for food contact materials. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

34 pages, 4591 KiB  
Review
Phytochemicals Controlling Enterohemorrhagic Escherichia coli (EHEC) Virulence—Current Knowledge of Their Mechanisms of Action
by Patryk Strzelecki, Monika Karczewska, Agnieszka Szalewska-Pałasz and Dariusz Nowicki
Int. J. Mol. Sci. 2025, 26(1), 381; https://doi.org/10.3390/ijms26010381 - 4 Jan 2025
Cited by 3 | Viewed by 2296
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a common pathotype of E. coli that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can [...] Read more.
Enterohemorrhagic Escherichia coli (EHEC) is a common pathotype of E. coli that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can become infected with EHEC through the consumption of contaminated food and water or through direct contact with infected animals or humans. E. coli O157:H7 is one of the most commonly reported causes of foodborne illnesses in developed countries. The formation of attaching and effacing (A/E) lesions on the intestinal epithelium, combined with Shiga toxin production, is a hallmark of EHEC infection and can lead to lethal hemolytic–uremic syndrome (HUS). For the phage-dependent regulation of Shiga toxin production, antibiotic treatment is contraindicated, as it may exacerbate toxin production, limiting therapeutic options to supportive care. In response to this challenge and the growing threat of antibiotic resistance, phytochemicals have emerged as promising antivirulence agents. These plant-derived compounds target bacterial virulence mechanisms without promoting resistance. Therefore, the aim of this study is to summarize the recent knowledge on the use of phytochemicals targeting EHEC. We focused on the molecular basis of their action, targeting the principal virulence determinants of EHEC. Full article
(This article belongs to the Special Issue Biological Research on Plant Bioactive Compounds)
Show Figures

Figure 1

16 pages, 5870 KiB  
Article
Analysis of Plasticizer Contamination Throughout Olive Oil Production
by Flávia Freitas, João Brinco, Maria João Cabrita and Marco Gomes da Silva
Molecules 2024, 29(24), 6013; https://doi.org/10.3390/molecules29246013 - 20 Dec 2024
Viewed by 1795
Abstract
This study monitored the contamination of 32 plasticizers in olive oil throughout the production and storage process. Samples were collected at different stages of production from three olive oil production lines in distinct regions of Portugal and analyzed for 23 phthalates and 9 [...] Read more.
This study monitored the contamination of 32 plasticizers in olive oil throughout the production and storage process. Samples were collected at different stages of production from three olive oil production lines in distinct regions of Portugal and analyzed for 23 phthalates and 9 phthalates substitutes to identify contamination sources. The developed analytical method employed liquid–liquid extraction with hexane/methanol (1:4, v/v), followed by centrifugation, extract removal, and freezing as a clean-up step. Analysis was conducted using gas chromatography tandem mass spectrometry (GC-MS/MS), with detection limits ranging from 0.001 to 0.103 mg/kg. The results revealed that plasticizer concentrations progressively increased at each stage of the production process, although unprocessed olives also contained contaminants. Di-isononyl phthalate (DINP) was the most prevalent compound, but all phthalates regulated by the European Union for food contact materials were detected, as well as some unregulated plasticizers. In a few packaged olive oils, DINP concentrations exceeded the specific migration limits established by European regulations. Samples stored in glass and plastic bottles showed no significant differences in plasticizer concentrations after six months of storage. However, higher concentrations were observed in plastic-packaged samples after 18 months of storage. Our findings indicate that the primary source of plasticizer contamination in olive oil originates from the production process itself, except for prolonged storage in plastic bottles, which should be avoided. Full article
Show Figures

