Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (156)

Search Parameters:
Keywords = folic acid receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

27 pages, 2602 KiB  
Article
Folate-Modified Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and In Vitro PDT Treatment of Breast Cancer Cell Lines
by Anna V. Bychkova, Maria G. Gorobets, Anna V. Toroptseva, Alina A. Markova, Minh Tuan Nguyen, Yulia L. Volodina, Margarita A. Gradova, Madina I. Abdullina, Oksana A. Mayorova, Valery V. Kasparov, Vadim S. Pokrovsky, Anton V. Kolotaev and Derenik S. Khachatryan
Pharmaceutics 2025, 17(8), 982; https://doi.org/10.3390/pharmaceutics17080982 - 30 Jul 2025
Viewed by 365
Abstract
Background/Objectives: Magnetic iron oxide nanoparticles (IONPs), human serum albumin (HSA) and folic acid (FA) are prospective components for hybrid nanosystems for various biomedical applications. The magnetic nanosystems FA-HSA@IONPs (FAMs) containing IONPs, HSA, and FA residue are engineered in the study. Methods: [...] Read more.
Background/Objectives: Magnetic iron oxide nanoparticles (IONPs), human serum albumin (HSA) and folic acid (FA) are prospective components for hybrid nanosystems for various biomedical applications. The magnetic nanosystems FA-HSA@IONPs (FAMs) containing IONPs, HSA, and FA residue are engineered in the study. Methods: Composition, stability and integrity of the coating, and peroxidase-like activity of FAMs are characterized using UV/Vis spectrophotometry (colorimetric test using o-phenylenediamine (OPD), Bradford protein assay, etc.), spectrofluorimetry, dynamic light scattering (DLS) and electron magnetic resonance (EMR). The selectivity of the FAMs accumulation in cancer cells is analyzed using flow cytometry and confocal laser scanning microscopy. Results: FAMs (dN~55 nm by DLS) as a drug delivery platform have been administered to cancer cells (human breast adenocarcinoma MCF-7 and MDA-MB-231 cell lines) in vitro. Methylene blue, as a model photosensitizer, has been non-covalently bound to FAMs. An increase in photoinduced cytotoxicity has been found upon excitation of the photosensitizer bound to the coating of FAMs compared to the single photosensitizer at equivalent concentrations. The suitability of the nanosystems for photodynamic therapy has been confirmed. Conclusions: FAMs are able to effectively enter cells with increased folate receptor expression and thus allow antitumor photosensitizers to be delivered to cells without any loss of their in vitro photodynamic efficiency. Therapeutic and diagnostic applications of FAMs in oncology are discussed. Full article
Show Figures

Graphical abstract

21 pages, 7450 KiB  
Article
Degradation of Folic Acid in the Composition of a Conjugate with Polyvinylpyrrolidone and Fullerene C60 Under UV and E-Beam Irradiation
by Alina A. Borisenkova, Dmitriy V. Baykov, Anna V. Titova, Vadim V. Bakhmetyev, Maria A. Markova, Zhanna B. Lyutova, Anton V. Popugaev, Vladislav S. Khaleev and Victor P. Sedov
Molecules 2025, 30(13), 2718; https://doi.org/10.3390/molecules30132718 - 24 Jun 2025
Viewed by 413
Abstract
Folic acid (FA) is used as a targeting ligand for targeted drug delivery to tumor cells, some types of which overexpress folate receptors on their surface. However, while the preparation of conjugates containing FA may comprise a multi-step process, FA presents low photostability [...] Read more.
Folic acid (FA) is used as a targeting ligand for targeted drug delivery to tumor cells, some types of which overexpress folate receptors on their surface. However, while the preparation of conjugates containing FA may comprise a multi-step process, FA presents low photostability under UV irradiation. In addition, FA undergoes radiolysis under the action of ionizing radiation, which is utilized for drug sterilization. In this study, we investigate the stability of FA in a conjugate (FA-PVP-C60) with fullerene C60 and polyvinylpyrrolidone under the action of UV (205–400 nm) and electron irradiation (doses from 2 to 8 kGy) at different pH (4.5, 7.2, 10.7). The degradation of FA is studied using fluorescence and UV–Vis spectroscopy. It is found that the fullerene C60 in the FA-PVP-C60 conjugate suppresses the degradation of FA during both photolysis and radiolysis, which is confirmed by the decrease in the quantum yield of fluorescence and the radiation chemical yield of FA destruction accompanied by increasing fullerene content in the conjugate (from 2.8 to 10 wt.%). Full article
(This article belongs to the Special Issue Nanomaterials for Biomedicine: Innovations and Challenges)
Show Figures

Figure 1

16 pages, 6714 KiB  
Article
Construction of Graphene Oxide Probes Loaded with Antisense Peptide Nucleic Acid and Doxorubicin for Regulating Telomerase Activity and Inducing Apoptosis of Cancer Cells
by Yanyan Zhu, Qinghong Ji and Min Hong
Biosensors 2025, 15(6), 337; https://doi.org/10.3390/bios15060337 - 26 May 2025
Viewed by 593
Abstract
In this study, we developed a multifunctional graphene oxide (GO)-based nanoprobe co-loaded with antisense peptide nucleic acid (PNA) and the chemotherapeutic agent doxorubicin (DOX). The nanoplatform was strategically functionalized with folic acid ligands to enable folate receptor-mediated tumor targeting. Upon cellular internalization, the [...] Read more.
In this study, we developed a multifunctional graphene oxide (GO)-based nanoprobe co-loaded with antisense peptide nucleic acid (PNA) and the chemotherapeutic agent doxorubicin (DOX). The nanoplatform was strategically functionalized with folic acid ligands to enable folate receptor-mediated tumor targeting. Upon cellular internalization, the antisense PNA component selectively hybridized with human telomerase reverse transcriptase (hTERT) mRNA through sequence-specific recognition, inducing structural detachment from the GO surface. This displacement restored the fluorescence signal of previously quenched fluorophores conjugated to the PNA strand, thereby enabling the real-time in situ detection and quantitative fluorescence imaging of intracellular hTERT mRNA dynamics. The antisense PNA component effectively reduced the hTERT mRNA level and downregulated telomerase activity via an antisense gene regulation pathway, while the pH-responsive release of DOX induced potent cancer cell apoptosis through chemotherapeutic action. This combinatorial therapeutic strategy demonstrated enhanced anticancer efficacy compared to single-modality treatments, achieving a 60% apoptosis induction in HeLa cells through coordinated gene silencing and chemotherapy. This study establishes GO as a promising dual-drug nanocarrier platform for developing next-generation theranostic systems that integrate molecular diagnostics with multimodal cancer therapy. Full article
(This article belongs to the Special Issue Fluorescent Probes for Bioimaging and Biosensors)
Show Figures

Figure 1

18 pages, 6287 KiB  
Article
Folic Acid-Conjugated Magnetic Oleoyl-Chitosan Nanoparticles for Controlled Release of Doxorubicin in Cancer Therapy
by Banendu Sunder Dash, Yi-Chian Lai and Jyh-Ping Chen
Nanomaterials 2025, 15(6), 415; https://doi.org/10.3390/nano15060415 - 7 Mar 2025
Cited by 3 | Viewed by 1420
Abstract
To develop an efficient drug delivery system, we co-entrapped superparamagnetic Fe3O4 and the chemotherapeutic drug doxorubicin (DOX) in oleoyl-chitosan (OC) to prepare DOX-entrapped magnetic OC (DOX-MOC) nanoparticles (NPs) through ionic gelation of OC with sodium tripolyphosphate (TPP). The NPs provide [...] Read more.
To develop an efficient drug delivery system, we co-entrapped superparamagnetic Fe3O4 and the chemotherapeutic drug doxorubicin (DOX) in oleoyl-chitosan (OC) to prepare DOX-entrapped magnetic OC (DOX-MOC) nanoparticles (NPs) through ionic gelation of OC with sodium tripolyphosphate (TPP). The NPs provide magnetically targeted delivery of DOX in cancer therapy. Using folic acid (FA)-grafted OC, FA-conjugated DOX-entrapped magnetic OC (FA-DOX-MOC) NPs were prepared similarly for FA-mediated active targeting of cancer cells with overexpressed folate receptors. Considering DOX loading and release, the best conditions for preparing DOX-MOC NPs were an OC:TPP mass ratio = 1:4 and OC concentration = 0.2%. These spherical NPs had a particle size of ~250 nm, 87.9% Fe3O4 content, 53.1 emu/g saturation magnetization, 83.1% drug encapsulation efficacy, and 2.81% drug loading efficiency. FA did not significantly change the physico-chemical characteristics of FA-DOX-MOC compared to DOX-MOC, and both NPs showed pH-dependent drug release behaviors, with much faster release of DOX at acidic pH values found in endosomes. However, FA could enhance the intracellular uptake of the NPs and DOX accumulation in the nucleus. This active targeting effect led to significantly higher cytotoxicity towards U87 cancer cells. These results suggest that FA-DOX-MOC NPs can efficiently deliver DOX for controlled drug release in cancer therapy. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

24 pages, 12348 KiB  
Article
Copper(II)-Complexed Polyethylenimine-Entrapped Gold Nanoparticles Enable Targeted CT/MR Imaging and Chemodynamic Therapy of Tumors
by Lingxiu He, Na Liu, Risong Pan and Jingyi Zhu
Polymers 2025, 17(3), 423; https://doi.org/10.3390/polym17030423 - 6 Feb 2025
Cited by 1 | Viewed by 951
Abstract
Transition-metal ion copper(II) (Cu(II)) has drawn increasing attention as a small-molecular cancer theranostic agent. However, delivering a sufficient dosage of Cu(II) to the tumor site and integrating multiple imaging modalities to achieve precise and effective cancer theranostics remains a critical challenge. Herein, an [...] Read more.
Transition-metal ion copper(II) (Cu(II)) has drawn increasing attention as a small-molecular cancer theranostic agent. However, delivering a sufficient dosage of Cu(II) to the tumor site and integrating multiple imaging modalities to achieve precise and effective cancer theranostics remains a critical challenge. Herein, an emerging Cu(II)-based nanocomposite has been synthesized for targeted tumor computed tomography (CT)/magnetic resonance (MR) dual-mode imaging and chemodynamic therapy (CDT). Briefly, 2-picolinic acid (PA-COOH), polyethylene glycol (PEG)-linked folic acid (FA), and fluorescein isothiocyanate (FI) were sequentially conjugated with polyethylenimine (PEI.NH2) and then in situ fabrication of gold nanoparticles (Au NPs) occurred within the PEI.NH2 internal cavity. After acetylation of PEI.NH2 terminal amines and Cu(II) complexation, the Cu(II)-based nanocomposites FA-Au/Cu(II) PENPs with a mean diameter of 2.87 nm were generated. The synthesized FA-Au/Cu(II) PENPs showed favorable stability of colloidal dispersion, sustainable Cu(II) release properties in a pH-dependent manner, and Fenton-like catalytic activity specifically. With the FA-mediated targeting pathway, FA-Au/Cu(II) PENPs can specifically accumulate in cancer cells with high expression of FA receptors. Meanwhile, the complementary CT/MR dual-mode imaging in vitro and in vivo can be afforded by FA-Au/Cu(II) PENPs based on the excellent X-ray attenuation properties of Au NPs and the applicable r1 relaxivity (0.7378 mM−1s−1) of Cu(II). Notably, the Cu(II)-mediated CDT mechanism enables FA-Au/Cu(II) PENPs to elicit the generation of toxic hydroxyl radicals (·OH), depletion of glutathione (GSH), promotion of lipid peroxidation (LPO), and induction of cancer cell apoptosis in vitro, and further demonstrates remarkable anti-tumor efficacy in a xenograft tumor model. With the illustrated targeted theranostic capacity of FA-Au/Cu(II) PENPs towards tumors, this Cu(II)-based nanocomposite paradigm inspires the construction of advanced theranostic nanoplatforms incorporating alternative transition metal ions. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Medical Applications)
Show Figures

