Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment
Abstract
:1. Introduction
2. Detection of PFAS in Consumer Products
2.1. PFAS in FCMs
2.2. PFAS in Textiles
2.3. PFAS in Personal Hygiene Products
2.4. Brief Summary
3. Migration of PFAS in Consumer Products
3.1. Migration of PFAS in FCMs
- (1)
- Influence of migration condition
- (2)
- Influence of PFAS properties.
3.2. Migration of PFAS in Textiles
4. Exposure Risk Assessment
4.1. Biological Monitoring
4.1.1. Invasive Samples
4.1.2. Non-Invasive Samples
4.2. Exposure Assessment Models
4.3. Risk Characterization
5. Limitations and Perspectives
5.1. Accurate Detection of PFAS
5.2. Applicable Evaluation Models
5.3. Lack of Toxicity Data
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD. Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances: Recommendations and Practical Guidance; OECD Series on Risk Management, No. 61; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- OECD. Summary Report on the New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs); OECD Series on Risk Management of Chemicals; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Gluge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z.Y. An overview of the uses of perand polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Dewapriya, P.; Chadwick, L.; Gorji, S.G.; Schulze, B.; Valsecchi, S.; Samanipour, S.; Thomas, K.V.; Kaserzon, S.L. Per- and polyfluoroalkyl substances (PFAS) in consumer products: Current knowledge and research gaps. J. Hazard. Mater. Lett. 2023, 4, 100086. [Google Scholar] [CrossRef]
- Tang, L.; Yu, X.; Zhao, W.; Barcel, D.; Lyu, S.; Sui, Q. Occurrence, behaviors, and fate of per- and polyfluoroalkyl substances (PFASs) in typical municipal solid waste disposal sites. Water Res. 2024, 252, 121215. [Google Scholar] [CrossRef]
- Wang, Z.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef]
- Zhang, W.P.; Pang, S.M.; Lin, Z.Q.; Mishra, S.; Bhatt, P.; Chen, S.H. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: Advances and perspectives. Environ. Pollut. 2021, 272, 115908. [Google Scholar] [CrossRef] [PubMed]
- Glenn, G.; Shogren, R.; Jin, X.; Orts, W.; Hart-Cooper, W.; Olson, L. Per- and polyfluoroalkyl substances and their alternatives in paper food packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2596–2625. [Google Scholar] [CrossRef]
- Zhi, Y.; Lu, X.W.; Munoz, G.; Yeung, L.W.Y.; De Silva, A.O.; Hao, S.L.; He, H.; Jia, Y.H.; Higgins, C.P.; Zhang, C.H. Environmental occurrence and biotic concentrations of ultrashort-chain perfluoroalkyl acids: Overlooked global organofluorine contaminants. Environ. Sci. Technol. 2024, 58, 21393–21410. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Gomis, M.I.; Vestergren, R.; Borg, D.; Cousins, I.T. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ. Int. 2018, 113, 1–9. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Monographs Evaluate the Carcinogenicity of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS). Available online: https://www.iarc.who.int/news-events/iarc-monographs-evaluate-the-carcinogenicity-of-perfluorooctanoic-acid-pfoa-and-perfluorooctanesulfonic-acid-pfos (accessed on 8 February 2025).
- Zahm, S.; Bonde, J.P.; Chiu, W.A.; Hoppin, J.; Kanno, J.; Abdallah, M.; Blystone, C.R.; Calkins, M.M.; Dong, G.H.; Dorman, D.C. Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. Lancet Oncol. 2024, 25, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Sun, B.; Berardi, D.; Lu, L.; Yan, H.; Zheng, S.; Aladelokun, O.; Xie, Y.; Cai, Y.; Pollitt, K.J.G.; et al. Perfluorooctanesulfonic acid and perfluorooctanoic acid promote migration of three-dimensional colorectal cancer spheroids. Environ. Sci. Technol. 2023, 57, 21016–21028. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Jiang, J.; Li, Z.; Pan, Y.; Xu, K.; Gao, X.; Yuan, J.; Li, L.; Wang, Y.; Wang, L.; et al. Increased perfluorooctanoic acid accumulation facilitates the migration and invasion of lung cancer cells via remodeling cell mechanics. Proc. Natl. Acad. Sci. USA 2024, 121, e2408575121. [Google Scholar] [CrossRef]
- Tang, L.; Qiu, W.; Zhang, S.; Wang, J.; Yang, X.; Xu, B.; Magnuson, J.T.; Xu, E.G.; Wu, M.; Zheng, C. Poly- and perfluoroalkyl substances induce immunotoxicity via the TLR pathway in Zebrafish: Links to carbon chain length. Environ. Sci. Technol. 2023, 57, 6139–6149. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; He, Y.; Zhang, S.; Kang, X.; Yang, X.; Xu, B.; Magnuson, J.T.; Wang, S.; Zheng, C.; Qiu, W. Perfluorohexanesulfonic Acid (PFHxS) Induces Hepatotoxicity through the PPAR Signaling Pathway in Larval Zebrafish (Danio rerio). Environ. Sci. Technol. 2024, 58, 22894–22906. [Google Scholar] [CrossRef]
- Frigerio, G.; Ferrari, C.; Fustinoni, S. Prenatal and childhood exposure to per-/polyfluoroalkyl substances (PFASs) and its associations with childhood overweight and/or obesity: A systematic review with meta-analyses. Environ. Health 2023, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Oliva, P.; Zhang, L.; Goodrich, J.A.; Mcconnell, R.; Conti, D.V.; Chatzi, L.; Aung, M. Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. J. Expo. Sci. Environ. Epidemiol. 2025. [Google Scholar] [CrossRef]
- Jones, R.M.; Kulick, E.R.; Snead, R.; Wilson, R.T.; Hughes, J.; Lillys, T. Enhanced spatial analysis assessing the association between PFAS-contaminated water and cancer incidence: Rationale, study design, and methods. BMC Cancer 2025, 25, 101. [Google Scholar] [CrossRef]
- UNEP. Report of the conference of the parties of the stockholm convention on persistent organic pollutants on the work of its fourth meeting [EB/OL]. In Proceedings of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Fourth Meeting, Geneva, Switzerland, 4–8 May 2009. [Google Scholar]
- UNEP. Report of the conference of the parties to the stockholm convention on persistent organic pollutants on the work of its ninth meeting [EB/OL]. In Proceedings of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Ninth Meeting, Geneva, Switzerland, 29 April–10 May 2019. [Google Scholar]
- EPA. EPA Adds Nine Additional PFAS to the Toxics Release Inventory. Available online: https://www.epa.gov/newsreleases/epa-adds-nine-additional-pfas-toxics-release-inventory (accessed on 8 February 2025).