Figure 1

17 pages, 443 KiB  
Article
Toxic Metals Migration from Plastic Food Contact Materials in Romania: A Health Risk Assessment
by Gabriel Mustatea, Andreea L. Mocanu, Corina A. Stroe and Elena L. Ungureanu
Appl. Sci. 2024, 14(23), 10985; https://doi.org/10.3390/app142310985 - 26 Nov 2024
Cited by 2 | Viewed by 2577
Abstract
Food packaging plays an essential role in preserving food quality. However, heavy metals found in packaging materials—whether intentionally incorporated or not—can migrate into food. This study aims to evaluate the migration of specific heavy metals (Ba, Co, Cu, Zn, Al, Ni, Li, Fe, [...] Read more.
Food packaging plays an essential role in preserving food quality. However, heavy metals found in packaging materials—whether intentionally incorporated or not—can migrate into food. This study aims to evaluate the migration of specific heavy metals (Ba, Co, Cu, Zn, Al, Ni, Li, Fe, Pb, Cd, Cr, Sb) from plastic food packages (films and bags) obtained from various materials (PE, PP, PVC, composite materials) into food simulant B (3% acetic acid) using inductively coupled plasma mass spectrometry (ICP-MS). Migration tests was conducted according to EU regulations, using OM2 conditions (10 days at 40 °C). The obtained results were lower than the specific migration limits set by EU Regulation no. 10/2011 (Annex II). Both carcinogenic and non-carcinogenic risk assessments were carried out based on the specific migration data, estimating the exposure, average daily dose (ADD), hazard quotient (HQ), hazard index (HI), cancer risk (CR), and total cancer risk (TCR). The exposure values were found to be below the recommended tolerable daily intake (TDI) levels for each metal tested. Both HQ and HI values were under the limit value of 1. The average total cancer risk was 1.73 × 10−4, indicating that approximately 1.73 consumers out of 10,000 may develop a type of cancer due to chronic exposure to the tested metals. These results highlight the importance of continuous monitoring of chemical migrants from food contact materials. Full article
Show Figures

Figure 1

19 pages, 1162 KiB  
Article
Effects of Different Marinades and Types of Grills on Polycyclic Aromatic Hydrocarbon Content in Grilled Chicken Breast Tenderloins
by Marta Ciecierska and Urszula Komorowska
Foods 2024, 13(21), 3378; https://doi.org/10.3390/foods13213378 - 24 Oct 2024
Cited by 3 | Viewed by 1891
Abstract
Grilling has become a widespread method of thermal food processing. However, food prepared in this way may be a source of carcinogenic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs). The present study aimed to evaluate the impact of different marinades and grilling [...] Read more.
Grilling has become a widespread method of thermal food processing. However, food prepared in this way may be a source of carcinogenic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs). The present study aimed to evaluate the impact of different marinades and grilling tools on PAH contamination of chicken breast tenderloins. Together with the determination of PAHs carried out using the QuEChERS–HPLC–FLD/DAD method, the meat’s weight loss after the thermal process and the color of raw and grilled samples were analyzed. Statistically, the highest levels of PAH contamination were found in samples prepared on a charcoal grill without a tray, whereas the lowest were seen using the ceramic contact grill. Meat marination showed that universal and chicken marinades can be barriers against PAHs. Following requirements set in Commission Regulation (EU) No. 915/2023, none of the analyzed samples exceeded the maximum allowable level for B[a]P (5.0 µg/kg) and the sum of four marker-heavy PAHs (30.0 µg/kg). Thus, preparing meat before the thermal process, including marinades rich in phenolic compounds, and selecting a grilling method with appropriate grilling tools can ensure food safety and effectively reduce PAH contamination in grilled poultry meat. Full article
Show Figures

Figure 1

12 pages, 628 KiB  
Article
Level of Adoption of Hygiene Practices in Small-Scale Dairy Plants in Serbia
by Ilija Djekić, Nada Smigic, Zorana Miloradovic, Biljana Aleksic, Marijana Maslovarić, Rade Jovanović, Nataša Tolimir, Predrag Pudja and Jelena Miocinovic
Foods 2024, 13(15), 2470; https://doi.org/10.3390/foods13152470 - 5 Aug 2024
Cited by 1 | Viewed by 1601
Abstract
The main aim of this study was to analyze hygiene practices in small-scale dairy plants (SSDPs) in Serbia. A total of 60 plants were included in the research. A survey questionnaire used for SSDPs was designed to obtain the main information about hygiene [...] Read more.
The main aim of this study was to analyze hygiene practices in small-scale dairy plants (SSDPs) in Serbia. A total of 60 plants were included in the research. A survey questionnaire used for SSDPs was designed to obtain the main information about hygiene practices they perform, as well as the data about the SSDPs, their production portfolio, and improvement plans. For the purpose of this study, a good hygiene practice score (GHPS) was calculated showing that the average score is 75%, spanning from 71.4% to 80.3% depending on the type of dairy plant. This study showed that the biggest challenges for small-scale dairy plants are associated with adequate labeling and external analysis of their dairy products, followed by record keeping and use of appropriate food contact materials. As expected, registered and approved SSDPs had higher GHPS scores and more information on their labels than those still in the approval or registration process. This study confirms the need for supporting this type of dairy producer to improve two main pillars of their business—the infrastructure for where they produce dairy products and awareness/knowledge of food safety legislative requirements. At the same time, approved processors are significantly underutilizing their processing capacity, which implies the need for both policy change consideration and educational initiatives. The policy changes should aim to align regulations with small-scale dairy processing realities. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

Back to TopTop