Figure 1

16 pages, 7574 KiB  
Article
Second Generation I-Body AD-214 Attenuates Unilateral Ureteral Obstruction (UUO)-Induced Kidney Fibrosis Through Inhibiting Leukocyte Infiltration and Macrophage Migration
by Qinghua Cao, Michael Foley, Anthony J. Gill, Angela Chou, Xin-Ming Chen and Carol A. Pollock
Int. J. Mol. Sci. 2024, 25(23), 13127; https://doi.org/10.3390/ijms252313127 - 6 Dec 2024
Viewed by 1514
Abstract
Kidney fibrosis is the common pathological pathway in progressive chronic kidney disease (CKD), and current treatments are largely ineffective. The C-X-C chemokine receptor 4 (CXCR4) is crucial to fibrosis development. By using neural cell adhesion molecules as scaffolds with binding loops that mimic [...] Read more.
Kidney fibrosis is the common pathological pathway in progressive chronic kidney disease (CKD), and current treatments are largely ineffective. The C-X-C chemokine receptor 4 (CXCR4) is crucial to fibrosis development. By using neural cell adhesion molecules as scaffolds with binding loops that mimic the shape of shark antibodies, fully humanized single-domain i-bodies have been developed. The first-generation i-body, AD-114, demonstrated antifibrotic effects in a mouse model of folic acid (FA)-induced renal fibrosis. The second-generation i-body, AD-214, is an Fc-fusion protein with an extended half-life, enhanced activity, and a mutated Fc domain to prevent immune activation. To investigate the renoprotective mechanisms of AD-214, RPTEC/TERT1 cells (a human proximal tubular cell line) were incubated with TGF-b1 with/without AD-214 and the supernatant was collected to measure collagen levels by Western blot. Mice with unilateral ureteral obstruction (UUO) received AD-214 intraperitoneally (i.p.) every two days for 14 days. Kidney fibrosis markers and kidney function were then analyzed. AD-214 suppressed TGF-b1-induced collagen overexpression in RPTEC/TERT1 cells. In UUO mice, AD-214 reduced extracellular matrix (ECM) deposition, restored kidney function, and limited leukocyte infiltration. In a scratch assay, AD-214 also inhibited macrophage migration. To conclude, i-body AD-214 attenuates UUO-induced kidney fibrosis by inhibiting leukocyte infiltration and macrophage migration. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Chronic Kidney Disease)
Show Figures

Figure 1

20 pages, 1427 KiB  
Review
Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia
by Yasushi Kubota and Shinya Kimura
Int. J. Mol. Sci. 2024, 25(22), 12219; https://doi.org/10.3390/ijms252212219 - 14 Nov 2024
Viewed by 1750
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the [...] Read more.
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed. Full article
(This article belongs to the Special Issue The Role of Autophagy in Disease and Cancer)
Show Figures

Figure 1

17 pages, 6649 KiB  
Article
Glycosyl Mobile Radical Structures of Folic Acid Receptors Impact the Internalization of Functionalized Folate Amphiphilic Alternating Copolymer in Cancer Cells
by Emilyn B. Aucoin, Elizabeth Skapinker, Abdulrahman M. Yaish, Yunfan Li, Haley L. Kombargi, Daniel Jeyaraj, Pankaj Garg, Nicole Mendonza, Cecile Malardier-Jugroot and Myron R. Szewczuk
Receptors 2024, 3(4), 457-473; https://doi.org/10.3390/receptors3040023 - 21 Oct 2024
Viewed by 1934
Abstract
Folate receptor alpha (FRα) is a glycosylphosphatidylinositol (GPI) membrane-anchored protein containing three N-glycosylated residues at the N47, N139, and N179 termini. These glycosylation sites have been reported to be crucial for the receptor’s structural integrity and its ability to bind and internalize FA. [...] Read more.
Folate receptor alpha (FRα) is a glycosylphosphatidylinositol (GPI) membrane-anchored protein containing three N-glycosylated residues at the N47, N139, and N179 termini. These glycosylation sites have been reported to be crucial for the receptor’s structural integrity and its ability to bind and internalize FA. Here, we investigated the role of FRα glycosylation in the binding and internalization efficacy of FA–DABA–SMA in pancreatic PANC-1 cancer cells. There is a strong association of the FA copolymer with FRα with a Pearson coefficient R-value of 0.7179. PANC-1 cancer cells were pretreated with maackia amurensis lectin II (MAL-2), sambucus Nigra lectin (SNA-1), peanut agglutinin (PNA), and wheat germ agglutinin lectin (WGA) at different doses followed by 20 kDa and 350 kDa FA–DABA–SMA loaded with coumarin 153 (C153). Increasing the dosage of MAL2, SNA-1, PNA, and WGA concomitantly and significantly increased the internalization of C153-loaded FA–DABA–SMA in the cells. The half maximal effective lectin concentrations (EC50) to induce cellular internalization into the cytoplasm of the lectins for MAL-2 were 35.88 µg/mL, 3.051 µg/mL for SNA-1, 7.883 µg/mL for PNA, and 0.898 µg/mL for WGA. Live cell imaging of the internalization of 20 kDa and 350 kDa FA copolymers indicated an aggregation of 350 kDa copolymer with FRα in the cytoplasm. In contrast, the 20 kDa FA copolymer remained in the membrane. The data indicate for the first time that the mobile positions of the glycosyl radical groups and the receptor tilt in generating steric hindrance impacted the individual FRα receptors in the binding and internalization of 350 kDa FA–DABA–SMA in cancer cells. Full article
Show Figures

Figure 1

22 pages, 2271 KiB  
Review
Nutrigenetic Investigations in Preeclampsia
by Zoltán Kukor
Nutrients 2024, 16(19), 3248; https://doi.org/10.3390/nu16193248 - 26 Sep 2024
Cited by 1 | Viewed by 2495
Abstract
Background: Preeclampsia is a leading cause of pregnancy-related maternal and fetal morbidity and mortality. Although its precise cause and prevention remain unclear, risk factors such as overweight and inadequate nutrient intake (e.g., calcium, folic acid, and vitamin D) are known to increase [...] Read more.
Background: Preeclampsia is a leading cause of pregnancy-related maternal and fetal morbidity and mortality. Although its precise cause and prevention remain unclear, risk factors such as overweight and inadequate nutrient intake (e.g., calcium, folic acid, and vitamin D) are known to increase its incidence. Recent research has focused on the genetic predisposition to preeclampsia, identifying polymorphisms that may affect enzyme or receptor function. This study aims to review existing literature examining the relationship between genetic polymorphisms, BMI (body mass index), and nutrient levels in preeclampsia to develop more actionable therapeutic strategies. Methods: A systematic review was conducted to analyze studies on the nutrigenetic relationship between BMI, micronutrients, and preeclampsia. Results: A total of 17 studies investigating 12 genes related to BMI and 10 studies exploring 3 genes in relation to micronutrient levels were included in the analysis. Several polymorphisms associated with preeclampsia were found to be influenced by maternal BMI or serum vitamin levels. The interactions between certain gene variants and these factors suggest that both BMI and micronutrient status may modify the risk of developing preeclampsia in genetically predisposed individuals. Conclusions: Our findings emphasize the potential for reanalyzing existing data by categorizing based on genotype and nutrient levels. This approach could yield more personalized dietary and therapeutic recommendations for managing preeclampsia. In the future, genetic information may support the development of tailored nutritional counseling during pregnancy to mitigate preeclampsia risk. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

16 pages, 3830 KiB  
Article
Synergetic Effect of β-Cyclodextrin and Its Simple Carbohydrate Substituents on Complexation of Folic Acid and Its Structural Analog Methotrexate
by Magdalena Ceborska, Aleksandra Siklitskaya, Aneta Aniela Kowalska and Karolina Kędra
Pharmaceutics 2024, 16(9), 1161; https://doi.org/10.3390/pharmaceutics16091161 - 3 Sep 2024
Cited by 1 | Viewed by 1091
Abstract
Folic acid (FA) and its structural analog, anticancer medicine methotrexate (MTX), are known to form host/guest complexes with native cyclodextrins, of which the most stable are formed with the medium-sized β-cyclodextrin. Based on our research, proving that simple sugars (D-glucose, D-galactose, and D-mannose) [...] Read more.
Folic acid (FA) and its structural analog, anticancer medicine methotrexate (MTX), are known to form host/guest complexes with native cyclodextrins, of which the most stable are formed with the medium-sized β-cyclodextrin. Based on our research, proving that simple sugars (D-glucose, D-galactose, and D-mannose) can form adducts with folic acid, we envisioned that combining these two types of molecular receptors (cyclodextrin and simple carbohydrates) into one may be beneficial for the complexation of FA and MTX. We designed and obtained host/guest inclusion complexes of FA and MTX with two monoderivatives of β-cyclodextrin—substituted at position 6 with monosaccharide (glucose, G-β-CD) and disaccharide (maltose, Ma-β-CD). The complexation was proved by experimental (NMR, UV-vis, IR, TG, DSC) and theoretical methods. We proved that derivatization of β-cyclodextrin with glucose and maltose has a significant impact on the complexation with FA and MTX, as the addition of one glucose subunit to the structure of the receptor significantly increases the value of association constant for both FA/G-β-CD and MTX/G-β-CD, while further extending a pendant chain (incorporation of maltose subunit) results in no additional changes. Full article
(This article belongs to the Special Issue Anti-Cancer Drug Delivery Systems)
Show Figures

Figure 1

45 pages, 3284 KiB  
Review
Unveiling the Therapeutic Potential of Folate-Dependent One-Carbon Metabolism in Cancer and Neurodegeneration
by Ana Filipa Sobral, Andrea Cunha, Vera Silva, Eva Gil-Martins, Renata Silva and Daniel José Barbosa
Int. J. Mol. Sci. 2024, 25(17), 9339; https://doi.org/10.3390/ijms25179339 - 28 Aug 2024
Cited by 13 | Viewed by 7600
Abstract
Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, [...] Read more.
Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate’s impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate’s impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer’s and Parkinson’s diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds: 3rd Edition)
Show Figures

Figure 1

27 pages, 16898 KiB  
Article
αvβ3 Integrin and Folate-Targeted pH-Sensitive Liposomes with Dual Ligand Modification for Metastatic Breast Cancer Treatment
by Prashant Pandey, Dilip Kumar Arya, Payal Deepak, Daoud Ali, Saud Alarifi, Saurabh Srivastava, Afsaneh Lavasanifar and Paruvathanahalli Siddalingam Rajinikanth
Bioengineering 2024, 11(8), 800; https://doi.org/10.3390/bioengineering11080800 - 7 Aug 2024
Cited by 13 | Viewed by 2969
Abstract
The advent of pH-sensitive liposomes (pHLips) has opened new opportunities for the improved and targeted delivery of antitumor drugs as well as gene therapeutics. Comprising fusogenic dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS), these nanosystems harness the acidification in the tumor microenvironment and endosomes [...] Read more.
The advent of pH-sensitive liposomes (pHLips) has opened new opportunities for the improved and targeted delivery of antitumor drugs as well as gene therapeutics. Comprising fusogenic dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS), these nanosystems harness the acidification in the tumor microenvironment and endosomes to deliver drugs effectively. pH-responsive liposomes that are internalized through endocytosis encounter mildly acidic pH in the endosomes and thereafter fuse or destabilize the endosomal membrane, leading to subsequent cargo release into the cytoplasm. The extracellular tumor matrix also presents a slightly acidic environment that can lead to the enhanced drug release and improved targeting capabilities of the nano-delivery system. Recent studies have shown that folic acid (FA) and iRGD-coated nanocarriers, including pH-sensitive liposomes, can preferentially accumulate and deliver drugs to breast tumors that overexpress folate receptors and αvβ3 and αvβ5 integrins. This study focuses on the development and characterization of 5-Fluorouracil (5-FU)-loaded FA and iRGD surface-modified pHLips (FA-iRGD-5-FU-pHLips). The novelty of this research lies in the dual targeting mechanism utilizing FA and iRGD peptides, combined with the pH-sensitive properties of the liposomes, to enhance selective targeting and uptake by cancer cells and effective drug release in the acidic tumor environment. The prepared liposomes were small, with an average diameter of 152 ± 3.27 nm, uniform, and unilamellar, demonstrating efficient 5-FU encapsulation (93.1 ± 2.58%). Despite surface functionalization, the liposomes maintained their pH sensitivity and a neutral zeta potential, which also conferred stability and reduced aggregation. Effective pH responsiveness was demonstrated by the observation of enhanced drug release at pH 5.5 compared to physiological pH 7.4. (84.47% versus 46.41% release at pH 5.5 versus pH 7.4, respectively, in 72 h). The formulations exhibited stability for six months and were stable when subjected to simulated biological settings. Blood compatibility and cytotoxicity studies on MDA-MB-231 and SK-BR3 breast cancer cell lines revealed an enhanced cytotoxicity of the liposomal formulation that was modified with FA and iRGD compared to free 5-FU and minimal hemolysis. Collectively, these findings support the potential of FA and iRGD surface-camouflaged, pH-sensitive liposomes as a promising drug delivery strategy for breast cancer treatment. Full article
(This article belongs to the Special Issue Natural Peptides/Proteins and Their Applications in Bioengineering)
Show Figures

Graphical abstract

14 pages, 5844 KiB  
Article
Hybrid Nanoparticles Based on Mesoporous Silica and Functionalized Biopolymers as Drug Carriers for Chemotherapeutic Agents
by Federica Curcio, Michela Sanguedolce, Luigino Filice, Flaviano Testa, Gerardo Catapano, Francesca Giordano, Sonia Trombino and Roberta Cassano
Materials 2024, 17(15), 3877; https://doi.org/10.3390/ma17153877 - 5 Aug 2024
Cited by 2 | Viewed by 1608
Abstract
Mesoporous silica nanoparticles (MSNs) are promising drug carriers for cancer therapy. Their functionalization with ligands for specific tissue/cell targeting and stimuli-responsive cap materials for sealing drugs within the pores of MSNs is extensively studied for biomedical and pharmaceutical applications. The objective of the [...] Read more.
Mesoporous silica nanoparticles (MSNs) are promising drug carriers for cancer therapy. Their functionalization with ligands for specific tissue/cell targeting and stimuli-responsive cap materials for sealing drugs within the pores of MSNs is extensively studied for biomedical and pharmaceutical applications. The objective of the present work was to establish MSNs as ideal nanocarriers of anticancer drugs such as 5-FU and silymarin by exploiting characteristics such as their large surface area, pore size, and biocompatibility. Furthermore, coating with various biopolymeric materials such as carboxymethyl chitosan–dopamine and hyaluronic acid–folic acid on their surface would allow them to play the role of ligands in the process of active targeting to tumor cells in which there is an overexpression of specific receptors for them. From the results obtained, it emerged, in fact, that these hybrid nanoparticles not only inhibit the growth of glioblastoma and breast cancer cells, but also act as pH-responsive release systems potentially useful as release vectors in tumor environments. Full article
(This article belongs to the Special Issue Advanced Nanoporous and Mesoporous Materials)
Show Figures

Figure 1

19 pages, 4816 KiB  
Article
Folic-Acid-Conjugated Poly (Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Gallic Acid Induce Glioblastoma Cell Death by Reactive-Oxygen-Species-Induced Stress
by Maria João Ramalho, Bruna Alves, Stéphanie Andrade, Jorge Lima, Joana Angélica Loureiro and Maria Carmo Pereira
Polymers 2024, 16(15), 2161; https://doi.org/10.3390/polym16152161 - 30 Jul 2024
Cited by 3 | Viewed by 1991
Abstract
Glioblastoma (GBM) conventional treatment is not curative, and it is associated with severe toxicity. Thus, natural compounds with anti-cancer properties and lower systemic toxicity, such as gallic acid (GA), have been explored as alternatives. However, GA’s therapeutic effects are limited due to its [...] Read more.
Glioblastoma (GBM) conventional treatment is not curative, and it is associated with severe toxicity. Thus, natural compounds with anti-cancer properties and lower systemic toxicity, such as gallic acid (GA), have been explored as alternatives. However, GA’s therapeutic effects are limited due to its rapid metabolism, low bioavailability, and low permeability across the blood–brain barrier (BBB). This work aimed to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with folic acid (FA), as its receptor is overexpressed in BBB and GBM cells, for GA delivery to enhance its therapeutic efficacy. The preparation of NPs was optimized by a central composite design (CCD). The obtained NPs showed physicochemical features suitable for drug internalization in BBB and tumor cells (sizes below 200 nm, monodispersity, and negative surface charge) and the ability to maintain a slow and sustained release for 40 days. In vitro studies using a human GBM cell line (U215) revealed the NPs’ ability to accumulate in the target cells, further promoting GA antiproliferative activity by inducing the production of intracellular reactive oxygen species (ROS). Furthermore, GA encapsulation in the developed nanosystems conferred higher protection to healthy cells. Full article
(This article belongs to the Special Issue Polymer-Based Biomaterials for Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop