Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (325)

Search Parameters:
Keywords = food and dairy applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2930 KiB  
Article
Improved Antimicrobial Properties of White Wastewater Protein Hydrolysate Through Electrodialysis with an Ultrafiltration Membrane (EDUF)
by Diala Damen, Jacinthe Thibodeau, Sami Gaaloul, Steve Labrie, Safia Hamoudi and Laurent Bazinet
Membranes 2025, 15(8), 238; https://doi.org/10.3390/membranes15080238 - 6 Aug 2025
Abstract
This study investigated white wastewater (WW) as a potential source of antimicrobial peptides, employing hydrolysis with Pronase E followed by separation through electrodialysis with ultrafiltration membranes (EDUF) to increase the value of dairy components within a circular economy framework. The WW hydrolysate was [...] Read more.
This study investigated white wastewater (WW) as a potential source of antimicrobial peptides, employing hydrolysis with Pronase E followed by separation through electrodialysis with ultrafiltration membranes (EDUF) to increase the value of dairy components within a circular economy framework. The WW hydrolysate was divided into two key fractions: the cationic recovery compartment (CRC) and the anionic recovery compartment (ARC). The EDUF process effectively separated peptides, with peptide migration rates reaching 6.83 ± 0.59 g/m2·h for CRC and 6.19 ± 0.66 g/m2·h for ARC. Furthermore, relative energy consumption (REC) increased from 1.15 Wh/g to 2.05 Wh/g over three hours, in line with trends observed in recent studies on electrodialysis energy use. Although 29 peptides were statistically selected from the CRC (20) and ARC (9) compartments, no antibacterial activity was exhibited against Clostridium tyrobutyricum and Pseudomonas aeruginosa; however, antifungal activity was observed in the feed and ARC compartments. Peptides from the ARC demonstrated activity against Mucor racemosus (MIC = 0.156 mg/mL) and showed selective antifungal effects against Penicillium commune (MIC = 0.156 mg/mL). This innovative approach paves the way for improving the recovery of anionic peptides through further optimization of the EDUF process. Future perspectives include synthesizing selected peptides and evaluating their antifungal efficacy against these and other microbial strains, offering exciting potential for applications in food preservation and beyond. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 23
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

20 pages, 2168 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 - 1 Aug 2025
Viewed by 111
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 - 31 Jul 2025
Viewed by 212
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

24 pages, 4143 KiB  
Article
Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
by Maurice Koenig, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler and Jochen Weiss
Appl. Sci. 2025, 15(15), 8510; https://doi.org/10.3390/app15158510 (registering DOI) - 31 Jul 2025
Viewed by 177
Abstract
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor [...] Read more.
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor and texture development. This was achieved by using a poorly water-soluble calcium source (calcium carbonate) to introduce calcium ions into a low-ester pectin—gluten matrix susceptible to crosslinking via divalent ions. The gelling reaction of pectin–gluten dispersions with Ca2+ ions was time-delayed due to the gradual production of lactic acid during fermentation. Firm, sliceable matrices were formed, in which particulate substances such as texturized proteins and solid vegetable fat could be integrated, hence forming an unheated raw-fermented plant-based salami-type sausage model matrix which remained safe for consumption over 21 days of ripening. Gluten as well as pectin had a significant influence on the functional properties of the matrices, especially water holding capacity (increasing with higher pectin or gluten content), hardness (increasing with higher pectin or gluten content), tensile strength (increasing with higher pectin or gluten content) and cohesiveness (decreasing with higher pectin or gluten content). A combination of three simultaneously occurring effects was observed, modulating the properties of the matrices, namely, (a) an increase in gel strength due to increased pectin concentration forming more brittle gels, (b) an increase in gel strength with increasing gluten content forming more elastic gels and (c) interactions of low-ester pectin with the gluten network, with pectin addition causing increased aggregation of gluten, leading to strengthened networks. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 537
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

41 pages, 2824 KiB  
Review
Assessing Milk Authenticity Using Protein and Peptide Biomarkers: A Decade of Progress in Species Differentiation and Fraud Detection
by Achilleas Karamoutsios, Pelagia Lekka, Chrysoula Chrysa Voidarou, Marilena Dasenaki, Nikolaos S. Thomaidis, Ioannis Skoufos and Athina Tzora
Foods 2025, 14(15), 2588; https://doi.org/10.3390/foods14152588 - 23 Jul 2025
Viewed by 719
Abstract
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a [...] Read more.
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a focus on the discovery and application of protein and peptide biomarkers for species differentiation and fraud detection. Recent innovations in both top-down and bottom-up proteomics have markedly improved the sensitivity and specificity of detecting key molecular targets, including caseins and whey proteins. Peptide-based methods are especially valuable in processed dairy products due to their thermal stability and resilience to harsh treatment, although their species specificity may be limited when sequences are conserved across related species. Robust chemometric approaches are increasingly integrated with proteomic pipelines to handle high-dimensional datasets and enhance classification performance. Multivariate techniques, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), are frequently employed to extract discriminatory features and model adulteration scenarios. Despite these advances, key challenges persist, including the lack of standardized protocols, variability in sample preparation, and the need for broader validation across breeds, geographies, and production systems. Future progress will depend on the convergence of high-resolution proteomics with multi-omics integration, structured data fusion, and machine learning frameworks, enabling scalable, specific, and robust solutions for milk authentication in increasingly complex food systems. Full article
Show Figures

Figure 1

16 pages, 1913 KiB  
Proceeding Paper
Collaborative Robots as an Engineering Tool for the Transition of the Food Industry to Industry 5.0
by Valentina Nikolova-Alexieva, Katina Valeva, Margarita Terziyska and Nikola Shakev
Eng. Proc. 2025, 100(1), 57; https://doi.org/10.3390/engproc2025100057 - 22 Jul 2025
Viewed by 252
Abstract
The article examines the application of collaborative robots (cobots) as a modern engineering tool for the transformation of the food industry following the principles of Industry 5.0. A conceptual engineering model has been developed that integrates collaborative robots with IoT systems, digital twins, [...] Read more.
The article examines the application of collaborative robots (cobots) as a modern engineering tool for the transformation of the food industry following the principles of Industry 5.0. A conceptual engineering model has been developed that integrates collaborative robots with IoT systems, digital twins, and predictive analytics to increase the flexibility, safety, and sustainability of production processes. The proposed model is validated through a practical case study focused on a yogurt packaging line in the dairy sector, where cobot systems demonstrate a significant improvement in operational efficiency and process safety. A step-by-step strategic roadmap is presented to guide industrial enterprises through the various stages of implementation, from the initial assessment to the full-scale integration of solutions. Additionally, a comparative analysis has been performed between traditional automated systems and the integrated approach with collaborative robots, which highlights the technological, economic, and human-oriented advantages of the latter. The results of the study confirm that collaborative robotics offers an effective and applicable path for transforming the food and beverage industry towards a sustainable, adaptive, and human-centered manufacturing ecosystem characteristic of Industry 5.0. Full article
Show Figures

Figure 1

29 pages, 2969 KiB  
Review
Oleogels: Uses, Applications, and Potential in the Food Industry
by Abraham A. Abe, Iolinda Aiello, Cesare Oliviero Rossi and Paolino Caputo
Gels 2025, 11(7), 563; https://doi.org/10.3390/gels11070563 - 21 Jul 2025
Viewed by 384
Abstract
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of [...] Read more.
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of food products, such as baked goods, processed meats, dairy products, and confectionery, while also improving the nutritional profiles of these food products. The fact that oleogels have the potential to bring about healthier food products, thereby contributing to a better diet, makes interest in the subject ever-increasing, especially due to the global issue of obesity and related health issues. Research studies have demonstrated that oleogels can effectively replace conventional fats without compromising flavor or texture. The use of plant-based gelators brings about a reduction in saturated fat content, as well as aligns with consumer demands for clean-label and sustainable food options. Oleogels minimize oil migration in foods due to their high oil-binding capacity, which in turn enhances food product shelf life and stability. Although oleogels are highly advantageous, their adoption in the food industry presents challenges, such as oil stability, sensory acceptance, and the scalability of production processes. Concerns such as mixed consumer perceptions of taste and mouthfeel and oxidative stability during processing and storage evidence the need for further research to optimize oleogel formulations. Addressing these limitations is fundamental for amplifying the use of oleogels and fulfilling their promise as a sustainable and healthier fat alternative in food products. As the oleogel industry continues to evolve, future research directions will focus on enhancing understanding of their properties, improving sensory evaluations, addressing regulatory challenges, and promoting sustainable production practices. The present report summarizes and updates the state-of-the-art about the structure, the properties, and the applications of oleogels in the food industry to highlight their full potential. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Figure 1