- Kwiatkowski, C.; Andrews, D.; Birnbaum, L.; Bruton, T.; DeWitt, J.; Knappe, D.; Maffini, M.; Miller, M.; Pelch, K.; Reade, A.; et al. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Zhang, J.; Thiessen, P.A.; Chirsir, P.; Kondic, T.; Bolton, E.E. Per- and polyfluoroalkyl substances (PFAS) in pubChem: 7 million and growing. Environ. Sci. Technol. 2023, 57, 16918–16928. [Google Scholar] [CrossRef]
- Kotthoff, M.; Müller, J.; Jürling, H.; Schlummer, M.; Fiedler, D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ. Sci. Pollut. Res. 2015, 22, 14546–14559. [Google Scholar] [CrossRef]
- Minet, L.; Wang, Z.; Shalin, A.; Bruton, T.A.; Blum, A.; Peaslee, G.F.; Schwartz-Narbonne, H.; Venier, M.; Whitehead, H.; Wu, Y.; et al. Use and release of per- and polyfluoroalkyl substances (PFASs) in consumer food packaging in U.S. and Canada. Environ. Sci. Process. Impacts 2022, 24, 2032–2042. [Google Scholar] [CrossRef] [PubMed]
- Curtzwiler, G.W.; Silva, P.; Hall, A.; Ivey, A.; Vorst, K.J.I.E.A. Significance of perfluoroalkyl substances (PFAS) in food packaging. Integr. Environ. Assess. Manag. 2020, 17, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Honigfort, O.J. Perfluorinated compounds in food contact materials. In Toxicants in Food Packaging and Household Plastics; Springer: London, UK, 2014; pp. 177–203. [Google Scholar]
- Brenes, A.L.M.; Curtzwiler, G.; Dixon, P.; Harrata, K.; Talbert, J.; Vorst, K. PFOA and PFOS levels in microwave paper packaging between 2005 and 2018. Food Addit. Contam. Part B 2019, 12, 191–198. [Google Scholar] [CrossRef] [PubMed]
- You, S.H.; Yu, C.C. Health risk exposure assessment of migration of perfluorooctane sulfonate and perfluorooctanoic acid from paper and cardboard in contact with food under temperature variations. Foods 2023, 12, 1764. [Google Scholar] [CrossRef]
- Zabaleta, I.; Blanco-Zubiaguirre, L.; Baharli, E.N.; Olivares, M.; Prieto, A.; Zuloaga, O.; Elizalde, M.P. Occurrence of per- and polyfluorinated compounds in paper and board packaging materials and migration to food simulants and foodstuffs. Food Chem. 2020, 321, 126746. [Google Scholar] [CrossRef]
- Duenas-Mas, M.J.; Ballesteros-Gomez, A.; de Boer, J. Determination of several PFAS groups in food packaging material from fast-food restaurants in France. Chemosphere 2023, 339, 139734. [Google Scholar] [CrossRef]
- Boisacq, P.; Keuster, M.D.; Prinsenb, E.; Jeong, Y.; Bervoets, L.; Eense, M.; Covaci, A.; Willems, T.; Groffen, T. Assessment of poly- and perfluoroalkyl substances (PFAS) in commercially available drinking straws using targeted and suspect screening approaches. Food Addit. Contam. Part A 2023, 40, 1230–1241. [Google Scholar] [CrossRef]
- Timshina, A.; Aristizabal-Henao, J.J.; Silva, B.F.D.; Bowden, J.A. The last straw: Characterization of per- and polyfluoroalkyl substances in commercially-available plant-based drinking straws. Chemosphere 2021, 277, 130238. [Google Scholar] [CrossRef]
- Lanberg, H.A.; Arp, H.P.H.; Castro, G.; Asimakopoulos, A.G.; Knutsen, H. Recycling of paper, cardboard and its PFAS in Norway. J. Hazard. Mater. Lett. 2024, 5, 100096. [Google Scholar] [CrossRef]
- Hoang, A.Q.; Tran, T.L.; Tuyen, L.; Nguyen, T.A.H.; Pham, D.M.; Nguyen, T.C.; Nguyen, T.N.; Phan, D.Q.; Nguyen, M.K.; Tran, V.; et al. Perfluoroalkyl substances in food contact materials: Preliminary investigation in Vietnam and global comparison. Environ. Sci. Pollut. Res. 2023, 30, 104181–104193. [Google Scholar] [CrossRef]
- Wang, X.; Huang, X.; Zhi, Y.; Wang, Q.; Yue, D.; Wang, X. Leaching of per- and polyfluoroalkyl substances (PFAS) from food contact materials with implications for waste disposal. J. Hazard. Mater. 2024, 479, 135658. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Shan, C.; Fu, W.; Wei, S.; Pan, B.C. Occurrences and fates of per- and polyfluoralkyl substances in textile dyeing wastewater along full-scale treatment processes. Water Res. 2023, 242, 120289. [Google Scholar] [CrossRef]
- Toxic-Free Future. New Study Finds Toxic Chemicals in Most Products Labeled Stain- or Water-Resistant; Toxic-Free Future: Seattle, WA, USA, 2022. [Google Scholar]
- Toxic-Free Future. Toxic Convenience: The Hidden Costs of Forever Chemicals in Stain- and Water-Resistant Products; Toxic-Free Future: Seattle, WA, USA, 2022. [Google Scholar]
- Zhu, H.; Kannan, K. Total oxidizable precursor assay in the determination of perfluoroalkyl acids in textiles collected from the United States. Environ. Pollut. 2020, 265, 114940. [Google Scholar] [CrossRef] [PubMed]
- Tokranov, A.K.; Nishizawa, N.; Amadei, C.A.; Zenobio, J.E.; Sunderland, E.M. How do we measure poly- and perfluoroalkyl substances (PFASs) at the surface of consumer products? Environ. Sci. Technol. Lett. 2019, 6, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Diamond, M.L.; Peaslee, G.F.; Peng, H.; Blum, A.; Wang, Z.; Shalin, A.; Whitehead, H.D.; Green, M.; Narbonne, H.S.; et al. Per- and polyfluoroalkyl substances in north American cchool uniforms. Environ. Sci. Technol. 2022, 56, 13845–13857. [Google Scholar] [CrossRef]
- Peaslee, G.F.; Wilkinson, J.T.; McGuinness, S.R.; Tighe, M.; Caterisano, N.; Lee, S.; Gonzales, A.; Roddy, M.; Mills, S.; Mitchell, K. Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: Firefighter textiles. Environ. Sci. Technol. Lett. 2020, 7, 594–599. [Google Scholar] [CrossRef]
- Christensen, B.; Calkins, M. Occupational exposure to per- and polyfluoroalkyl substances: A scope review of the literature from 1980-2021. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 673–686. [Google Scholar] [CrossRef]
- Ragnarsdóttir, O.; Abdallah, M.A.-E.; Harrad, S. Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances? Environ. Pollut. 2022, 307, 119478. [Google Scholar] [CrossRef]
- Ragnarsdóttir, O.; Abdallah, M.; Harrad, S. Dermal bioavailability of perfluoroalkyl substances using in vitro 3D human skin equivalent models. Environ. Int. 2024, 188, 108772. [Google Scholar] [CrossRef]
- Schultes, L.; Peaslee, G.F.; Brockman, J.D.; Majumdar, A.; McGuinness, S.R.; Wilkinson, J.T.; Robey, N. Total fluorine measurements in food packaging: How do current methods perform? Environ. Sci. Technol. Lett. 2019, 2, 73–78. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Cousins, I.T.; Scheringer, M.; Hungerbuehler, K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environ. Int. 2014, 75, 172–179. [Google Scholar] [CrossRef]
- Rewerts, J.N.; Morre, J.T.; Simonich, S.L.M.; Field, J.A. In-vial extraction large volume gas chromatography mass spectrometry for analysis of volatile PFASs on papers and textiles. Environ. Sci. Technol. 2018, 52, 10609–10616. [Google Scholar] [CrossRef]
- Liagkouridis, I.; Awad, R.; Schellenberger, S.; Plassmann, M.M.; Cousins, I.T.; Benskin, J.P. Combined use of total fluorine and oxidative fingerprinting for quantitative determination of side-chain fluorinated polymers in textiles. Environ. Sci. Technol. Lett. 2022, 9, 30–36. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, X.; Xing, Y.; Zhang, X.; Lee, H.K.; Huang, Z. Per- and polyfluoroalkyl substances in personal hygiene products: The implications for human exposure and emission to the environment. Environ. Sci. Technol. 2023, 57, 10489. [Google Scholar] [CrossRef]
- Massarsky, A.; Parker, J.A.; Gloekler, L.; Donnell, M.T.; Binczewski, N.R.; Kozal, J.S.; McKnight, T.; Patterson, A.; Kreider, M.L. Assessing potential human health and ecological implications of PFAS from leave-in dental products. Toxicol. Ind. Health 2024, 40, 91–103. [Google Scholar] [CrossRef]
- Muensterman, D.J.; Cahuas, L.; Titaley, I.A.; Schmokel, C.; De, C.; Florentino, B.; Barlaz, M.A.; Carignan, C.C.; Peaslee, G.F.; Field, J.A. Per- and polyfluoroalkyl substances (PFAS) in facemasks: Potential source of human exposure to PFAS with implications for disposal to landfills. Environ. Sci. Technol. Lett. 2022, 9, 320–326. [Google Scholar] [CrossRef]
- Herkert, N.J.; Kassotis, C.D.; Zhang, S.; Han, Y.; Pulikkal, V.F.; Sun, M.; Ferguson, P.L.; Stapleton, H.M. Characterization of per- and polyfluorinated alkyl substances present in commercial anti-fog products and their in vitro adipogenic activity. Environ. Sci. Technol. 2022, 56, 1162–1173. [Google Scholar] [CrossRef]
- Roesch, P.; Vogel, C.; Wittwer, P.; Huthwelker, T.; Borca, C.N.; Sommerfeld, T.; Kluge, S.; Piechotta, C.; Simon, F.G. Taking a look at the surface: M-XRF mapping and fluorine K-edge m-XANES spectroscopy of organofluorinated compounds in environmental samples and consumer products. Environ. Sci. Process. Impacts 2023, 25, 1213. [Google Scholar] [CrossRef]
- Lerch, M.; Fengler, R.; Mbog, G.R.; Nguyen, K.H.; Granby, K. Food simulants and real food—What do we know about the migration of PFAS from paper based food contact materials? Food Packag. Shelf Life 2023, 35, 100992. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.H.; Zhong, H.N.; Zhu, L.; Pan, J.J.; Zheng, J.G.; Lin, Q.B.; Liu, H.J. The determination of trace per- and polyfluoroalkyl substances and their precursors migrated into food simulants from food contact materials by LC-MS/MS and GC-MS/MS. LCGC N. Am. 2019, 37, 464–475. [Google Scholar]
- Choi, H.; Bae, I.A.; Choi, J.C.; Park, S.J.; Kim, M.K. Perfluorinated compounds in food simulants after migration from fluorocarbon resin-coated frying pans, baking utensils, and non-stick baking papers on the Korean market. Food Addit. Contam. Part B 2018, 11, 264–272. [Google Scholar] [CrossRef]
- Vera, P.; Canellas, E.; Dreolin, N.; Goshawk, J.; Nerín, C. The analysis of the migration of per and poly fluoroalkyl substances (PFAS) from food contact materials using ultrahigh performance liquid chromatography coupled to ion-mobility quadrupole time-of-flight mass spectrometry (UPLC- IMS-QTOF). Talanta 2024, 266, 124999. [Google Scholar] [CrossRef]
- Lerch, M.; Nguyen, K.H.; Granby, K. Is the use of paper food contact materials treated with per- and polyfluorinated alkyl substances safe for high-temperature applications?—Migration study in real food and food simulants. Food Chem. 2022, 393, 133375. [Google Scholar] [CrossRef]
- Toptanci, I.; Ketenoglu, O.; Kiralan, M. Assessment of the migration of perfluorinated compounds and primary aromatic amines from PTFE-coated non-stick cookware marketed in Turkey. Environ. Sci. Pollut. Res. 2022, 29, 38535–38549. [Google Scholar] [CrossRef]
- Chiang, C.F.; Dennis, P.H.; Hsu, H.C.; Chang, C.C.; Ling, M.P.; Huang, L.L.; Chen, P.W.; Chiang, K.H. Chinese cooking with ionic seasonings may enhance migration of perfluorooctanic acid from food contact articles. J. Food Drug Anal. 2012, 20, 814–821. [Google Scholar]
- Mohamed, A.F.M.; Mohamed, S.A.; Mostafa, M.M.; Hamza, E.S.M. Impact of household cooking on release of fluorinated compounds PFOA and PFOS from Tefal coated cookware to foods. World J. Adv. Res. Rev. 2019, 3, 24–35. [Google Scholar]
- Whitehead, H.D.; Peaslee, G.F. Directly fluorinated containers as a source of perfluoroalkyl carboxylic acids. Environ. Sci. Technol. Lett. 2023, 10, 350–355. [Google Scholar] [CrossRef]
- Sonego, E.; Di Filippo, P.; Riccardi, C.; Pomata, D.; Banno, A.; Simonetti, G.; Buiarelli, F. Occurrence and migration study of chemicals from baking paper and aluminium foil. Food Chem. 2023, 409, 135260. [Google Scholar] [CrossRef]
- Mario, M.D.; Bernard, L.; Legros, M.; Peltier, F.; Ciano, S.; Goscinny, S.; Focant, J.F.; Hoeck, E.V. Risks associated with the presence of PFAS in FCM: An investigation of the Belgian market. Chemosphere 2024, 363, 142907. [Google Scholar] [CrossRef]
- Bi, R.; Meng, W.; Su, G. Organophosphate esters (OPEs) in plastic food packaging: Non-target recognition, and migration behavior assessment. Environ. Int. 2023, 177, 108010. [Google Scholar] [CrossRef]
- GB 31604.1-2023; National Food Safety Standard General Rules for Migration Test of Food Contact Materials and Articles. National Health Commission, State Administration for Market Regulation: Beijing, China, 2023.
- The European Commission. Commission Regulation on Plastic Materials and Articles Intended to Come into Contact with Food; Commission Regulation (EU) No 10/2011; Official Journal of the European Union: Luxembourg, 2011. [Google Scholar]
- Veen, I.; Schellenberger, S.; Hanning, A.C.; Stare, A.; Boer, J.D.; Weiss, J.M.; Leonards, P. Fate of Per- and polyfluoroalkyl substances from durable water-repellent clothing during use. Environ. Int. 2022, 56, 5886–5897. [Google Scholar]
- Schellenberger, S.; Liagkouridis, I.; Awad, R.; Khan, S.; Plassmann, M.; Peters, G.; Benskin, J.P.; Cousins, I.T. An outdoor aging study to investigate the release of per- and polyfluoroalkyl substances (PFAS) from functional textiles. Environ. Sci. Technol. 2022, 56, 3471–3479. [Google Scholar] [CrossRef]
- Kärrman, A.; Ericson, I.; van Bavel, B.; Darnerud, P.O.; Aune, M.; Glynn, A.; Lignell, S.; Lindström, G. Exposure of perfluorinated chemicals through lactation: Levels of matched human milk and serum and a temporal trend, 1996-2004, in Sweden. Environ. Health Perspect. 2007, 115, 226–230. [Google Scholar] [CrossRef]
- Rappazzo, K.; Coffman, E.; Hines, E. Exposure to Perfluorinated Alkyl Substances and Health Outcomes in Children: A Systematic Review of the Epidemiologic Literature. Int. J. Environ. Res. Public Health 2017, 14, 691. [Google Scholar] [CrossRef]
- Franko, J.; Meade, B.J.; Frasch, H.F.; Barbero, A.M.; Anderson, S.E. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin. J. Toxicol. Environ. Health Part A 2012, 75, 50–62. [Google Scholar] [CrossRef]
- Liu, J.X.; Avendaño, S. Microbial degradation of polyfluoroalkyl chemicals in the environment: A Review. Environ. Int. 2013, 61, 98–114. [Google Scholar] [CrossRef]
- USEPA. Exposure Factors Handbook; Office of Research and Development: Washington, DC, USA, 1997.
- Li, T.; Chen, Y.; Wang, Y.; Tan, Y.; Jiang, C.; Yang, Y.; Zhang, Z. Occurrence, source apportionment and risk assessment of perfluorinated compounds in sediments from the longest river in Asia. J. Hazard. Mater. 2024, 467, 133608. [Google Scholar] [CrossRef]
- Crizer, D.M.; Rice, J.R.; Smeltz, M.G.; Lavrich, K.S.; Ravindra, K.; Wambaugh, J.F.; DeVito, M.; Wetmore, B.A. In vitro hepatic clearance evaluations of per- and polyfluoroalkyl substances (PFAS) across multiple structural categories. Toxics 2024, 12, 672. [Google Scholar] [CrossRef]
- Macmillan, D.K.; Wetmore, B.A.; Dasgupta, S.; Baldwin, W.S. Closing the gaps in understanding PFAS toxicology and metabolism. Toxics 2025, 13, 19. [Google Scholar] [CrossRef]
- Lu, Y.; Guan, R.N.; Zhu, N.L.; Hao, J.H.; Peng, H.Y.; He, A.E.; Zhao, C.Y.; Wang, Y.W.; Jiang, G.B. A critical review on the bioaccumulation, transportation, and elimination of per- and polyfluoroalkyl substances in human beings. Crit. Rev. Environ. Sci. Technol. 2023, 54, 95–116. [Google Scholar] [CrossRef]
- Gasiorowski, R.; Forbes, M.K.; Silver, G.; Krastev, Y.; Hamdorf, B.; Lewis, B.; Tisbury, M.; Cole-Sinclair, M.; Lanphear, B.P.; Klein, R. Effect of plasma and blood donations on levels of perfluoroalkyl and polyfluoroalkyl substances in firefighters in Australia: A randomized clinical trial. JAMA Netw. Open 2022, 5, 226257. [Google Scholar] [CrossRef]
- Forthun, I.H.; Mathieu, R.; Huaug, L.; Knutsen, H.K.; Schell, L.M.; Jugessur, A.; Bjerknes, R.; Sabaredzovic, A.; Bruserud, I.S.; Juliusson, P.B. Levels of per- and polyfluoroalkyl substances (PFAS) in Norwegian children stratified by age and sex-Data from the Bergen Growth Study 2. Int. J. Hyg. Environ. Health 2023, 252, 114199. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Q.; Wang, P.; Li, J.; Zhao, W.; Zhang, L.; Wang, H.; Cheng, Y.; Shi, H.; Li, J. Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai Maternal-Child Pairs Cohort. Environ. Int. 2023, 173, 107850. [Google Scholar] [CrossRef]
- Lucas, K.; Gaines, L.G.T.; Paris-Davila, T.; Nylander-French, L.A. Occupational exposure and serum levels of per- and polyfluoroalkyl substances (PFAS): A review. Am. J. Ind. Med. 2023, 66, 379–392. [Google Scholar] [CrossRef]
- Eddleston, M.D.; Raduly, R.L.; Tapper, T.T.; Hughes, R.J.; Browne, J.M.; Gareth, M.J. The consequences of removing fluorinated compounds from rigid contact lenses. J. Polym. Eng. 2023, 43, 508–515. [Google Scholar] [CrossRef]
- Susmann, H.P.; Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Dietary Habits Related to Food Packaging and Population Exposure to PFASs. Environ. Health Perspect. 2019, 127, 107003. [Google Scholar] [CrossRef]
- Kang, H.; Kim, D.H.; Choi, Y.H. Elevated levels of serum per- and poly-fluoroalkyl substances (PFAS) in contact lens users of U.S. young adults. Chemosphere 2024, 350, 141134. [Google Scholar] [CrossRef]
- Nielsen, F.; Fischer, F.C.; Leth, P.M.; Grandjean, P. Occurrence of Major Perfluorinated Alkylate Substances in Human Blood and Target Organs. Environ. Sci. Technol. 2024, 58, 143–149. [Google Scholar] [CrossRef]
- Baumert, B.O.; Fischer, F.C.; Nielsen, F.; Grandjean, P.; Bartell, S.; Stratakis, N.; Walker, D.I.; Valvi, D.; Kohli, R.; Inge, T. Paired Liver:Plasma PFAS Concentration Ratios from Adolescents in the Teen-LABS Study and Derivation of Empirical and Mass Balance Models to Predict and Explain Liver PFAS Accumulation. Environ. Sci. Technol. 2023, 57, 14817–14826. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, Y.M.; Xu, D.; Feng, X.; Yu, X.; Shan, G.; Zhu, L. Insights into the competitive mechanisms of per- and polyfluoroalkyl substances partition in liver and blood. Environ. Sci. Technol. 2022, 56, 6192–6200. [Google Scholar] [CrossRef]
- Nielsen, C.; Hall, U.A.; Lindh, C.; Ekström, U.; Xu, Y.; Li, Y.; Holmäng, A.; Jakobsson, K. Pregnancy-induced changes in serum concentrations of perfluoroalkyl substances and the influence of kidney function. Environ. Health 2020, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Mamsen, L.S.; Jnsson, B.A.G.; Lindh, C.H.; Olesen, R.H.; Larsen, A.; Ernst, E.; Kelsey, T.W.; Andersen, C. Concentration of perfluorinated compounds and cotinine in human foetal organs, placenta, and maternal plasma. Sci. Total Environ. 2017, 596, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Mamsen, L.S.; Björvang, R.D.; Mucs, D.; Vinnars, M.T.; Papadogiannakis, N.; Lindh, C.H.; Andersen, C.Y.; Damdimopoulou, P. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ. Int. 2019, 124, 482–492. [Google Scholar] [CrossRef]
- Cserbik, D.; Redondo-Hasselerharm, P.E.; Farré, M.J.; Sanchís, J.; Bartolomé, A.; Paraian, A.; Herrera, E.M.; Caixach, J.; Villanueva, C.M.; Flores, C. Human exposure to per- and polyfluoroalkyl substances and other emerging contaminants in drinking water. npj Clean Water 2023, 6, 16. [Google Scholar] [CrossRef]
- Dai, C.; Peng, L.; Li, Y.; Li, Z.; Chen, D.; Wang, F.; Lin, N. Distribution of per- and polyfluoroalkyl substances in blood, serum, and urine of patients with liver cancer and associations with liver function biomarkers. J. Environ. Sci. 2024, 139, 418–427. [Google Scholar] [CrossRef]
- Zheng, G.; Eick, S.M.; Salamova, A. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 15782–15793. [Google Scholar] [CrossRef]
- He, A.; Li, J.; Li, Z.; Lu, Y.; Liang, Y.; Zhou, Z.; Man, Z.; Lv, J.; Wang, Y.; Jiang, G.B. Novel Insights into the adverse health effects of per- and polyfluoroalkyl substances on the kidney via human urine metabolomics. Environ. Sci. Technol. 2023, 57, 16244–16254. [Google Scholar] [CrossRef]
- Peng, L.; Xu, W.; Zeng, Q.; Sun, F.; Guo, Y.; Zhong, S.; Wang, F.; Chen, D. Exposure to perfluoroalkyl substances in waste recycling workers: Distributions in paired human serum and urine. Environ. Int. 2021, 158, 106963. [Google Scholar] [CrossRef]
- Yao, J.Z.; Dong, Z.M.; Jiang, L.L.; Pan, Y.T.; Zhao, M.R.; Bai, X.X.; Dai, J.Y. Emerging and legacy perfluoroalkyl substances in breastfed Chinese infants: Renal clearance, body burden, and implications. Environ. Health Perspect. 2023, 131, 037003. [Google Scholar] [CrossRef]
- Mahfouz, M.; Harmouche-Karaki, M.; Matta, J.; Mahfouz, Y.; Salameh, P.; Younes, H.; Helou, K.; Finan, R.; Abi-Tayeh, G.; Meslimani, M. Maternal Serum, Cord and Human Milk Levels of per- and polyfluoroalkyl substances (PFAS), association with predictors and effect on newborn anthropometry. Toxics 2023, 11, 455. [Google Scholar] [CrossRef]
- Criswell, R.L.; Wang, Y.; Christensen, B.; Botelho, J.C.; Calafat, A.M.; Peterson, L.A.; Huset, C.A.; Karagas, M.R.; Romano, M. Concentrations of per- and polyfluoroalkyl substances in paired maternal plasma and human milk in the new hampshire birth cohort. Environ. Sci. Tecnol. 2022, 57, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Schreder, E.; Dempsey, J.C.; Uding, N.; Chu, V.; Andres, G.; Sathyanarayana, S.; Salamova, A. Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. Environ. Sci. Technol. 2021, 55, 7510–7520. [Google Scholar] [CrossRef] [PubMed]
- Macheka, L.R.; Abafe, O.A.; Mugivhisa, L.L.; Olowoyo, J.O. Occurrence and infant exposure assessment of per and polyfluoroalkyl substances in breast milk from South Africa. Chemosphere 2021, 288, 132601. [Google Scholar] [CrossRef]
- Blomberg, A.J.; Hau, L.S.; Lindh, C.; Sabaredzovic, A.; Pined, D.; Jakobsson, K.; Nielsen, C. Changes in perfluoroalkyl substances (PFAS) concentrations in human milk over the course of lactation: A study in Ronneby mother-child cohort. Environ. Res. 2023, 219, 115096. [Google Scholar] [CrossRef]
- Lamichhane, S.; Siljander, H.; Duberg, D.; Honkanen, J.; Virtanen, S.M.; Orešič, M.; Knip, M.; Hytylinen, T. Exposure to per- and polyfluoroalkyl substances associates with an altered lipid composition of breast milk. Environ. Int. 2021, 157, 106855. [Google Scholar] [CrossRef]
- Rawn, D.F.K.; Dufresne, G.; Clément, G.; Fraser, W.D.; Arbuckle, T.E. Perfluorinated alkyl substances in Canadian human milk as part of the Maternal-Infant Research on Environmental Chemicals (MIREC) study. Sci. Total Environ. 2022, 831, 154888. [Google Scholar] [CrossRef]
- Han, F.; Wang, Y.; Li, J.; Lyu, B.; Liu, J.; Zhang, J.; Zhao, Y.; Wu, Y. Occurrences of legacy and emerging per- and polyfluoroalkyl substances in human milk in China: Results of the third National Human Milk Survey (2017–2020). J. Hazard. Mater. 2023, 443, 130163. [Google Scholar] [CrossRef]
- Ruan, Y.; Lalwani, D.; Kwok, K.Y.; Yamazaki, E.; Taniyasu, S.; Kumar, N.J.; Lam, P.K.S.; Yamashita, N.J.C. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair—The first nationwide survey in India. Chemosphere 2019, 229, 366–373. [Google Scholar] [CrossRef]
- Piva, E.; Giorgetti, A.; Ioime, P.; Morini, L.; Freni, F.; Faro, F.; Pirani, F.; Montisci, M.; Fais, P.; Pascali, J. Hair determination of per- and polyfluoroalkyl substances (PFAS) in the Italian population. Toxicology 2021, 458, 152849. [Google Scholar] [CrossRef]
- Li, N.; Ying, G.G.; Hong, H.; Deng, W.J. Perfluoroalkyl Substances in the Urine and Hair of Preschool Children, Airborne Particles in Kindergartens, and Drinking Water in Hong Kong. Environ. Pollut. 2020, 270, 116219. [Google Scholar] [CrossRef]
- Abdallah, M.; Harrad, S. Dermal contact with furniture fabrics is a significant pathway of human exposure to brominated flame retardants. Environ. Intern. 2018, 118, 26–33. [Google Scholar] [CrossRef]
- Poothong, S.; Papadopoulou, E.; Padilla-Sanchez, J.A.; Thomsen, C.; Haug, L.S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244. [Google Scholar] [CrossRef]
- Kissel, J.C.; Titaley, I.A.; Muensterman, D.J.; Field, J.A. Evaluating Neutral PFAS for Potential Dermal Absorption from the Gas Phase. Environ. Sci. Technol. 2023, 57, 4951–4958. [Google Scholar] [CrossRef]
- Poothong, S.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Giovanoulis, G.; Thomsen, C.; Haug, L. Technology, Hand Wipes: A useful tool for assessing human exposure to poly- and perfluoroalkyl substances (PFASs) through hand-to-mouth and dermal contacts. Environ. Sci. Technol. 2019, 53, 1985–1993. [Google Scholar] [CrossRef]
- Torres, F.G.; De-La-Torre, G.E. Technology, Per- and polyfluoroalkyl substances (PFASs) in consumable species and food products. J. Food Sci. Technol. 2023, 60, 2319–2336. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Wu, Q.; Zeeshan, M.; Qin, S.; Zeng, H.; Lin, L.; Chou, W.; Yu, Y.; Dong, G.; et al. Per- and polyfluoroalkyl substances in ambient fine particulate matter in the Pearl River Delta, China: Levels, distribution and health implications. Environ. Pollut. 2023, 334, 122138. [Google Scholar] [CrossRef]
- Liu, S.H.; Feuerstahler, L.; Chen, Y.; Braun, J.M.; Buckley, J.P. Toward advancing precision environmental health: Developing a customized exposure burden score to PFAS mixtures to enable equitable comparisons across population subgroups, using mixture item response theory. Environ. Sci. Technol. 2023, 57, 18104–18115. [Google Scholar] [CrossRef]
- ATSDR. PFAS Exposure Assessment Technical Tools (PEATT). Available online: https://www.atsdr.cdc.gov/pfas/php/pfas-exposure-assessment-technicaltools/index.html (accessed on 8 February 2025).
- EPA. Air Pollutants Exposure Model (APEX): User Guide; Office of Air Quality Planning and Standards: Durham, NC, USA, 2020.
- EPA. EPANET-Application for Modeling Drinking Water Distribution Systems. Available online: https://www.epa.gov/water-research/epanet (accessed on 7 November 2024).
- EPA. Dietary Exposure Evaluation Model (DEEM). Available online: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/deem-fcidcalendex-software-installer (accessed on 8 February 2025).
- European Food Safety Authority (EFSA). Guidance on harmonised methodologies for human health, Animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 2019, 17, e05634. [Google Scholar] [CrossRef]
- Nakayama, S.F.; Yoshikane, M.; Onoda, Y.; Nishihama, Y.; Iwai-Shimada, M.; Takagi, M.; Isobe, T. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. TrAC Trends Anal. Chem. 2019, 121, 115410. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, W.; Wang, Y.; Ma, L.; Liang, C.; Li, P.; Yang, C.; Wei, F.; Li, S.; Zhang, L. Urbanization, ambient air pollution, and prevalence of chronic kidney disease: A nationwide cross-sectional study. Environ. Int. 2021, 156, 106752. [Google Scholar] [CrossRef]
- Wambaugh, J.F.; Wang, A.; Dionisio, K.L.; Frame, A.; Egeghy, P.; Judson, R.; Setzer, R.W. High throughput heuristics for prioritizing human exposure to environmental chemicals. Environ. Sci. Technol. 2014, 48, 12760–12767. [Google Scholar] [CrossRef] [PubMed]
- Goeden, H.M.; Greene, C.W.; Jacobus, J.A. A transgenerational toxicokinetic model and its use in derivation of Minnesota PFOA water guidance. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 863. [Google Scholar] [CrossRef]
- Sarangapani, R.; Teeguarden, J.; Andersen, M.; Reitz, R.; Plotzke, K. Route-specific differences in distribution characteristics of octamethylcyclotetrasiloxane in rats: Analysis using PBPK models. Toxicol. Sci. 2003, 71, 41–52. [Google Scholar] [CrossRef]
- Husøy, T.; Caspersen, H.; Thépaut, E.; Knutsen, H.; Haug, L.S.; Andreassen, M.; Gkrillas, A.; Lindeman, B.; Thomsen, C.; Herzke, D.; et al. Comparison of aggregated exposure to perfluorooctanoic acid (PFOA) from diet and personal care products with concentrations in blood using a PBPK model—Results from the Norwegian biomonitoring study in EuroMix. Environ. Res. 2023, 239, 117341. [Google Scholar] [CrossRef]
- Shatkin, J.A.; Ong, K.J. Alternative Testing Strategies for Nanomaterials: State of the Science and Considerations for Risk Analysis. Risk Anal. 2016, 36, 1564–1580. [Google Scholar] [CrossRef]
- Mielke, H.; Remy, U. Bisphenol A levels in blood depend on age and exposure. Toxicol. Lett. 2009, 190, 32–40. [Google Scholar] [CrossRef]
- Russo, D.P.; Strickland, J.; Karmaus, A.L.; Wang, W.Y.; Shende, S.; Hartung, T.; Aleksunes, L.M.; Zhu, H. Nonanimal models for acute toxicity evaluations: Applying data-driven profiling and read-across. Environ. Health Perspect. 2019, 127, 047001. [Google Scholar] [CrossRef]
- Ring, C.; Arnot, J.; Bennett, D.; Egeghy, P.; Fantke, P.; Huang, L.; Isaacs, K.; Jolliet, O.; Phillips, K.; Price, P.; et al. Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways. Environ. Sci. Technol. 2019, 53, 719–732. [Google Scholar] [CrossRef]
- Zhong, H.; Zheng, M.; Liang, Y.; Wang, Y.; Gao, W.; Wang, Y.; Jiang, G. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment. Chemosphere 2021, 282, 131042. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund (RAGS): Volume I—Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response: Washington, DC, USA, 1990.
- EFSA. Guidance on the use of the Margin of Exposure approach in risk assessment. EFSA J. 2019, 17, e05708. [Google Scholar]
Analyte | Abbreviation | Analyte | Abbreviation |
---|---|---|---|
Perfluoroalkyl acid | PFAA | N-ethyl perfluoroalkane sulfinesulfaminoethanol | N-EtFASE |
Perfluorooctanoic acid | PFOA | 6:2 fluoromeric alcohol | 6:2 FTOH |
Perfluorooctyl sulfonate | PFOS | Fluoropolymer alcohol | FTOH |
Perfluoroalkyl carboxylic acids | PFCA | Fluoropolymer ethoxylic acid | FTEO |
Polytetrafluoroethylene | PTFE | Perfluorononanoic acid | PFNA |
Hexafluoropropylene oxide-dimer acid | GenX | Perfluorovaleric acid | PFPeA |
6:2 fluorotelomeric sulfonic acid | 6:2 FTS | Perfluorotetradecanoic acid | PFTeDA |
Perfluorohexyl sulfonate | PFHxS | Perfluorooctadecanoic acid | PFODA |
Perfluorobutanesulfonic acid | PFBS | Perfluoroodecanoic acid | PFDA |
Perfluorohexanoic acid | PFHxA | Perfluoroundecanoic acid | PFUnDa |
6:2 fluorotelomer phosphate diester | 6:2 diPAP | Perfluoropropionic acid | PFPrA |
8:2 fluorotelomer phosphate diester | 8:2 diPAP | Trifluoroacetic acid | TFA |
2H-perfluoro-2-octenoic acid | 6:2 FTUCA | Perfluoroheptanoic acid | PFHpA |
Perfluorosulfonic acid | PFSA | Perfluorododecanoic acid | PFDoA |
Polyfluoroalkyl phosphate | PAP | Perfluorotridecanoic acid | PFTrDA |
Perfluoroobutyric acid | PFBA | 2H-Perfluoro-2-decenoic acid | 8:2 FTUCA |
Perfluoroalkyl sulfonic acid | PFSA | 3-perfluoroheptyl propanoic acid | 7:3 FTCA |
N-methyl perfluoroalkane sulfinyl aminoethanol | N-MeFASE |
Samples | Analytes | Concentration | Region | Sample Collection Year | Analytical Methods | Ref. |
---|---|---|---|---|---|---|
Cartons and popcorn bags | PFOS PFOA | 0.61 ng/cm2 1.76 ng/cm2 | China | 2018–2019 | / | [31] |
Baking paper | 6:2 diPAP | 2.1 ± 0.5 ng/g | Spain | 2018–2019 |
| [32] |
Muffin cup | 6:2 diPAP | 7 ± 1 ng/g | Spain | 2018–2019 | [32] | |
Cardboard cup | 6:2 diPAP | 2.2 ± 0.2 ng/g | Spain | 2018–2019 | [32] | |
Burger wrapper | 6:2 diPAP 8:2 diPAP | 7 ± 2 ng/g 4 ± 1 ng/g | Spain | 2018–2019 | [32] | |
French fries wrapper | 6:2 FTUCA | 1.1 ± 0.1 ng/g | Spain | 2018–2019 | [32] | |
Microwave popcorn bags | PFHxA | 2.1± 0.4 ng/g | Spain | 2019 | [32] | |
Microwave popcorn bags | PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, | 2.7 ± 0.6 to 47 ± 10 ng/g | China | 2019 | [32] | |
Greaseproof materials | 6:2 FTUCA 8:2 FTUCA 7:3 FTCA | 3.1 ± 0.5 ng/g 12 ± 1 ng/g 1.2 ± 0.1 ng/g | China | 2019 | [32] | |
Fast food packaging | PFHxA 6:2 FTS 6:2/8:2 diPAP | 0.042–3.3 ng/g 0.011–0.1 ng/g 0.010–1.9 ng/g | French | 2021 |
| [33] |
Paper-based straws | 29 PFAS | <LOQ to 7.15 ng/g | Belgium | Not mentioned (paper published in 2023) |
| [33] |
Bamboo straws | 29 PFAS | <LOQ to 3.47 ng/g | Belgium | [34] | ||
Glass straws | 29 PFAS | <LOQ to 6.65 ng/g | Belgium | [34] | ||
Straws | 21 PFAS | 0.043 ± 0.004 to 29.1 ± 1.66 ng/straw | the United States Mexico China Vietnam and unknown | 2019–2020 |
| [35] |
Paper product (including FCMs) | 37 PFAS | 0.4–971 ng/g | Norway | 2021 |
| [36] |
Mochi paper tray | 17 PFAS | 372–624 ng/g | Vietnam | Not mentioned (paper published in 2023) |
| [37] |
Food contact paper and plastics | 21 PFAS | 3.2 to 377 ng/g | China | 2022 |
| [38] |
Samples | Analytes | Concentration | Region | Sample Collection Year | Analytical Methods | Ref. |
---|---|---|---|---|---|---|
Flame retardant textiles | 13 PFAA | 59.4 ng/g | Albany, NY, USA | 2016–2019 |
| [42] |
Waterproof textiles | 13 PFAA | 12.9 ng/g | [42] | |||
Baby clothing | 13 PFAA | 2.33 ng/g | [42] | |||
Carpets | PFOA | 0.38 mg/kg | the United States | Not mentioned (paper published in 2019) |
| [43] |
School uniforms, waists, hats, stroller covers, and swimsuits | 49 PFAS | 0.250 to 153,000 ng/g | the United States and Canada | 2020–2021 |
| [44] |
Jackets and pants of fireman | 24 PFAS | 2–850 ppb | the United States and Australia | 2002–2017 |
| [45] |
Samples | Analytes | Concentration | Region | Sample Collection Year | Analytical Methods | Ref. |
---|---|---|---|---|---|---|
Sanitary napkins Sanitary pads Tampons Diapers Menstrual cups Germicide | 21 PFAS | 5.46 ng/g 0.39 ng/g <LOQ ng/g 4.72 ng/g 14.95 ng/g 0.16 ng/g | China | 2022 |
| [53] |
Night jackets and whitening trays | PFBA | 0.67–0.83 ng/g | the United States | Not mentioned (paper published in 2024) |
| [54] |
Night jackets and whitening trays | PFOS | 1.2–2.3 ng/g | the United States | [54] | ||
Masks | 25 PFAS | 15 to 2900 μg/m2 | the United States | Not mentioned (paper published in 2022) |
| [55] |
Anti-fogging spray products | 16 PFAS | up to 25,000 μg/mL | the United States | Not mentioned (paper published in 2022) |
| [56] |
Anti-fogging cloth products | 16 PFAS | up to 185,000 μg/g |
Samples | Analytes | Migration Matrix | Amount of Migration | Temperature (°C) | Time | Ref. |
---|---|---|---|---|---|---|
Paper bag | 9 PFAS | Tenax® | 0.796 to 9.424 ng/g | 60 | 10 days | [32] |
0.796 to 7.068 ng/g | 150 | 15 min | ||||
Straws | Total PFAS | Water | 1.53 ± 0.122 ng/straw | 4, 20, 90 | / | [35] |
Multilayer cardboard and coated cardboard | 36 PFAS | 3% acetic acid 10% ethanol 50% ethanol olive oil | 10 to 50 ng/g | 70 | 2 h | [59] |
Frying pans | 16 PFAS | Water or corn oil | 0.728 to 3.052 µg/L | 170~190 | / | [60] |
Baking utensils | 16 PFAS | Water or corn oil | 1.758 to 2.122 µg/L | 170~190 | / | [60] |
Cardboard, biopolymer, paper, and Teflon trays | 11 PFAS | Tenax® | 3.2 to 22.3 ng/g | 40 | 3 days | [61] |
Paper plate | PFCAs/PFSAs, PAPs, FTOHs | Oatmeal Porridge | 4.26 ± 1.24 ng/g | 800 W microwave | 1 V min | [62] |
Tomato Soup | 11.3 ± 1.37 ng/g | |||||
Muffin cup | PFCAs/PFSAs, PAPs, FTOHs | Muffin | 3.41 ± 0.65 ng/g | 200 | 13 min | [62] |
Non-stick cookware | PFOA | 3% acetic acid | 2.12 to 8.86 ng/g | 70 | 2 h | [63] |
Coated cook pans | PFOA | edible oil and ionic condiments (salt, sauce, vinegar, and ketchup) | Up to1.2 ng/dm2 | 125 ± 5 | 15 min | [64] |
Oil-resistant paper | PFOA | Up to 9.2 ng/dm2 | 100 ± 5 | 15 min | [64] | |
Teflon-coated containers | PFOS PFOA | Tomatoes pasta with salt | 18.30 ng/g 16.55 ng/g | Cooking condition | 1 time | [65] |
Teflon-coated containers | PFOS PFOA | White dry beans | 18.08 ng/g 16.03 ng/g | Cooking condition | 1 time | [65] |
Fluorine-containing containers | 20 PFAS | Water Methanol Acetone | 0.99 ± 0.46 ng/g 69.72 ± 7.75 ng/g 50.13 ± 4.41 ng/g | Room temperature | 7 days | [66] |
Water | 26.88 ± 4.21 ng/g | 50 | 7 days | |||
Olive oil Ketchup Mayonnaise | 2.66 ± 0.82 ng/g 5.95 ± 1.59 ng/g 7.19 ± 3.39 ng/g | Room temperature | 7 days | |||
Olive oil Ketchup Mayonnaise | 5.63 ± 0.42 ng/g 55.25 ± 11.87 ng/g 31.52 ± 4.62 ng/g | 50 | 7 days | |||
Baking paper and aluminum foil | 14 PFAS | Ethanol 95% acetic acid 3% | / 1.43 to 13.87 ng/dm2 | 60 | 15 min | [67] |
Paper and board | 14 PFAS | Milli-Q Water and 95% Ethanol | 0.001 μg/kg of PFOA up to 0.15 μg/kg of PFBA | 20–80 | 30 min–24 h | [68] |
Paper analogues | 14 PFAS | 0.003 μg/kg of PFPeA up to 0.29 μg/kg of PFBA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, J.; Tang, S.; Qiu, J.; Luo, Y.; Yang, C.; Lai, X.; Wang, Q.; Cao, H. Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment. Molecules 2025, 30, 994. https://doi.org/10.3390/molecules30050994
Yang Y, Wang J, Tang S, Qiu J, Luo Y, Yang C, Lai X, Wang Q, Cao H. Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment. Molecules. 2025; 30(5):994. https://doi.org/10.3390/molecules30050994
Chicago/Turabian StyleYang, Yang, Jin Wang, Shali Tang, Jia Qiu, Yan Luo, Chun Yang, Xiaojing Lai, Qian Wang, and Hui Cao. 2025. "Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment" Molecules 30, no. 5: 994. https://doi.org/10.3390/molecules30050994
APA StyleYang, Y., Wang, J., Tang, S., Qiu, J., Luo, Y., Yang, C., Lai, X., Wang, Q., & Cao, H. (2025). Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment. Molecules, 30(5), 994. https://doi.org/10.3390/molecules30050994