The Fate of Chemical Contaminants in Soil with a View to Potential Risk to Human Health: A Review
Abstract
1. Introduction
2. Exposure Pathways
2.1. Direct Pathways
2.2. Indirect Pathways
2.3. Bioaccessibility and Bioavailability
3. Overview of Relevant Contaminants and Their Behavior in Soil
3.1. Organic Contaminants
3.2. Inorganic Pollutants
- (i)
- The intrinsic properties of the metal source, which may originate from primary minerals in soil parent material or anthropogenic contributions such as industrial activities, sewage sludge, mine tailings, and atmospheric deposition;
- (ii)
- The specific affinity of individual metal ions for soil sorption surfaces and soluble ligands in the soil solution;
- (iii)
- The characteristics of the soil itself, including pH, organic matter content, clay minerals, metal oxides and hydroxides, redox potential, moisture content, temperature, and biological activity [143].
3.3. The Long-Term Impact of Soil Quality on Human Health—Some Case Studies
4. Contaminants of Emerging Concern (ECs)
- Pharmaceuticals and Personal Care Products represent one of the largest groups of ECs, encompassing a wide range of compounds with diverse chemical and physical properties [166];
5. Microelements as Source for Humans
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Poesen, J.; Lugato, E.; Scarpa, L.; Montanarella, L.; Borrelli, P. A soil erosion indicator for supporting agricultural, environmental and climate policies in the European Union. Remote Sens. 2020, 12, 1365. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point. Main Report. Rome. 2022. Available online: https://openknowledge.fao.org/handle/20.500.14283/cb9910en (accessed on 1 March 2025).
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU Soil Strategy for 2030 Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate (COM/2021/699 Final). Available online: https://op.europa.eu/en/publication-detail/-/publication/c44ca1fb-4876-11ec-91ac-01aa75ed71a1/language-en (accessed on 1 March 2025).
- Brevik, E.C.; Pereg, L.; Steffan, J.J.; Burgess, L.C. Soil ecosystem services and human health. Curr. Opin. Environ. Sci. Health 2018, 5, 87–92. [Google Scholar] [CrossRef]
- Oliver, M.A.; Gregory, P.J. Soil, food security and human health: A review. Eur. J. Soil Sci. 2015, 66, 257–276. [Google Scholar] [CrossRef]
- Abrahams, P.W. Soil, geography and human disease: A critical review of the importance of medical cartography. Prog. Phys. Geogr. 2006, 30, 490–512. [Google Scholar] [CrossRef]
- El-Ramady, H.; Brevik, E.C.; Elsakhawy, T.; Omara, A.E.D.; Amer, M.; Mohamed Abowaly, M.; El-Henawy, A.; Prokisch, J. Soil and Humans: A Comparative and A Pictorial Mini-Review. Egypt. J. Soil Sci. 2022, 62, 101–122. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- FAO; UNEP. Global Assessment of Soil Pollution: Report; FAO: Rome, Italy; UNEP: Rome, Italy, 2021. [Google Scholar]
- Duckworth, O.W.; Polizzotto, M.L.; Thompson, A. Bringing soil chemistry to environmental health science to tackle soil contaminants. Front. Environ. Sci. 2022, 10, 981607. [Google Scholar] [CrossRef]
- Chen, H.Y.; Tian, Y.X.; Cai, Y.X.; Liu, Q.Y.; Ma, J.; Wei, Y.; Yang, A.F. A 50-year systemic review of bioavailability application in Soil environmental criteria and risk assessment. Environ. Pollut. 2023, 335, 122272. [Google Scholar] [CrossRef]
- Mahammedi, C.; Mahdjoubi, L.; Booth, C.A.; Akram, H.; Butt, T.E. A systematic review of risk assessment tools for contaminated sites—Current perspectives and future prospects. Environ. Res. 2020, 191, 110180. [Google Scholar] [CrossRef]
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and human health: Current status and future needs. Air Soil Water Res. 2020, 13, 1–23. [Google Scholar] [CrossRef]
- Payá Pérez, A.; Rodríguez Eugenio, N. Status of Local Soil Contamination in Europe: Revision of the Indicator “Progress in the Management Contaminated Sites in Europe”; EUR 29124 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress 50 update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Doabi, S.A.; Karami, M.; Afyuni, M.; Yeganeh, M. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol. Environ. Saf. 2018, 163, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Raj, D.; Kumar, A.; Tripti; Maiti, S.K. Health Risk Assessment of Children Exposed to the Soil Containing Potentially Toxic Elements: A Case Study from Coal Mining Areas. Metals 2022, 12, 1795. [Google Scholar] [CrossRef]
- Chen, K.; Huang, L.; Yan, B.Z.; Li, H.B.; Sun, H.; Bi, J. Effect of Lead pollution control on environmental and childhood blood Lead level in Nantong, China: An interventional study. Environ. Sci. Technol. 2014, 48, 12930–12936. [Google Scholar] [CrossRef]
- Petruzzelli, G.; Pedron, F.; Rosellini, I. Bioavailability and bioaccessibility in soil: A short review and a case study. AIMS Environ. Sci. 2020, 7, 208–225. [Google Scholar] [CrossRef]
- Jiang, H.H.; Cai, L.M.; Wen, H.H.; Hu, G.C.; Chen, L.G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef]
- Huang, J.; Guo, S.; Zeng, G.M.; Li, F.; Gu, Y.; Shi, Y.; Shi, L.; Liu, W.; Peng, S. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243 Pt A, 49–58. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fanet, Z. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jin, Y.; Zeng, G. Introduction of heavy metals contamination in the water and soil: A review on source, toxicity and remediation methods. Green Chem. Lett. Rev. 2024, 17, 2404235. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, J.; Wang, H.; Han, X.; Ma, J.; Ma, Y.; Luan, H. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Sci. Total Environ. 2020, 713, 135292. [Google Scholar] [CrossRef] [PubMed]
- Lupolt, S.N.; Agnew, J.; Burke, T.A.; Kennedy, R.D.; Nachman, K.E. Key considerations for assessing soil ingestion exposures among agricultural workers. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 481–492. [Google Scholar] [CrossRef]
- Lupolt, S.N.; Kim, B.F.; Agnew, J.; Ramachandran, G.; Burke, T.A.; Kennedy, R.D.; Nachman, K.E. Application and demonstration of meso-activity exposure factors to advance estimates of incidental soil ingestion among agricultural workers. J. Expo. Sci. Environ. Epidemiol. 2024, 35, 303–314. [Google Scholar] [CrossRef]
- Li, Y.; Ajmone-Marsan, F.; Padoan, E. Health risk assessment via ingestion and inhalation of soil PTE of an urban area. Chemosphere 2021, 281, 130964. [Google Scholar] [CrossRef]
- Weeks, J.J.; Hettiarachchi, G.M.; Santos, E.; Tatarko, J. Potential human inhalation exposure to soil contaminants in urban gardens on brownfields sites: A breath of fresh air? J. Environ. Qual. 2021, 50, 782–790. [Google Scholar] [CrossRef]
- Wan, X.; Li, C.; Parikh, S.J. Chemical composition of soil-associated ash from the southern California Thomas Fire and its potential inhalation risks to farmworkers. J. Environ. Manag. 2021, 278 Pt 2, 111570. [Google Scholar] [CrossRef]
- Sing, D.; Sing, C.F. Impact of direct soil exposures from airborne dust and geophagy on human health. Int. J. Environ. Res. Public Health 2010, 7, 1205–1223. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.A.; Barajas, B.; Kleinman, M.; Wang, X.; Bennett, B.J.; Gong, K.W.; Navab, M.; Harkema, J.; Sioutas, C.; Lusis, A.J.; et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. Res. 2008, 102, 589–596. [Google Scholar] [CrossRef]
- Bhandari, G.; Atreya, K.; Scheepers, P.T.J.; Geissen, V. Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. Chemosphere 2020, 253, 126594. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Soil–plant transfer of trace elements—An environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Petruzzelli, G.; Pedron, F.; Rosellini, I.; Barbafieri, M. The Bioavailability Processes as a Key to Evaluate Phytoremediation Efficiency. In Phytoremediation; Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L., Eds.; Springer: Cham, Switzerland, 2015; pp. 31–43. [Google Scholar] [CrossRef]
- Muerdter, C.P.; Powers, M.M.; Webb, D.T.; Chowdhury, S.; Roach, K.E.; LeFevre, G.H. Functional Group Properties and Position Drive Differences in Xenobiotic Plant Uptake Rates, but Metabolism Shares a Similar Pathway. Environ. Sci. Technol. Lett. 2023, 10, 596–603. [Google Scholar] [CrossRef]
- Wan, W.; Huang, H.; Lv, J.; Han, R.; Zhang, S. Uptake, translocation, and biotransformation of organophosphorus esters in wheat (Triticum aestivum L.). Environ. Sci. Technol. 2017; 51, 13649–13658. [Google Scholar]
- Trapp, S.; Legind, C.N. Uptake of Organic Contaminants from Soil into Vegetables and Fruits. In Dealing with Contaminated Sites; Swartjes, F., Ed.; Springer: Dordrecht, The Netherland, 2011; pp. 369–408. [Google Scholar] [CrossRef]
- Petruzzelli, G.; Pedron, F. Tungsten Bioaccessibility and Environmental Availability in Tungsten-Spiked Agricultural Soils. Environments 2024, 11, 26. [Google Scholar] [CrossRef]
- Billmann, M.; Hulot, C.; Pauget, B.; Badreddine, R.; Papin, A.; Pelfrêne, A. Oral bioaccessibility of PTEs in soils: A review of data, influencing factors and application in human health risk assessment. Sci. Total Environ. 2023, 896, 165263. [Google Scholar] [CrossRef]
- National Research Council (NRC). Bioavailability of Contaminants in Soils and Sediments: Processes, Tools, and Applications; The National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- ISO 17924; Soil Quality. Assessment of Human Exposure from Ingestion of Soil and Soil Material—Procedure for the Estimation of the Human Bioaccessibility/Bioavailability of Metals in Soil. ISO: Geneva, Switzerland, 2018.
- Luo, X.S.; Jing, D.; Bo, X.; Wang, Y.J.; Li, H.B.; Shen, Y. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci. Total Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef]
- Naidu, R.; Juhasz, A.; Mallavarapu, M.; Smith, E.; Lombi, E.; Bolan, N.S.; Wong, M.; Harmsen, J. Chemical bioavailability in the terrestrial environment—Recent advances. J. Hazard. Mater. 2013, 261, 685–686. [Google Scholar] [CrossRef]
- Guillotin, S.; Delcourt, N. Studying the Impact of Persistent Organic Pollutants 1289 Exposure on Human Health by Proteomic Analysis: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 14271. [Google Scholar] [CrossRef] [PubMed]
- Rokni, L.; Rezaei, M.; Rafieizonooz, M.; Khankhajeh, E.; Mohammadi, A.A.; Rezania, S. Effect of Persistent Organic Pollutants on Human Health in South Korea: A 73 Review of the Reported Diseases. Sustainability 2023, 15, 10851. [Google Scholar] [CrossRef]
- Negrete, D.B.; Zamora-Ledezma, C.; Chuya-Sumba, C.; De Sousa, F.B.; Whitehead, D.; Alexis, F.; Guerrero, V.H. Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. J. Environ. Manag. 2021, 300, 113737. [Google Scholar] [CrossRef]
- Jorgenson, J.L. Aldrin and dieldrin: A review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ. Health Perspect. 2001, 109, 113–139. [Google Scholar] [CrossRef]
- Ware, G.W. Chlordane. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 1988; Volume 104. [Google Scholar] [CrossRef]
- Beard, J. Australian Rural Health Research Collaboration. DDT and human health. Sci. Total Environ. 2006, 355, 78–89. [Google Scholar] [CrossRef]
- Kolankaya, D. Organochlorine pesticide residues and their toxic effects on the environment and organisms in Turkey. Int. J. Environ. Anal. Chem. 2006, 86, 147–160. [Google Scholar] [CrossRef]
- Reed, L.; Buchner, V.; Tchounwou, P.B. Environmental toxicology and health effects associated with hexachlorobenzene exposure. Rev. Environ. Health 2007, 22, 213–243. [Google Scholar] [CrossRef] [PubMed]
- Faroon, O.; Kueberuwa, S.; Smith, L.; DeRosa, C. ATSDR evaluation of health effects of chemicals. II. Mirex and chlordecone: Health effects, toxicokinetics, human exposure, and environmental fate. Toxicol. Ind. Health. [CrossRef]
- de Geus, H.J.; Besselink, H.; Brouwer, A.; Klungsoyr, J.; McHugh, B.; Nixon, E.; Rimkus, G.G.; Wester, P.G.; de Boer, J. Environmental Occurrence, Analysis, and Toxicology of Toxaphene Compounds. Environ. Health Perspect. 1999, 107 (Suppl. S1), 115–144. [Google Scholar]
- Multigner, L.; Kadhel, P.; Rouget, F.; Blanchet, P.; Cordier, S. Chlordecone exposure and adverse effects in French West Indies populations. Environ. Sci. Pollut. Res. Int. 2016, 23, 3–8. [Google Scholar] [CrossRef]
- Ajaz, A.; Masood, A. Deciphering the toxic effects of organochlorine pesticide, dicofol on human RBCs and lymphocytes. Pestic. Biochem. Physiol. 2017, 143, 127–134. [Google Scholar] [CrossRef]
- Carpenter, D.O. Polychlorinated biphenyls (PCBs): Routes of exposure and effects on human health. Rev. Environ. Health 2006, 21, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Darnerud, P.O. Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int. 2003, 29, 841–853. [Google Scholar] [CrossRef]
- Zeng, Z.; Song, B.; Xiao, R.; Zeng, G.; Gong, J.; Chen, M.; Xu, P.; Zhang, P.; Shen, M.; Yi, H. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ. Int. 2019, 126, 598–610. [Google Scholar] [CrossRef]
- Poston, R.G.; Saha, R.N. Epigenetic Effects of Polybrominated Diphenyl Ethers on Human Health. Int. J. Environ. Res. Public Health 2019, 16, 2703. [Google Scholar] [CrossRef]
- White, S.S.; Birnbaum, L.S. An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Bakhiya, N.; Appel, K.E. Toxicity and carcinogenicity of furan in human diet. Arch. Toxicol. 2010, 84, 563–578. [Google Scholar] [CrossRef]
- Pourret, O.; Bollinger, J.C.; Hursthouse, A.; van Hullebusch, E.D. Sorption vs adsorption: The words they are a-changin’, not the phenomena. Sci. Total Environ. 2022, 838, 156545. [Google Scholar] [CrossRef] [PubMed]
- Nendza, M.; Kosfeld, V.; Schlechtriem, C. Consolidated octanol/water partition coefficients: Combining multiple estimates from different methods to reduce uncertainties in log KOW. Environ. Sci. Eur. 2025, 37, 44. [Google Scholar] [CrossRef]
- Belfort, G.; Altshuler, G.L.; Thallam, K.K.; Feerick, C.P., Jr.; Woodfield, K.L. Selective adsorption of organic homologues onto activated carbon from dilute aqueous solutions: Solvophobic interaction approach IV. Effect of simple structural modifications with aliphatics. AIChE J. 1984, 30, 197–207. [Google Scholar] [CrossRef]
- Rao, P.S.C.; Bellin, C.A.; Lee, L.S. Sorption and biodegradation of organic contaminants in soils: Conceptual representation of process coupling. In Environmental Impact of Soil Component Interactions; Huang, P.M., Berthelin, J., Bollag, J.M., McGill, W.B., Page, A.L., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 259–270. [Google Scholar]
- Cui, Z.; Song, S.; Liu, J. PCBs adsorption to soils: Isotherm modeling and influencing factors. Ecol. Environ. Sci. 2010, 19, 325–329. [Google Scholar]
- Frankki, S.; Persson, Y.; Tysklind, M.; Skyllberg, U. Partitioning of CPs, PCDEs, and PCDD/Fs between particulate and experimentally enhanced dissolved natural organic matter in a contaminated soil. Environ. Sci. Technol. 2006, 40, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Persson, Y.; Hemstrom, K.; Oberg, L.; Tysklind, M.; Enell, A. Use of a column leaching test to study the mobility of chlorinated HOCs from a contaminated soil and the distribution of compounds between soluble and colloid phase. Chemosphere 2008, 71, 35–42. [Google Scholar] [CrossRef]
- Badea, S.L.; Mustafa, M.; Lundstedt, S.; Tysklind, M. Leachability and desorption of PCBs from soil and their dependency on pH and dissolved organic matter. Sci. Total Environ. 2014, 499, 220–227. [Google Scholar] [CrossRef]
- Keiluweit, M.; Kleber, M. Molecular-level interactions in soils and sediments: The role of aromatic π-systems. Environ. Sci. Technol. 2009, 43, 3421–3429. [Google Scholar] [CrossRef]
- Yang, Y.; Shu, L.; Wang, X.L.; Xing, B.S.; Tao, S. Effects of composition and domain arrangement of biopolymer components of soil organic matter on the bioavailability of phenanthrene. Environ. Sci. Technol. 2010, 44, 3339–3344. [Google Scholar] [CrossRef]
- Milinovic, J.; Lacorte, S.; Vidal, M.; Rigol, A. Sorption behaviour of perfluoroalkyl substances in soils. Sci. Total Environ. 2015, 511, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Benoit, P.; Madrigal, I.; Preston, C.M.; Chenu, C.; Barriuso, E. Sorption and desorption of non-ionic herbicides onto particulate organic matter from surface soils under different land uses. Eur. J. Soil Sci. 2008, 59, 178–189. [Google Scholar] [CrossRef]
- Wei, C.; Song, X.; Wang, Q.; Hu, Z. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties. Ecotoxicol. Environ. Saf. 2017, 142, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mingli, W. Evaluation on adsorption capacity of low organic matter soil for hydrophobic organic pollutant. J. Environ. Chem. Eng. 2022, 10, 107561. [Google Scholar] [CrossRef]
- Adeyinka, G.C.; Moodley, B. Kinetic and thermodynamic studies on partitioning of polychlorinated biphenyls (PCBs) between aqueous solution and modeled individual soil particle grain sizes. J. Environ. Sci. 2019, 76, 100–110. [Google Scholar] [CrossRef]
- Mechlińska, A.; Gdaniec-Pietryka, M.; Wolska, L.; Namieśnik, J. Evolution of models for sorption of PAHs and PCBs on geosorbents. TrAC Trends Anal. Chem. 2009, 28, 466–482. [Google Scholar] [CrossRef]
- Han, L.F.; Sun, K.; Jin, J.; Wei, X.; Xia, X.H.; Wu, F.C.; Gao, B.; Xing, B.S. Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter. Environ. Sci. Technol. 2014, 48, 11227–11234. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Sun, K.; Wang, Z.Y.; Han, L.F.; Pan, Z.Z.; Wu, F.C.; Liu, X.T.; Zhao, Y.; Xing, B.S. Characterization and phthalate esters sorption of organic matter fractions isolated from soils and sediments. Environ. Pollut. 2015, 206, 24–31. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, S.; Zhang, D. Association of inorganic arsenic exposure with liver cancer mortality: A meta-analysis. Environ. Res. 2014, 135, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.M.; Yan, W.; Jing, C.Y. Experimental and molecular dynamic simulation study of perfluorooctane sulfonate adsorption on soil and sediment components. J. Environ. Sci. (China) 2015, 29, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.Q.; Yang, Q.; Zhou, W.J.; Zhu, L.Z. Sorption characteristics and contribution of organic matter fractions for atrazine in soil. J. Soils Sediments 2015, 15, 2210–2219. [Google Scholar] [CrossRef]
- Boyd, S.A.; Sheng, G.; Teppen, B.J.; Johnston, C.T. Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environ. Sci. Technol. 2001, 35, 4227–4234. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Fan, B.; Luan, Z. Sorption of endrin to montmorillonite and kaolinite clays. J. Hazard. Mater. 2009, 168, 210–214. [Google Scholar] [CrossRef]
- Vilanova, R.M.; Fernandez, P.; Grimalt, J.O. Polychlorinated biphenyl partitioning in the waters of a remote mountain lake. Sci. Total Environ. 2001, 279, 51–62. [Google Scholar] [CrossRef]
- Polati, S.; Angioi, S.; Gianotti, V.; Gosetti, F.; Gennaro, M.C. Sorption of pesticides on kaolinite and montmorillonite as a function of hydrophilicity. J. Environ. Sci. Health—Part B Pestic. Food Contam. Agric. Wastes 2006, 41, 333–344. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, P.; Liu, D.; Annabi-Bergaya, F.; Zhou, J.; Chen, F.; Liu, Z. Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviors. Appl. Clay Sci. 2017, 143, 184–191. [Google Scholar] [CrossRef]
- Awad, A.M.; Shifa, M.R.S.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Zhao, Y.; Gu, X.; Li, S.; Han, R.; Wang, G. Insights into tetracycline adsorption onto kaolinite and montmorillonite: Experiments and modelling. Environ. Sci. Pol. 2015, 22, 17031–17040. [Google Scholar] [CrossRef] [PubMed]
- Masini, J.C.; Abate, G. Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. Minerals 2021, 11, 1282. [Google Scholar] [CrossRef]
- Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Liu, Y.; Yu, J.; Yi, H.; Ye, S.; Deng, R. Sorption, transport and biodegradation—An insight into bioavailability of persistent organic pollutants in soil. Sci. Total Environ. 2018, 610–611, 1154–1163. [Google Scholar] [CrossRef]
- Xu, J.; Gu, X.; Guo, Y.; Tong, F.; Chen, L. Adsorption behavior and mechanism of glufosinate onto goethite. Sci. Total Environ. 2016, 560, 123–130. [Google Scholar] [CrossRef]
- Kleber, M.; Bourg, I.C.; Coward, E.K.; Hansel, C.M.; Myneni, S.C.B.; Nunan, N. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2021, 2, 402–421. [Google Scholar] [CrossRef]
- Hu, E.; Zhao, X.; Pan, S.; Ye, Z.; He, F. Sorption of non-ionic aromatic organics to mineral micropores: Interactive effect of cation hydration and mineral charge density. Environ. Sci. Technol. 2019, 53, 3067–3077. [Google Scholar] [CrossRef]
- Zacháry, D.; Filep, T.; Jakab, G.; Ringer, M.; Balázs, R.; Németh, T.; Szalai, Z. The effect of mineral composition on soil organic matter turnover in temperate forest soils. J. Soils Sediments 2023, 23, 1389–1402. [Google Scholar] [CrossRef]
- Arroyave, J.M.; Waiman, C.C.; Zanini, G.P.; Avena, M.J. Effect of humic acid on the adsorption/ desorption behavior of glyphosate on goethite. Isotherms and kinetics. Chemosphere 2016, 145, 34–41. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, P.; Bao, X.; Xiong, M.; Liu, F. The influence of humic substances on the sorption of three organic contaminants with different structure and polarity to clay minerals. Water Air Soil Pollut. 2017, 228, 199. [Google Scholar] [CrossRef]
- Cachada, A.; Pato, P.; Rocha-Santos, T.; Ferreira da Silva, E.; Duarte, A.C. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ. 2012, 430, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Arora, Y.; Kumar, M.; Kumar, D. The role of Pesticides in Cancer initiation and progression: A comprehensive review. Chem. Biol. Lett. 2024, 11, 669. [Google Scholar] [CrossRef]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef]
- Hansen, K.E.A.; Johanson, S.M.; Steppeler, C.; Sødring, M.; Østby, G.C.; Berntsen, H.F.; Zimmer, K.E.; Aleksandersen, M.; Paulsen, J.E.; Ropstad, E. A mixture of Persistent Organic Pollutants (POPs) and Azoxymethane (AOM) show potential synergistic effects on intestinal tumorigenesis in the A/J Min/+ mouse model. Chemosphere 2019, 214, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Shi, Q.; Liu, C.; Sun, Q.; Zeng, X. Effects of Endocrine-Disrupting Heavy Metals on Human Health. Toxics, 2023; 11, 322. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, V.P.; Chauhan, D.K.; Prasad, S.M.; Dubey, N.K. Role of Macronutrients in Plant Growth and Acclimation: Recent Advances and Future Prospective. In Improvement of Crops in the Era of Climatic Changes; Ahmad, P., Wani, M., Azooz, M., Phan Tran, L.S., Eds.; Springer: New York, NY, USA, 2014; pp. 197–216. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Priya, A.K.; Yogeshwaran, V.; Yang, Z.; Elwakeel, K.Z.; Lopez-Maldonado, E.A. Biosolids Management and Utilizations: A Review. J. Clean. Prod. 2024, 451, 141974. [Google Scholar] [CrossRef]
- Haghighizadeh, A.; Rajabi, O.; Nezarat, A.; Hajyani, Z.; Haghmohammadi, M.; Hedayatikhah, S.; Asl, S.D.; Beni, A.A. Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arab. J. Chem. 2024, 17, 105777. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B. The Fate of Heavy Metals During Combustion and Gasification of Contaminated Biomass—A Brief Review. J. Hazard. Mater. 2013, 256–257, 56–66. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR) National Priorities List (NPL) Sites 2022. Available online: https://www.epa.gov/superfund/agency-toxic-substances-and-disease-registry-atsdr-national-priorities-list-npl-sites (accessed on 15 February 2025).
- Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Shankar, S.; Shanker, U.; Shikha. Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014, 2014, 304524. [Google Scholar] [CrossRef] [PubMed]
- Fatoki, J.O.; Jelili, A.B. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. J. Hazard. Mater. Adv. 2022, 5, 100052. [Google Scholar] [CrossRef]
- Demissie, S.; Mekonen, S.; Awoke, T.; Mengistie, B. Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers. Environ. Health Insights 2024, 18, 11786302241257365. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.; Akash, M.S.H.; Fiayyaz, F.; Saleem, U.; Mehmood, M.H.; Rehman, K. Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: Inserting the association into perspectives. Biomed. Pharmacother. 2019, 114, 108802. [Google Scholar] [CrossRef]
- Surdu, S. Non-melanoma skin cancer: Occupational risk from UV light and arsenic exposure. Rev. Environ. Health 2014, 29, 255–265. [Google Scholar] [CrossRef]
- Radosavljevic, V.; Jakovljevic, B. Arsenic and bladder cancer: Observations and suggestions. J. Environ. Health 2008, 71, 40–42. [Google Scholar]
- Celik, I.; Gallicchio, L.; Boyd, K.; Lam, T.K.; Matanoski, G.; Tao, X.; Shiels, M.; Hammond, E.; Chen, L.; Robinson, K.A. Arsenic in drinking water and lung cancer: A systematic review. Environ. Res. 2008, 108, 48–55. [Google Scholar] [CrossRef]
- Mandal, B.K.; Ogra, Y.; Suzuki, K.T. Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal, India. Chem. Res. Toxicol. 2001, 14, 371–378. [Google Scholar] [CrossRef]
- Chen, Y.; Parvez, F.; Gamble, M.; Islam, T.; Ahmed, A.; Argos, M.; Graziano, J.H.; Ahsan, H. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol. Appl. Pharmacol. 2009, 239, 184–192. [Google Scholar]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of Lead (Pb) and its Effects on Human: A Review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef]
- Gundacker, C.; Hengstschläger, M. The role of the placenta in fetal exposure to heavy metals. Wien. Med. Wochenschr. 2012, 162, 201–206. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, C.; Jin, J.; Li, W.; Liang, J.; Zhou, S.; Weng, Z.; Zhou, Y.; Liao, X.; Gu, A. Early-life exposure to lead changes cardiac development and compromises long-term cardiac function. Sci. Total Environ. 2023, 904, 166667. [Google Scholar] [CrossRef] [PubMed]
- Jitaru, P.; Adams, F. Toxicity, Sources and Biogeochemical Cycle of Mercury. J. Phys. IV 2004, 121, 185–193. [Google Scholar] [CrossRef]
- Bose-O’Reilly, S.; McCarty, K.M.; Steckling, N.; Lettmeier, B. Mercury Exposure and Children’s Health. Curr. Probl. Pediatr. Adolesc. Health Care 2010, 40, 186–215. [Google Scholar] [CrossRef]
- Azevedo, B.F.; Furieri, L.B.; Peçanha, F.M.; Wiggers, G.A.; Vassallo, P.F.; Simões, M.R.; Fiorim, J.; Rossi de Batista, P.; Fioresi, M.; Rossoni, L.; et al. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. J. Biomed. Biotechnol. 2012, 2012, 949048. [Google Scholar]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Johnson-Arbor, K.; Tefera, E.; Farrell, J. Characteristics and Treatment of Elemental Mercury Intoxication: A Case Series. Health Sci. Rep. 2021, 4, e293. [Google Scholar] [CrossRef]
- Fatima, G.; Raza, A.M.; Hadi, N.; Nigam, N.; Mahdi, A.A. Cadmium in human diseases: It’s more than just a mere metal. Indian J. Clin. Biochem. 2019, 34, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.F.; Yao, T.M.; Zhu, Z.L.; Wang, C.; Ji, L.N. Impacts of Cd (II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim. Biophys. Acta Proteins Proteom. 2007, 1774, 1414–1421. [Google Scholar] [CrossRef]
- Tellez-Plaza, M.; Guallar, E.; Howard, B.V.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Silbergeld, E.K.; Devereux, R.B.; Navas-Acien, A. Cadmium exposure and incident cardiovascular disease. Epidemiology 2013, 24, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Hinojosa, D.; Lozada-Pérez, C.A.; Cuevas, Y.Z.; López-Reyes, A.; Martínez-Nava, G.; Fernández-Torres, J.; Olivos-Meza, A.; Landa-Solis, C.; Gutiérrez-Ruiz, M.C.; Del Castillo, E.R. Toxicity of cadmium in musculoskeletal diseases. Environ. Toxicol. Pharmacol. 2019, 72, 103219. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharma, A. Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health 2019, 34, 327–338. [Google Scholar] [CrossRef]
- Esteban-Vasallo, M.D.; Aragonés, N.; Pollan, M.; López-Abente, G.; Perez-Gomez, B. Mercury, cadmium, and lead levels in human placenta: A systematic review. Environ. Health Perspect. 2012, 120, 1369–1377. [Google Scholar] [CrossRef]
- Petruzzelli, G.; Grifoni, M.; Barbafieri, M.; Rosellini, I.; Pedron, F. Sorption: Release Processes in Soil—The Basis of Phytoremediation Efficiency. In Phytoremediation; Ansari, A., Gill, S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer: Cham, Switzerland, 2018; pp. 91–112. [Google Scholar] [CrossRef]
- Petruzzelli, G.; Pedron, F. The Dynamics of Tungsten in Soil: An Overview. Environments 2021, 8, 66. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Hu, J.; Zheng, Q.; Zhao, Y.; Lv, G.; Liao, L. Clay minerals and clay-based materials for heavy metals pollution control. Sci. Total Environ. 2024, 954, 176193. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef]
- Aljumaily, M.M.; Al-Hamandi, H.M. Organic Matter and Heavy Metals Sorption. Tikrit J. Agric. Sci. 2022, 22, 158–165. [Google Scholar] [CrossRef]
- Li, X.; Schindler, M.; Zhou, J.; Samaradiwakara, S.; Wu, L. Interaction between metal(loid)s and soil mineral-organic matter associations. Crit. Rev. Environ. Sci. Technol. 2024, 55, 624–647. [Google Scholar] [CrossRef]
- Cerqueira, B.; Covelo, E.F.; Andrade, M.L.; Vega, F.A. Retention and Mobility of Copper and Lead in Soils as Influenced by Soil Horizon Properties. Pedosphere 2011, 21, 603–614. [Google Scholar] [CrossRef]
- Hussain, B.; Ashraf, M.N.; Rahman, S.U.; Abbas, A.; Lia, J.; Farooq, M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Sci. Total Environ. 2021, 754, 142188. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, P.; Gu, Y.; Kopittke, P.M.; Zhao, F.J.; Wang, P. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of cd during soil drainage in paddy soil systems. Environ. Sci. Technol. 2019, 53, 2500–2508. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Y.; Stroud, J.L.; Ma, J.F.; McGrath, S.P.; Zhao, F.J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 2009, 43, 3778–3783. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Tian, C.; Wang, R.; Dai, J. Effect of pH, Temperature, and the Role of Ionic Strength on the Adsorption of Mercury(II) by Typical Chinese Soils. Commun. Soil Sci. Plant Anal. 2012, 43, 1599–1613. [Google Scholar] [CrossRef]
- El-Bayaa, A.A.; Badawy, N.A.; AlKhalik, E.A. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. J. Hazard. Mater. 2009, 170, 1204–1209. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhang, J.J.; Niu, L.L.; Chen, Q.; Zhou, Q.; Xiao, N.; Man, J.; Ma, J.Q.; Wei, C.L.; Zhang, S.H.; et al. Escalating arsenic contamination throughout Chinese soils. Nat. Sustain. 2024, 7, 766–775. [Google Scholar] [CrossRef]
- Kumar, M.; Rahman, M.M.; Ramanathan, A.L.; Naidu, R. Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: Health risk index. Sci. Total Environ. 2016, 539, 125–134. [Google Scholar] [CrossRef]
- Singh, S.B.; Srivastava, P.K. Bioavailability of arsenic in agricultural soils under the influence of different soil properties. SN Appl. Sci. 2020, 2, 153. [Google Scholar] [CrossRef]
- Sevak, P.; Pushkar, B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. J. Environ. Manag. 2024, 349, 119504. [Google Scholar] [CrossRef] [PubMed]
- Viel, J.F.; Floret, N.; Deconinck, E.; Focant, J.F.; De Pauw, E.; Cahn, J.Y. Increased risk of non-Hodgkin lymphoma and serum organochlorine concentrations among neighbors of a municipal solid waste incinerator. Environ. Int. 2011, 37, 449–453. [Google Scholar] [CrossRef]
- Cabral, M.; Toure, A.; Garçon, G.; Diop, C.; Bouhsina, S.; Dewaele, D.; Cazier, F.; Courcot, D.; Tall-Dia, A.; Shirali, P.; et al. Effects of environmental cadmium and lead exposure on adults neighboring a discharge: Evidences of adverse health effects. Environ. Pollut. 2015, 206, 247–255. [Google Scholar] [CrossRef]
- Marques, C.; Fiolet, T.; Frenoy, P.; Severi, G.; Mancini, F.R. Association between polycyclic aromatic hydrocarbons (PAH) dietary exposure and mortality risk in the E3N cohort. Sci. Total Environ. 2022, 840, 156626. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.E.; Ander, E.L.; Cave, M.; Bath-Hextall, F.; Musah, A.; Leonardi-Bee, J. Linkage of national soil quality measurements to primary care medical records in England and Wales: A new resource for investigating environmental impacts on human health. Popul. Health Metr. 2018, 16, 12. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Rabinowitz, P.; Sipos, Y.; Wheat, E.E. Soil health: A common focus for one health and planetary health interventions. One Health 2024, 18, 100673. [Google Scholar] [CrossRef]
- Johnson, C.; Bell, S.J. Linking emerging contaminants to production and consumption practices. WIREs Water 2022, 10, e1615. [Google Scholar] [CrossRef]
- Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y.H. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef]
- Liu, N.; Jin, X.; Feng, C.; Wang, Z.; Wu, F.; Johnson, A.C.; Xiao, H.; Hollert, H.; Giesy, J.P. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. Environ. Int. 2020, 136, 105454. [Google Scholar] [CrossRef]
- Li, X.; He, F.; Wang, Z.; Xing, B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. Eco-Environ. Health 2022, 1, 181–197. [Google Scholar] [CrossRef]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef]
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Bernd, N. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 2012, 14, 1109. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook. 2022. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2022/02/global-plastics-outlook_a653d1c9/de747aef-en.pdf (accessed on 15 February 2025).
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.W.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, S.Y.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Shi, Q.; Gan, J. Uptake, accumulation and metabolism of PFASs in plants and health perspectives: A critical review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2745–2776. [Google Scholar] [CrossRef]
- Lesmeister, L.; Lange, F.T.; Breuer, J.; Biegel-Engler, A.; Giese, E.; Scheurer, M. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants—A review. Sci. Total Environ. 2021, 766, 142640. [Google Scholar] [CrossRef]
- Anwar, M.; Iqbal, Q.; Saleem, F. Improper disposal of unused antibiotics: An often overlooked driver of antimicrobial resistance. Expert Rev. Anti Infect. Ther. 2020, 18, 697–699. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef]
- Caioni, G.; Benedetti, E.; Perugini, M.; Amorena, M.; Merola, C. Personal care products as a contributing factor to antimicrobial resistance: Current state and novel approach to investigation. Antibiotic 2023, 12, 724. [Google Scholar] [CrossRef]
- Berthet, E.; Lavalley, J.; Anquetil-Deck, C.; Ballesteros, F.; Stadler, K.; Soyta, U.; Hauschild, M.; Laurent, A. Assessing the social and environmental impacts of critical mineral supply chains for the energy transition in Europe. Glob. Environ. Change 2024, 86, 102841. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023—Final Report; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Fang, M.; Hu, L.; Chen, D.; Guo, Y.; Liu, J.; Lan, C.; Jicheng Gong, J.; Wang, B. Exposome in human health: Utopia or wonderland? Innovation 2021, 2, 100172. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Barceló, D. Microplastics and other emerging contaminants in the environment after COVID-19 pandemic: The need of global reconnaissance studies. Curr. Opin. Environ. Sci. Health 2023, 33, 100468. [Google Scholar] [CrossRef]
- Lei, M.; Zhang, L.; Lei, J.; Zong, L.; Li, J.; Wu, Z.; Wang, Z. Overview of Emerging Contaminants and Associated Human Health Effects. BioMed Res. Int. 2015, 2015, 404796. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Brooks, B.W. Pharmaceuticals and personal care products in the environment: What progress has been made in addressing the big research questions? Environ. Toxicol. Chem. 2024, 43, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.K.; Lin, C.; Nguyen, H.L.; Nguyen, T.Q.H.; La, D.D.; Nguyen, X.H.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions. Sci. Total Environ. 2023, 899, 165323. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiang, L.; Leung, K.S.Y.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, N.; Siddique, K.H.M.; Nayyar, H. Beneficial Elements for Agricultural Crops and Their Functional Relevance in Defense against Stresses. Arch. Agron. Soil Sci. 2016, 62, 905–920. [Google Scholar] [CrossRef]
- Rotter, I.; Kosik-Bogacka, D.I.; Dołęgowska, B.; Safranow, K.; Kuczyńska, M.; Laszczyńska, M. Analysis of the relationship between the blood concentration of several metals, macro- and micronutrients and endocrine disorders associated with male aging. Environ. Geochem. Health 2016, 38, 749–761. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Kwiatkowski, S.; Kosik-Bogacka, D. The Role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020, 10, 1176. [Google Scholar] [CrossRef]
- Nedić, O. Iodine: Physiological importance and food sources. eFood 2023, 4, e63. [Google Scholar] [CrossRef]
- Vatansever, R.; Ozyigit, I.I.; Filiz, E. Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: A Review. Appl. Biochem. Biotechnol. 2017, 181, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Zhang, B.; Chachar, Z.; Li, J.; Xiao, G.; Wang, Q.; Hayat, F.; Deng, L.; Narejo, M.; Bozdar, B.; et al. Micronutrients and their effects on Horticultural crop quality, productivity and sustainability. Sci. Hortic. 2024, 323, 112512. [Google Scholar] [CrossRef]
- Tiwari, S.; Patel, A.; Pandey, N.; Raju, A.; Singh, M.; Prasad, S.M. Deficiency of Essential Elements in Crop Plants. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Mishra, K., Tandon, P.K., Srivastava, S., Eds.; Springer: Singapore, 2020; pp. 19–52. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. (Eds.) Soil Components and Human Health. In Microelements and Their Role in Human Health; Springer: Dordrecht, The Netherlands, 2018; pp. 317–374. [Google Scholar]
- Sun, Y.; Wang, Z.; Gong, P.; Yao, W.; Ba, Q.; Wang, H. Review on the health-promoting effect of adequate selenium status. Front. Nutr. 2023, 10, 1136458. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Pezzarossa, B. Selenium Enrichment of Horticultural Crops. Molecules 2017, 22, 933. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Mokrzycki, J.; Mierzwa-Hersztek, M. Agronomic Biofortification with Se, Zn, and Fe: An Effective Strategy to Enhance Crop Nutritional Quality and Stress Defense—A Review. J. Soil Sci. Plant Nutr. 2022, 22, 1129–1159. [Google Scholar] [CrossRef]
- Bouis, H.; Foley, J.; Lividini, K.; Jumrani, J.; Reinke, R.; Van Der Straeten, D.; Zagado, R.; Boy, E.; Brown, L.R.; Mudyahoto, B.; et al. Biofortification: Future Challenges for Newly Emerging Technology to Improve Nutrition Security Sustainably. Curr. Dev. Nutr. 2024, 8, 104478. [Google Scholar] [CrossRef]
- Fassinou, H.; Sohindji, N.V.; Salaou, F.S.; Agbandou, M.A.B.; Azonhoumon, P.C.; Tchokponhoué, L.W.S.; Houdegbe, D.; Adjé, C.A.O.; Achigan-Dako, E.G. Agronomic biofortification of cereals and legumes with iron, zinc, calcium and magnesium for food and nutrition security: Available options for farmers in Sub-Saharan Africa. J. Agric. Food Res. 2024, 18, 101391. [Google Scholar] [CrossRef]
- Naik, B.; Kumar, V.; Rizwanuddin, S.; Mishra, S.; Kumar, V.; Saris, P.E.J.; Khanduri, N.; Kumar, A.; Pandey, P.; Gupta, A.K.; et al. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024, 10, e30595. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Terry, L.A.; Tosetti, R.; Rosellini, I.; Pezzarossa, B. Effect of selenium enrichment on metabolism of tomato (Solanum lycopersicum) fruit during post-harvest ripening. J. Sci. Food Agric. 2019, 99, 2463–2472. [Google Scholar] [CrossRef]
- Puccinelli, M.; Rosellini, I.; Malorgio, F.; Pardossi, A.; Pezzarossa, B. Iodine biofortification of Swiss chard (Beta vulgaris ssp. vulgaris var. cicla) and its wild ancestor sea beet (Beta vulgaris ssp. maritima) grown hydroponically as baby leaves: Effects on leaf production and quality. J. Sci. Food Agric. 2023, 103, 7888–7895. [Google Scholar] [CrossRef] [PubMed]
- Shiriaev, A.; Pezzarossa, B.; Rosellini, I.; Malorgio, F.; Lampis, S.; Ippolito, A.; Tonutti, P. Efficacy and comparison of different strategies for selenium biofortification of tomatoes. Horticulturae 2022, 8, 800. [Google Scholar] [CrossRef]
- Kumari, V.; Banerjee, P.; Nath, R.; Sengupta, K.; Chandran, M.A.S.; Veni, V.G.; Hossain, A. Foliar Application of Zinc, Boron, and Iron Improved Seed Nutrients, Protein Content, and Yield in Late-Sown Stressed Lentil (Lens culinaris Medikus) Crop. Gesunde Pflanzen 2023, 75, 1133–1141. [Google Scholar] [CrossRef]
- Kumar, J.; Saini, D.K.; Kumar, A.; Kumari, S.; Gahlaut, V.; Rahim, M.S.; Pandey, A.K.; Garg, M.; Roy, J. Biofortification of Triticum species: A stepping stone to combat malnutrition. BMC Plant Biol. 2024, 24, 668. [Google Scholar] [CrossRef]
- Schiavon, M.; Pilon-Smiths, E.A.H. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. J. Environ. Qual. 2017, 46, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Arroyo, I.; Pickering, I.J.; Yang, S.I.; Freeman, J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, W.; Kang, Y.; Shi, M.; Yang, X.; Li, H.; Yu, H.; Wang, Y.; Qin, S. Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chem. Biol. Technol. Agric. 2022, 9, 79. [Google Scholar] [CrossRef]
- D’Amato, R.; Regni, L.; Falcinelli, B.; Mattioli, S.; Benincasa, P.; Dal Bosco, A.; Pacheco, P.; Proietti, P.; Troni, E.; Santi, C.; et al. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. J. Agric. Food Chem. 2020, 68, 4075–4097. [Google Scholar] [CrossRef]
- Romano, I.; Zelikoff, J.T. Soil health is human health. Explore 2024, 20, 103047. [Google Scholar] [CrossRef]
Category | Substance | Main Sources | Soil Risk |
---|---|---|---|
Pesticides | Aldrin [53] | Historical pesticide use in agriculture | Highly persistent, toxic to soil fauna |
Chlordane [54] | Termiticide, agricultural use | Bioaccumulates, long-term soil contamination | |
DDT [55] | Banned pesticide, previously used for vector control and crops | Very stable, affects soil microorganisms | |
Dieldrin [53] | Insecticide for crops and termites | Toxic, persistent, bioaccumulative | |
Endrin [56] | Insecticide and rodenticide | Long-lasting residues in soil | |
Heptachlor [56] | Insecticide for termites and crops | Contaminates topsoil, affects non-target species | |
Hexachlorobenzene (HCB) [57] | Fungicide, by-product of industrial processes | Highly persistent, carcinogenic in soil | |
Mirex [58] | Fire ant pesticide | Very persistent, resistant to degradation | |
Toxaphene [59] | Insecticide for cotton and grains | Highly toxic, long-term contamination | |
Chlordecone [60] | Pesticide for bananas (historical use) | Strong soil binder, toxic to soil and water | |
Dicofol [61] | Miticide for agriculture | Persistent in soil, toxic to invertebrates | |
Industrial Chemicals | Hexachlorobenzene (HCB) [57] | Industrial processes, waste incineration | Long-term contamination, carcinogenic |
Polychlorinated Biphenyls (PCBs) [62] | Industrial coolants, transformers, capacitors | Strong soil binders, toxic to ecosystems | |
Hexabromobiphenyl [63] | Flame retardants | Bioaccumulates, persistent in soil | |
PFOS [64] | Firefighting foams, industrial surfactants | Contaminates groundwater, persistent in soil | |
HexaBDE, PentaBDE, DecaBDE [65] | Flame retardants in plastics and textiles | Persistent, disrupts soil ecosystems | |
Unintended By-products | Dioxins (PCDD) [66] | Waste incineration, industrial processes | Extremely toxic even in trace amounts |
Furans (PCDF) [67] | Waste combustion, metal production | Contaminates topsoil, bioaccumulative |
Soil Property | Effect on Cd Sorption and Bioavailability | Effect on As Sorption and Bioavailability |
---|---|---|
pH | High pH increases Cd sorption onto clay, oxides, and organic matter. Low pH increases Cd solubility, enhancing bioavailability. | Low pH promotes sorption by forming insoluble arsenic compounds. High pH increases As mobility and bioavailability, especially As(V). |
Organic Matter | Organic matter binds Cd through complexation, increasing sorption; could also enhance Cd mobility via soluble complexes. Organic matter generally reduces Cd bioavailability, but soluble organic ligands can increase mobility. | Organic matter binds As strongly, enhancing sorption and reducing bioavailability, but dissolved organic matter may mobilize As under certain conditions. |
Clay Minerals | High surface area and negative charges of clays promote Cd sorption and reduce Cd bioavailability. | Clay minerals can retain As, especially in acidic conditions. Often, clays decrease As bioavailability by retaining it in soil. |
Iron Oxides | Oxides are involved in Cd sorption, reducing its mobility in oxidized conditions. Oxides reduce Cd bioavailability. | Oxides strongly retain As by sorption, especially As(V), reducing its mobility. As bioavailability is reduced due to strong binding to Fe oxides, but under reducing conditions, As(III) may be released. |
Cation Exchange Capacity (CEC) | High CEC soils retain more Cd, decreasing leaching. CEC lowers bioavailability by increasing Cd retention on exchange sites. | CEC has little direct effect on As sorption, as As exists mainly as an anion. The impact on As bioavailability is minimal. |
Redox Potential (Eh) | Under reducing conditions, Cd may be released due to dissolution of metal oxides. Low Eh (reducing conditions) can increase Cd bioavailability by desorbing it from oxides. | Low Eh (reducing conditions) increases As bioavailability by converting As(V) to more mobile As(III). High Eh (oxidizing conditions) promotes As(V) formation, which is less mobile than As(III). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petruzzelli, G.; Pezzarossa, B.; Pedron, F. The Fate of Chemical Contaminants in Soil with a View to Potential Risk to Human Health: A Review. Environments 2025, 12, 183. https://doi.org/10.3390/environments12060183
Petruzzelli G, Pezzarossa B, Pedron F. The Fate of Chemical Contaminants in Soil with a View to Potential Risk to Human Health: A Review. Environments. 2025; 12(6):183. https://doi.org/10.3390/environments12060183
Chicago/Turabian StylePetruzzelli, Gianniantonio, Beatrice Pezzarossa, and Francesca Pedron. 2025. "The Fate of Chemical Contaminants in Soil with a View to Potential Risk to Human Health: A Review" Environments 12, no. 6: 183. https://doi.org/10.3390/environments12060183
APA StylePetruzzelli, G., Pezzarossa, B., & Pedron, F. (2025). The Fate of Chemical Contaminants in Soil with a View to Potential Risk to Human Health: A Review. Environments, 12(6), 183. https://doi.org/10.3390/environments12060183