12 pages, 911 KiB  
Article
Estimation of Milk Casein Content Using Machine Learning Models and Feeding Simulations
by Bence Tarr, János Tőzsér, István Szabó and András Revoly
Dairy 2025, 6(4), 35; https://doi.org/10.3390/dairy6040035 - 3 Jul 2025
Cited by 1 | Viewed by 374
Abstract
Milk quality has a growing importance for farmers as component-based pricing becomes more widespread. Food quality and precision manufacturing techniques demand consistent milk composition. Udder health, general cow condition, environmental factors, and especially feed composition all influence milk quality. The large volume of [...] Read more.
Milk quality has a growing importance for farmers as component-based pricing becomes more widespread. Food quality and precision manufacturing techniques demand consistent milk composition. Udder health, general cow condition, environmental factors, and especially feed composition all influence milk quality. The large volume of routinely collected milk data can be used to build prediction models that estimate valuable constituents from other measured parameters. In this study, casein was chosen as the target variable because of its high economic value. We developed a multiple linear-regression model and a feed-forward neural network model to estimate casein content from twelve commonly recorded milk traits. Evaluated on an independent test set, the regression model achieved R2 = 0.86 and RMSE = 0.018%, with mean bias = +0.003% and slope bias = −0.10, whereas the neural network improved performance to R2 = 0.924 and RMSE = 0.084%. In silico microgreen inclusion from 0% to 100% of dietary dry matter raised the predicted casein concentration from 2.662% to 3.398%, a relative increase of 27.6%. To extend practical applicability, a simulation module was created to explore how microgreen supplementation might modify milk casein levels, enabling virtual testing of dietary strategies before in vivo trials. Together, the predictive models and the microgreen simulation form a cost-effective, non-invasive decision-support tool that can accelerate diet optimization and improve casein management in precision dairy production. Full article
Show Figures

Figure 1

24 pages, 6057 KiB  
Review
Antibacterial Food Packaging with Chitosan and Cellulose Blends for Food Preservation
by Tengfei Qu, Xiaowen Wang and Fengchun Zhang
Polymers 2025, 17(13), 1850; https://doi.org/10.3390/polym17131850 - 2 Jul 2025
Cited by 1 | Viewed by 837
Abstract
With the increasing demand for food quality and the need for green and sustainable development of food packaging materials in the environment, the preparation and optimization of multifunctional natural and renewable antibacterial packaging materials have become an important trend. This article aims to [...] Read more.
With the increasing demand for food quality and the need for green and sustainable development of food packaging materials in the environment, the preparation and optimization of multifunctional natural and renewable antibacterial packaging materials have become an important trend. This article aims to explore the development of chitosan–cellulose composite materials with good antibacterial properties and promote the widespread application of chitosan and cellulose in food packaging materials. Combining various natural polysaccharide polymers, we discuss the application of chitosan cellulose in meat, dairy products, fruits and vegetables, and fishery products. Meanwhile, we explore their antibacterial and antioxidant behaviors during their use as food packaging materials. This provides a reference for effectively improving the performance of modified chitosan and cellulose food packaging materials in the future. Based on the above explanation, we analyzed the advantages and disadvantages of modified chitosan and cellulose and looked forward to the future development trends of chitosan and cellulose blend films in food preservation. Chitosan–cellulose blends not only have important prospects in food packaging and preservation applications, but can also be combined with intelligent manufacturing to enhance their food preservation performance. The aim of this review is to provide valuable references for basic research on the antimicrobial properties of these composites and their practical application in smart food packaging. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

30 pages, 866 KiB  
Review
Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges
by Márcio Vargas-Ramella, Noemí Echegaray, Paulo Cezar Bastianello Campagnol and José Manuel Lorenzo
Foods 2025, 14(13), 2255; https://doi.org/10.3390/foods14132255 - 26 Jun 2025
Viewed by 514
Abstract
The global demand for sustainable packaging and animal-derived products’ perishability emphasizes the urgent need for biodegradable alternatives to petroleum-based materials (i.e., synthetic polymers or plastic). This narrative review explores the recent advancements in natural polymer-based coatings, comprising ingredients such as polysaccharides, proteins, and [...] Read more.
The global demand for sustainable packaging and animal-derived products’ perishability emphasizes the urgent need for biodegradable alternatives to petroleum-based materials (i.e., synthetic polymers or plastic). This narrative review explores the recent advancements in natural polymer-based coatings, comprising ingredients such as polysaccharides, proteins, and lipids, as well as their combination as multifunctional strategies for preserving meat, dairy, seafood, and eggs. These coatings act as physical barriers and can carry bioactive compounds, enhancing oxidative and microbial stability. Particular attention is placed on the structure-function relationships of biopolymers, their characterization through advanced techniques (e.g., Fourier Transform Infrared spectroscopy—FTIR, Scanning Electron Microscope—SEM, Differential Scanning Calorimetry—DSC, and Thermogravimetric analysis—TGA), and their functional properties (e.g., antimicrobial and antioxidant efficacy). Notably, food matrix compatibility is pivotal in determining coating performance, as interactions with surface moisture, pH, and lipids can modulate preservation outcomes. While several formulations have demonstrated promising results in shelf-life extension and sensory quality preservation, challenges remain regarding coating uniformity, regulatory compliance, and scalability. This narrative review highlights current limitations and future directions for the industrial application of these sustainable materials, aiming to link the gap between laboratory success and commercial feasibility. Full article
(This article belongs to the Special Issue Application of Edible Coating in Food Preservation)
Show Figures

Graphical abstract

19 pages, 365 KiB  
Article
Targeting Metabolic Syndrome with a Pre-Conception True-Couples-Based Lifestyle Intervention: A Pre-Post Mixed-Methods Evaluation
by Sundus Nizamani, Catherine R. Knight-Agarwal, Li Li, Alexandria N. Mekanna and Rosemary Anne McFarlane
Nutrients 2025, 17(12), 2037; https://doi.org/10.3390/nu17122037 - 18 Jun 2025
Viewed by 582
Abstract
Background/Objectives: Metabolic syndrome (Mets) risk is influenced by both parents’ preconception lifestyle, yet most interventions target individuals rather than couples. True couples-based interventions that engage both partners equally remain rare. This study aimed to assess the feasibility and adherence of a 10-week lifestyle [...] Read more.
Background/Objectives: Metabolic syndrome (Mets) risk is influenced by both parents’ preconception lifestyle, yet most interventions target individuals rather than couples. True couples-based interventions that engage both partners equally remain rare. This study aimed to assess the feasibility and adherence of a 10-week lifestyle intervention delivered to heterosexual couples in the preconception period. Methods: This was a pre-post mixed-methods study involving eight nulliparous, cohabiting couples (N = 16 participants) planning a pregnancy within three years. Couples received tailored dietary and physical activity advice via remote sessions. Qualitative data were collected through post-intervention dyadic interviews and thematically analysed to explore participants’ experiences and perspectives on feasibility and adherence. Quantitative data on anthropometry, dietary intake (serves from five food groups), and sedentary behaviour were descriptively analysed. Wilcoxon signed-rank tests were used to assess changes in paired outcomes. Results: qualitative findings highlighted shared motivation, mutual accountability, cultural barriers, and the practicality of the intervention structure. All couples completed the intervention (100% retention). Among participants who required change, improvements were observed in all eight individuals for body mass index and in five out of seven individuals for waist-to-hip ratio. Statistically significant improvements were found in BMI (p = 0.027) and grain intake (p = 0.002), while other dietary and anthropometric changes were not significant. Dietary improvements were noted in 43 out of 80 observations across vegetables, fruits, grains, protein, and dairy intake. Sedentary hours were reduced in 12 of 16 participants, though increases in physical activity intensity were limited. Conclusions: A true-couples-based lifestyle intervention is feasible and acceptable in the preconception period. The approach shows potential for improving diet and reducing sedentary behaviour. Future research with a larger sample and longer duration is recommended to assess long-term effectiveness and broader applicability. Full article
(This article belongs to the Special Issue Impact of Diet, Nutrition and Lifestyle on Reproductive Health)
Show Figures

Figure 1

35 pages, 820 KiB  
Review
Dairy Propionibacteria: Probiotic Properties and Their Molecular Bases
by Franca Rossi, Serena Santonicola, Valerio Giaccone, Alessandro Truant and Giampaolo Colavita
Biomolecules 2025, 15(6), 886; https://doi.org/10.3390/biom15060886 - 17 Jun 2025
Viewed by 1064
Abstract
This review summarizes the current knowledge on the probiotic characteristics of dairy propionibacteria, represented by Propionibacterium freudenreichii and some Acidipropionibacterium species commonly consumed through raw milk cheese. For example, in Swiss-type cheeses, P. freudenreichii is added as a starter culture. Some strains of [...] Read more.
This review summarizes the current knowledge on the probiotic characteristics of dairy propionibacteria, represented by Propionibacterium freudenreichii and some Acidipropionibacterium species commonly consumed through raw milk cheese. For example, in Swiss-type cheeses, P. freudenreichii is added as a starter culture. Some strains of P. freudenreichii have been included in mixed probiotic commercial preparations or used to produce tablets from fermented culture media containing bioactive substances such as short-chain fatty acids (SCFAs), bifidogenic molecules, and vitamins. Acidipropionibacterium acidipropionici and A. jensenii strains have mainly been evaluated as health and productivity promoters in farm animals. For P. freudenreichii, the molecular mechanisms behind its probiotic action have been well elucidated, and recently, novel potential applications have been demonstrated in animal models. P. freudenreichii strains have been shown to mitigate inflammatory bowel diseases (IBDs) and mucositis and prevent necrotizing enterocolitis (NEC) in newborns. Their immunomodulation capacity has alleviated symptoms of food allergies, obesity, diabetes, colorectal cancer (CRC), and infections. Moreover, P. freudenreichii inhibited osteoclastogenesis in a rheumatoid arthritis model. Most observed effects are mediated by proteins on the cell surface or contained in extracellular vesicles (EVs) such as the surface layer (S-layer) protein SlpB, DlaT, and GroEL. No safety issues have been reported for these bacteria. However, investigations into transferable antibiotic resistance traits are still needed, and clinical trials are required to evaluate their effectiveness as probiotics for humans. Full article
Show Figures

Figure 1

40 pages, 6280 KiB  
Review
Ultrasound in the Food Industry: Mechanisms and Applications for Non-Invasive Texture and Quality Analysis
by Nama Yaa Akyea Prempeh, Xorlali Nunekpeku, Arul Murugesan and Huanhuan Li
Foods 2025, 14(12), 2057; https://doi.org/10.3390/foods14122057 - 11 Jun 2025
Cited by 1 | Viewed by 2034
Abstract
Ultrasound technology has emerged as a transformative tool in modern food science, offering non-destructive, real-time assessment and enhancement of food quality attributes. This review systematically explores the fundamental mechanisms by which ultrasound interacts with food matrices, including mechanical effects such as acoustic cavitation, [...] Read more.
Ultrasound technology has emerged as a transformative tool in modern food science, offering non-destructive, real-time assessment and enhancement of food quality attributes. This review systematically explores the fundamental mechanisms by which ultrasound interacts with food matrices, including mechanical effects such as acoustic cavitation, localized shear forces, and microstreaming, as well as thermal and acoustic attenuation phenomena. Applications of ultrasound in food texture evaluation are discussed across multiple sectors, with particular emphasis on its role in assessing moisture distribution, fat content, structural integrity, and microstructural alterations in meat, dairy, fruits, and vegetables. The versatility of ultrasound—spanning low-intensity quality assessments to high-intensity processing interventions—makes it an invaluable technology for both quality control and product innovation. Moreover, emerging innovations such as ultrasound-assisted extraction, non-thermal pasteurization, and real-time quality monitoring are highlighted, demonstrating the synergy between ultrasound and advanced technologies like AI-driven data interpretation and portable, handheld sensing devices. Despite these advances, challenges related to technical limitations in heterogeneous food systems, high initial investment costs, scalability, and the absence of standardized protocols remain critical barriers to widespread adoption. The future directions emphasize the integration of ultrasound with multi-modal approaches, the development of miniaturized and cost-effective equipment, and the establishment of global regulatory standards to facilitate its broader application. Overall, ultrasound is positioned as a key enabler for sustainable, efficient, and non-invasive quality assurance across the global food industry. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop