Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (578)

Search Parameters:
Keywords = foliar accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2390 KB  
Article
Vermicompost and Leachate from Sewage Sludge and Vineyard Pruning Residues: An Exploratory Assessment of Cucumber Germination and Early Seedling Growth
by Elisabete Nascimento-Gonçalves, Tiago Azevedo, Henda Lopes, Catarina Medeiros, Virgílio Falco, Ana Cláudia Coelho, João R. Sousa, Ana M. Coimbra, Marta Roboredo, Paula A. Oliveira and Maria C. Morais
Environments 2026, 13(1), 59; https://doi.org/10.3390/environments13010059 - 21 Jan 2026
Abstract
The sustainable management of organic residues remains a major challenge in agriculture. Vermicomposting offers an environmentally friendly strategy to convert organic waste into nutrient-rich, biologically stable biofertilizers. This exploratory study evaluated the effects of vermicompost and its leachate, produced from sewage sludge and [...] Read more.
The sustainable management of organic residues remains a major challenge in agriculture. Vermicomposting offers an environmentally friendly strategy to convert organic waste into nutrient-rich, biologically stable biofertilizers. This exploratory study evaluated the effects of vermicompost and its leachate, produced from sewage sludge and vineyard pruning residues, on cucumber (Cucumis sativus L.) germination and 25-day early seedling growth. Treatments included a control (peat and perlite, CNT), two vermicompost doses, 20 g kg−1 and 40 g kg−1 (VC_D1 and VC_D2, respectively) and a 5% (v/v) vermicompost leachate (VC_L) applied as the sole irrigation source. Foliar nutrient contents and physicochemical properties of the substrate and leachate were determined. Germination was not significantly affected (p > 0.05), but VC_D1 promoted slightly faster and more uniform seed emergence. Growth responses were dose dependent, with VC_D1 significantly enhancing shoot biomass (approximately 15% than the CNT and VC_D2) and providing a balanced foliar nutrient profile, whereas VC_D2 significantly reduced growth, promoted excessive foliar K and P, and lower Ca, Fe, and Mn contents. VC_L enhanced foliar N accumulation but did not significantly (p > 0.05) increase biomass. Both vermicompost and its leachate were pathogen-free, with metal concentrations below regulatory limits. Overall, these findings suggest that, under the tested conditions, vermicomposting these residues can generate potentially safe amendments for cucumber seedling growth, though dose optimization is essential. This exploratory approach supports residue valorization and contributes to circular economy principles and sustainable agriculture goals. Full article
Show Figures

Figure 1

28 pages, 2892 KB  
Article
Foliar Application of Silicon and Sulfur Modifies Grain Mineral Composition of Spring Oats ( Avena sativa L.) Under Contrasting Seasonal Drought Conditions
by Bekir Bytyqi, Fanni Zsuzsa Forgács, Anteneh Agezew Melash, István Csaba Virág, József Csajbók, Ebenezer Ayew Appiah and Erika Tünde Kutasy
Plants 2026, 15(2), 316; https://doi.org/10.3390/plants15020316 - 21 Jan 2026
Abstract
This study evaluated the effects of foliar silicon (Si) and sulfur (S) applications under contrasting climatic conditions on macro- and micronutrient accumulation in oat grain. The three-year field experiment (2022–2024) was conducted in Debrecen, Hungary, using a randomized complete block design (RCBD)with three [...] Read more.
This study evaluated the effects of foliar silicon (Si) and sulfur (S) applications under contrasting climatic conditions on macro- and micronutrient accumulation in oat grain. The three-year field experiment (2022–2024) was conducted in Debrecen, Hungary, using a randomized complete block design (RCBD)with three replications. Grain samples were analyzed for macroelements (K, P, S, Mg, Ca) and micronutrients (Na, Si, Fe, Mn, Cu). Environmental conditions markedly influenced nutrient accumulation. Severe drought promoted the highest concentrations of K, S, and Mg, while mild drought significantly increased the accumulation of P, Ca, Si, Fe, and Cu contents. Moderate drought favored Na accumulation. Foliar S application under relatively favorable water supply significantly enhanced the concentration of all measured elements, with the strongest response observed for Cu (+47.4% compared with the control) and the weakest for Mg (8.5%). In contrast, Si application alone had only limited or negative effects, particularly under severe drought, where it reduced K (6.4%), S (2.4%), and Ca (13%) concentrations, despite increased Si accumulation in the grain. During drought stress, however, the combined Si + S treatment significantly increased the grain macro- and micronutrient concentrations. Among the tested genotypes, ‘Mv Pehely’ exhibited the highest macronutrient accumulation, while ‘GK Kormorán’ and ‘Mv Pehely’ showed superior micronutrient accumulation. ‘GK Pillangó’ and ‘Mv Szellő’ showed consistently lower nutrient contents. These results highlight the importance of genotype × environment × nutrient management strategies for improving nutrient composition in oat grain. Full article
(This article belongs to the Special Issue Nutrient Management for Crop Production and Quality)
Show Figures

Figure 1

14 pages, 1408 KB  
Article
Effect of Pyroligneous Acid on Needle Retention and Certain Stress-Related Phytochemicals in Balsam Fir (Abies balsamea)
by Niruppama Senthilkumar, Ravalika Kasu, Raphael Ofoe, Lord Abbey and Mason T. MacDonald
Plants 2026, 15(2), 261; https://doi.org/10.3390/plants15020261 - 15 Jan 2026
Viewed by 170
Abstract
Balsam fir is an important specialty horticultural crop in eastern North America and commonly harvested for use as Christmas trees. Postharvest quality is a major challenge for producers, who are particularly concerned about postharvest needle retention. It was hypothesized that pyroligneous acid (PA) [...] Read more.
Balsam fir is an important specialty horticultural crop in eastern North America and commonly harvested for use as Christmas trees. Postharvest quality is a major challenge for producers, who are particularly concerned about postharvest needle retention. It was hypothesized that pyroligneous acid (PA) would help increase postharvest needle retention in balsam fir when supplied via xylem or foliage. This project first identified foliar spraying as the best application method, then designed a multivariate experiment with two factors. The first factor was foliar treatment (control, water, 1% PA, 2% PA, and 4% PA). The second factor was time, where branches were evaluated for needle abscission at 0, 2, 4, 6, and 8 weeks after harvest. The experiment was replicated 5 times and needle abscission, water uptake, chlorophyll, carotenoids, flavonoids, total phenolics, membrane injury, proline, and H2O2 production were all measured in response. Postharvest abscission reached 100% over the 8-week experiment and water uptake decreased by over 80%. Chlorophyll, proline, membrane injury, and H2O2 production all increased over time. Although PA did not improve needle retention compared to the control under the tested conditions, 4% PA spray increased proline concentration by 40% while decreasing membrane injury by 26%. Ultimately, PA did not consistently improve needle retention but did induce proline accumulation and membrane protection. Full article
(This article belongs to the Special Issue Advances in Biostimulant Use on Horticultural Crops)
Show Figures

Figure 1

21 pages, 11383 KB  
Article
Identification of miRNAs Responsive to a Defined Period of Iron Deficiency and Resupply in Arabidopsis thaliana
by Qianmiao Zhao, Fei Liu, Jin Xu and Ping Zhang
Plants 2026, 15(2), 227; https://doi.org/10.3390/plants15020227 - 11 Jan 2026
Viewed by 189
Abstract
Iron (Fe), as one of the essential micronutrients for plants, plays a pivotal role in regulating growth and development through homeostatic balance. Fe deficiency is a common agricultural stress that causes visible leaf chlorosis and impairs plant growth. In this study, Arabidopsis thaliana [...] Read more.
Iron (Fe), as one of the essential micronutrients for plants, plays a pivotal role in regulating growth and development through homeostatic balance. Fe deficiency is a common agricultural stress that causes visible leaf chlorosis and impairs plant growth. In this study, Arabidopsis thaliana seedlings grown under Fe deficiency for 4 days were subjected to 6 h Fe resupply via foliar spray or root supply, followed by measurements of chlorophyll fluorescence and metal ion contents in leaves and roots. Fe deficiency significantly reduced Fe levels and the maximum quantum yield of fluorescence (Fv/Fm), while increasing copper (Cu) accumulation in roots. Zinc (Zn) and manganese (Mn) levels were also altered, depending on tissue type. Fe resupply restored Fv/Fm, increased Mn levels, and rebalanced micronutrient content. MicroRNA (miRNA) mediates adaptation to Fe deficiency via post-transcriptional regulation in plants. However, the involved regulatory networks of miRNAs under stress conditions during Fe resupply following deficiency remain poorly understood. These physiological changes prompted us to explore the underlying regulatory networks using miRNA-seq and mRNA-seq. The bioinformatics analysis identified differentially expressed miRNAs responsive to Fe stress, with the Fe-deficiency-specific cis-element IDE1 characterized in their promoter regions. By integrating miRNA-seq and mRNA-seq datasets, we constructed a regulatory network and identified 13 miRNAs harboring IDE1 motifs alongside their functional target genes. Three critical Fe homeostasis modules were proposed—miR396b-LSU2, miR401-HEMA1, and miR169b-NF-YA2—that link Fe homeostasis to chlorophyll synthesis, sulfur (S) responses, and developmental signaling. This study integrates physiological phenotyping with transcriptomic insights to provide a comprehensive view of Fe deficiency and recovery in Arabidopsis. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 5080 KB  
Article
Physiological and Biochemical Analysis of Coffea arabica Cultivars in the Early Stage of Development Subjected to Water Stress for the Selection of Cultivars Adapted to Drought
by Jhon Edler Lopez-Merino, Eyner Huaman, Jorge Alberto Condori-Apfata and Manuel Oliva-Cruz
Stresses 2026, 6(1), 2; https://doi.org/10.3390/stresses6010002 - 9 Jan 2026
Viewed by 189
Abstract
Drought events intensified by climate change severely compromise the physiological stability and productivity of Coffea arabica, particularly in rainfed systems, underscoring the need to identify cultivars with greater functional resilience. This study evaluated the physiological, nutritional and biochemical responses of seedlings from [...] Read more.
Drought events intensified by climate change severely compromise the physiological stability and productivity of Coffea arabica, particularly in rainfed systems, underscoring the need to identify cultivars with greater functional resilience. This study evaluated the physiological, nutritional and biochemical responses of seedlings from ten cultivars subjected to adequate irrigation (AW), severe water deficit (SWD) and rehydration (RI). Water potential, gas exchange, oxidative stress markers, stomatal traits and foliar macro- and micronutrients were quantified. Most cultivars exhibited pronounced reductions in the pre-dawn leaf water potential (Ψpd), photosynthesis (A), stomatal conductance (gs) and transpiration (E), together with increases in oxidative stress indicators under SWD. In contrast, Obatá amarillo, Castillo, and Arará maintained greater hydraulic stability, more efficient stomatal regulation, higher water-use efficiency, and lower oxidative stress, accompanied by a more effective post-stress recovery after RI. Regarding nutrient dynamics, Geisha, Castillo, and Arará showed higher K+ accumulation, while Catimor bolo presented elevated Ca2+, P, and Fe2+ contents, elements associated with metabolic reactivation and structural recovery after stress. Geisha and Marsellesa displayed an adaptive, recovery-driven resilience strategy following drought stress. Overall, the findings identify Obatá amarillo, Castillo, and Arará as the most drought-tolerant cultivars, highlighting their potential relevance for breeding programs aimed at improving drought resilience in coffee. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Graphical abstract

22 pages, 4206 KB  
Article
Sorbitol-Stabilized Silicon Formulation Improve Root Traits and Antioxidant Response in Drought-Stressed Soybean
by Felipe Sousa Franco, Jonas Pereira de Souza Júnior, Renato de Mello Prado, Milton Garcia Costa, Cid Naudi Silva Campos, Leonardo Motta Berzaghi Junior, Nícolas Leite Capucin, Gustavo Paparotto Lopes, Gabriel Sgarbiero Montanha, Marcia Leticia Monteiro Gomes, Ana Carina da Silva Cândido Seron, Hudson Wallace Pereira de Carvalho, José Lavres and Renan Caldas Umburanas
Plants 2026, 15(2), 197; https://doi.org/10.3390/plants15020197 - 8 Jan 2026
Viewed by 235
Abstract
Silicon (Si) plays a critical role in regulating plant physiological processes, particularly through its influence on non-enzymatic antioxidant systems and amino acid metabolism. This study aims to assess soybean performance in response to both soil and foliar Si applications under well-watered and drought [...] Read more.
Silicon (Si) plays a critical role in regulating plant physiological processes, particularly through its influence on non-enzymatic antioxidant systems and amino acid metabolism. This study aims to assess soybean performance in response to both soil and foliar Si applications under well-watered and drought conditions, with the goal of enhancing Si accumulation in plant tissues and potentially strengthening the crop’s physiological responses to water deficit stress. This is especially pertinent given that the mechanisms underlying Si fertilization and its contribution to drought tolerance in soybean remain poorly understood. Greenhouse experiments were conducted using a 3 × 2 factorial design. The factors were: (i) three foliar Si treatments: control (no Si), potassium silicate (SiK; 128 g L−1 Si, 126.5 g L−1 K2O, pH 12.0), and sorbitol-stabilized potassium silicate (SiKe; 107 g L−1 Si, 28.4 g L−1 K2O, 100 mL L−1 sorbitol, pH 11.8); and (ii) two soil water levels: well-watered (80% field capacity) and water-restricted (40% field capacity), the latter simulating tropical dry spells. Silicon was applied to the soil via irrigation and to the leaves via foliar spraying prior to the onset water restriction. All Si solutions were adjusted to pH 7.0 with 1 M HCl immediately before application. Potassium (K) levels were standardized across treatments through supplementary applications of KCl to both soil and foliage. Biometric and physiological parameters were subsequently measured. Sorbitol-stabilized Si enhanced Si accumulation in soybean tissues and improved plant resilience under both well-watered and drought conditions by promoting key physiological traits, including increased levels of daidzein and ascorbic acid levels, along with reduced amino acid concentrations. It also improved biometric parameters such as leaf area, root development, and number of pods per plant. These findings further support the role of Si as a beneficial element in enhancing stress tolerance and contributing to sustainable agricultural practices. Full article
(This article belongs to the Special Issue Silicon and Its Physiological Role in Plant Growth and Development)
Show Figures

Figure 1

28 pages, 3111 KB  
Article
Foliar Application of Nanoselenium Enhances Drought Tolerance in Brassica oleracea var. italica Through Antioxidant Reinforcement and Pigment Stabilization
by Simona Ioana Vicas, Cristina Adriana Rosan, Daniela Padilla-Contreras, Simona Daniela Cavalu, Richard Zsiros, Ioana Maria Borza, Daniela Gitea, Carmen Violeta Iancu, Ertan Yildirim, Murat Aydin, Melek Ekinci, Esma Yigider and Manuel Alexandru Gitea
Life 2026, 16(1), 70; https://doi.org/10.3390/life16010070 - 2 Jan 2026
Viewed by 376
Abstract
Drought stress is one of the major constraints limiting crop productivity, primarily through oxidative damage, pigment degradation, and metabolic imbalance. Nanostructured selenium particles (SeNPs) have recently attracted attention for their potential to enhance plant tolerance to abiotic stress. In this study, green-synthesized SeNPs, [...] Read more.
Drought stress is one of the major constraints limiting crop productivity, primarily through oxidative damage, pigment degradation, and metabolic imbalance. Nanostructured selenium particles (SeNPs) have recently attracted attention for their potential to enhance plant tolerance to abiotic stress. In this study, green-synthesized SeNPs, with a main hydrodynamic size distribution in the range of 90–100 nm, were foliar applied to broccoli (Brassica oleracea var. italica) plants grown under well-watered (100% water holding capacity) and drought (50% water holding capacity) conditions at concentrations of 0, 10, 20 and 50 ppm. Drought stress significantly decreased chlorophyll a and b, total chlorophyll, and carotenoids, while increasing malondialdehyde (MDA) and proline levels, confirming oxidative stress and membrane damage. SeNPs treatments partially mitigated these effects by enhancing pigment stability, increasing carotenoid content, and reducing both MDA and proline accumulation. Phenolic and flavonoid responses exhibited a dose-dependent pattern with the highest stimulation at 50 ppm under drought and moderate enhancement at 10 ppm under optimal irrigation. Antioxidant capacity assays demonstrated that SeNPs modulate plant redox metabolism, in a context-dependent manner, particularly under water deficit. Peroxidase (POD) activity was also significantly induced under drought stress, mainly at 20 ppm. These results indicate that foliar-applied SeNPs can influence physiological and biochemical responses associated with drought tolerance in broccoli. The observed effects are consistent with nanoparticle–leaf surface interactions contributing to redox regulation and stress adaptation, rather than implying direct nanoparticle internalization. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

19 pages, 5072 KB  
Article
Climate-Driven Phenology and Multigenerational Dynamics of Corythucha arcuata (Heteroptera: Tingidae), and Implications for Sustainable Oak Forest Management
by Cristina Stancă-Moise, George Moise, Anca Șipoș, Mihaela Rotaru and Cristian Felix Blidar
Sustainability 2026, 18(1), 445; https://doi.org/10.3390/su18010445 - 2 Jan 2026
Viewed by 260
Abstract
This study presents an integrated analysis of climate-driven phenology and infestation dynamics of the invasive oak lace bug (Corythucha arcuata) in foothill oak ecosystems of Rășinari, Romania. Using reconstructed microclimatic data for 2024–2025, systematic field monitoring, degree-day (GDD) modeling, and the [...] Read more.
This study presents an integrated analysis of climate-driven phenology and infestation dynamics of the invasive oak lace bug (Corythucha arcuata) in foothill oak ecosystems of Rășinari, Romania. Using reconstructed microclimatic data for 2024–2025, systematic field monitoring, degree-day (GDD) modeling, and the De Martonne aridity index, we assessed the combined effects of thermal accumulation and hydric stress on multigenerational development. Results indicate that warm springs and sustained summer temperatures enabled the completion of two full generations (G1–G2) in both years, while recurrent late-summer aridity intensified foliar vulnerability and accelerated nymphal development. A third generation (G3) was initiated but remained incomplete due to declining autumn temperatures and photoperiod constraints. Strong habitat-specific differences were observed: exposed forest-edge stands exhibited the highest damage levels (up to 90%), whereas closed-canopy stands benefited from microclimatic buffering. The combined GDD–aridity framework showed close agreement with observed phenological transitions, providing a robust tool for identifying high-risk infestation periods. Climatic projections for 2026 suggest further advancement of generational timing under continued warming and increasing aridity. These findings highlight the growing climatic suitability of foothill oak ecosystems for C. arcuata and support the development of early-warning systems and adaptive strategies for sustainable oak forest management. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

16 pages, 3645 KB  
Article
Foliar-Applied Selenium–Zinc Nanocomposite Drives Synergistic Effects on Se/Zn Accumulation in Brassica chinensis L.
by Mengna Tao, Yusong Yao, Lian Zhang, Jie Zeng, Bingxu Cheng and Chuanxi Wang
Nanomaterials 2026, 16(1), 56; https://doi.org/10.3390/nano16010056 - 31 Dec 2025
Viewed by 277
Abstract
Micronutrient malnutrition persists as a global health burden, while conventional biofortification approaches suffer from low efficiency and environmental trade-offs. This study aimed to develop and evaluate a foliar-applied selenium–zinc nanocomposite (Nano-ZSe, a mixture of zinc ionic fertilizer and nano selenium) for synergistic Se/Zn [...] Read more.
Micronutrient malnutrition persists as a global health burden, while conventional biofortification approaches suffer from low efficiency and environmental trade-offs. This study aimed to develop and evaluate a foliar-applied selenium–zinc nanocomposite (Nano-ZSe, a mixture of zinc ionic fertilizer and nano selenium) for synergistic Se/Zn co-biofortification in Brassica chinensis L., using a controlled pot experiment that integrated physiological, metabolic, molecular, and rhizosphere analyses. Application of Nano-ZSe at 0.18 mg·kg−1 (Based on soil weight) not only increased shoot biomass by 28.4% but also elevated Se and Zn concentrations in edible tissues by 7.00- and 1.66-fold (within the safe limits established for human consumption), respectively, compared to the control. Mechanistically, Nano-ZSe reprogrammed the ascorbate-glutathione redox system and redirected carbon flux through the tricarboxylic acid cycle, suppressing acetyl-CoA biosynthesis and reducing abscisic acid accumulation. This metabolic rewiring promoted stomatal opening, thereby enhancing foliar nutrient uptake. Simultaneously, Nano-ZSe triggered the coordinated upregulation of BcSultr1;1 (a sulfate/selenium transporter) and BcZIP4 (a Zn2+ transporter), enabling synchronized translocation and the tissue-level co-accumulation of Se and Zn. Beyond plant physiology, Nano-ZSe improved soil physicochemical properties, enriched rhizosphere microbial diversity, and increased crop yield and economic returns. Collectively, this work demonstrates that nano-enabled dual-nutrient delivery systems can bridge nutritional and agronomic objectives through integrated physiological, molecular, and rhizosphere-mediated mechanisms, offering a scalable and environmentally sustainable pathway toward functional food production and the mitigation of hidden hunger. Full article
(This article belongs to the Section Nanotechnology in Agriculture)
Show Figures

Graphical abstract

28 pages, 3254 KB  
Article
Seasonal Dynamics of Foliar Fungi Associated with the Invasive Plant Ageratina adenophora
by Yu-Xuan Li, Ai-Ling Yang, Xiao-Han Jin, Zi-Qing Liu, Yong-Lan Wang, Chao Zhao, Zhao-Ying Zeng, Yu-Peng Geng and Han-Bo Zhang
Microorganisms 2026, 14(1), 84; https://doi.org/10.3390/microorganisms14010084 - 30 Dec 2025
Viewed by 402
Abstract
The potential of invasive plants to serve as reservoirs for plant pathogenic fungi has been confirmed, but studies examining the seasonal effects on the community structure and transmission patterns of leaf pathogens within invasive plant populations remain scarce. In this study, we characterised [...] Read more.
The potential of invasive plants to serve as reservoirs for plant pathogenic fungi has been confirmed, but studies examining the seasonal effects on the community structure and transmission patterns of leaf pathogens within invasive plant populations remain scarce. In this study, we characterised the seasonal dynamics of pathogenic fungal communities in the leaf tissue of the invasive plant A. adenophora via culture-dependent and culture-independent methods. The study confirmed that fresh leaves of A. adenophora accumulate diverse pathogenic fungi, including Colletotrichum, Epicoccum, Toxicocladosporium, Mycosphaerella and Didymella. These genera are globally distributed and act as pathogens for a wide range of wild plants and economic crops. The pathogenic fungal communities exhibited seasonal dynamics, though the magnitude of change was less pronounced than that of the overall fungal community. Among four common environmental factors, namely, temperature, relative humidity, wind speed and precipitation, temperature had a greater effect on the overall community than the other environmental factors, whereas precipitation had the least effect. However, relative humidity has the strongest effect on the pathogenic fungal community; moreover, relative humidity distinctively affects the same species occurring in different microenvironments. Most foliar pathogenic fungi are actively transmitted in spring and autumn, and very few genera can transmit across all seasons. Moreover, most fungal genera can transmit from fresh leaves to dead leaves, suggesting that most foliar fungal pathogens associated with A. adenophora are likely necrotrophic. Our study strongly confirms the potential of the invasive plant A. adenophora to act as a reservoir of pathogenic fungi and provides preliminary insights into their potential transmission patterns. These findings underscore that, under suitable climatic and environmental conditions, A. adenophora may pose a latent risk of triggering disease transmission within ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

27 pages, 6999 KB  
Article
Enhanced Salt Stress Tolerance in Maize Using Biostimulant and Biosurfactant Applications
by Zeynep Gul, Melek Ekinci, Melike Akca, Metin Turan, Esma Yigider, Murat Aydin, Nazlı Ilke Eken Türer and Ertan Yildirim
Agronomy 2026, 16(1), 100; https://doi.org/10.3390/agronomy16010100 - 29 Dec 2025
Viewed by 359
Abstract
This research was conducted to investigate effects of biostimulants containing plant growth-promoting rhizobacteria and enriched biosurfactants, which were tested individually and in combination (biostimulant + enriched biosurfactant) on plant growth parameters, physiological and biochemical properties of maize seedlings under different salinity conditions (0, [...] Read more.
This research was conducted to investigate effects of biostimulants containing plant growth-promoting rhizobacteria and enriched biosurfactants, which were tested individually and in combination (biostimulant + enriched biosurfactant) on plant growth parameters, physiological and biochemical properties of maize seedlings under different salinity conditions (0, 100, 200 mM NaCl). In the experiment, biostimulant (B: 0.3 g/L), enriched biosurfactant (E-S: 3 mL/L), and their combination (B + E-S) were applied by foliar spray at each NaCl level. Salt stress negatively affected the growth and physiological traits of maize seedlings, while biostimulant and enriched biosurfactant improved these parameters. Under severe salinity stress (200 mM NaCl), the biostimulant, enriched biosurfactant, and their combined application markedly mitigated oxidative and osmotic damage. Compared with the untreated 200 mM NaCl group, these treatments (B, ES, B + ES) reduced proline accumulation by 65%, 52%, and 70%; hydrogen peroxide (H2O2) level by 53%, 39%, and 58%; and malondialdehyde (MDA) content by 72%, 50%, and 73%, respectively. These reductions indicate a substantial decrease in oxidative stress and membrane lipid peroxidation. In conclusion, biostimulant and enriched biosurfactant applications may be a promising approach to reduce the negative effects of salinity stress on maize. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

23 pages, 22575 KB  
Article
Effect of Zinc Oxide Nanoparticles on the Physiological and Biochemical Responses of Coffea arabica L. Exposed to Glyphosate
by Leyner Tucto-Vela, Jegnes Benjamín Meléndez-Mori, Eyner Huaman, Amilcar Valle-Lopez and Manuel Oliva Cruz
Nanomaterials 2026, 16(1), 39; https://doi.org/10.3390/nano16010039 - 27 Dec 2025
Viewed by 411
Abstract
Glyphosate is widely used for weed control in coffee but can induce physiological alterations due to its lack of selectivity, and indirect spray drift can cause adverse effects, potentially increasing biological impacts upon exposure. In this study, we evaluated the attenuating effect of [...] Read more.
Glyphosate is widely used for weed control in coffee but can induce physiological alterations due to its lack of selectivity, and indirect spray drift can cause adverse effects, potentially increasing biological impacts upon exposure. In this study, we evaluated the attenuating effect of foliar-applied zinc oxide nanoparticles (ZnO NPs) on C. arabica var. Geisha seedlings exposed to simulated spray concentrations of glyphosate (3.6 and 17.9 g ae L−1). Exposure caused a marked reduction in chlorophyll content, stomatal conductance, and net photosynthesis, while simultaneously promoting an increase in H2O2, MDA, and proline accumulation, reflecting a pronounced redox imbalance and oxidative damage associated with the production of reactive oxygen species (ROS). In contrast, the application of ZnO NPs improved photosynthetic efficiency, increased chlorophyll content, stabilized stomatal aperture, and reduced H2O2 and MDA levels in both leaves and roots. Moreover, it enhanced nutrient accumulation, ensuring greater membrane integrity and more efficient ion transport systems under glyphosate exposure. Overall, the ZnO NPs exhibited a notable protective effect by reducing glyphosate-induced phytotoxicity and strengthening the physiological tolerance of C. arabica. These findings support their potential as a sustainable tool to protect coffee crops from glyphosate exposure. Full article
(This article belongs to the Section Nanotechnology in Agriculture)
Show Figures

Figure 1

21 pages, 3446 KB  
Article
Integrating Proximal Sensing Data for Assessing Wood Distillate Effects in Strawberry Growth and Fruit Development
by Valeria Palchetti, Sara Beltrami, Francesca Alderotti, Maddalena Grieco, Giovanni Marino, Giovanni Agati, Ermes Lo Piccolo, Mauro Centritto, Francesco Ferrini, Antonella Gori, Vincenzo Montesano and Cecilia Brunetti
Horticulturae 2026, 12(1), 17; https://doi.org/10.3390/horticulturae12010017 - 24 Dec 2025
Viewed by 465
Abstract
Strawberry (Fragaria × ananassa (Weston) Rozier) is a high-value crop whose market success depends on fruit quality traits such as sweetness, firmness, and pigmentation. In sustainable agriculture, wood distillates are gaining interest as natural biostimulants. This study evaluated the effects of foliar [...] Read more.
Strawberry (Fragaria × ananassa (Weston) Rozier) is a high-value crop whose market success depends on fruit quality traits such as sweetness, firmness, and pigmentation. In sustainable agriculture, wood distillates are gaining interest as natural biostimulants. This study evaluated the effects of foliar application of two commercial wood distillates (WD1 and WD2) and one produced in a pilot plant at the Institute for Bioeconomy of the National Research Council of Italy (IBE-CNR) on strawberry physiology, fruit yield, and fruit quality under greenhouse conditions. Non-destructive ecophysiological measurements were integrated using optical sensors for proximal phenotyping, enabling continuous monitoring of plant physiology and fruit ripening. Leaf gas exchange and chlorophyll fluorescence were measured with a portable photosynthesis system, while vegetation indices and pigment-related parameters were obtained using spectroradiometric sensors and fluorescence devices. To assess the functional relevance of vegetation indices, a linear regression analysis was performed between net photosynthetic rate (A) and the Photochemical Reflectance Index (PRI), confirming a significant positive correlation and supporting PRI as a proxy for photosynthetic efficiency. All treatments improved photosynthetic efficiency during fruiting, with significant increases in net photosynthetic rate, quantum yield of photosystem II, and electron transport rate compared to control plants. IBE-CNR and WD2 enhanced fruit yield, while all treatments increased fruit soluble solids content. Non-invasive monitoring enabled real-time assessment of physiological responses and pigment accumulation, confirming the potential of wood distillates as biostimulants and the value of advanced sensing technologies for sustainable, data-driven crop management. Full article
Show Figures

Figure 1

17 pages, 4343 KB  
Article
Exogenous 6-BA Inhibits Fruit Cracking by Regulating the Hormonal Balance and Transcriptome Characteristics of the Jujube Fruit Peel
by Wen Tang, Cheng Yang, Yang Cao, Zhenlei Wang, Peihua Du and Minjuan Lin
Agronomy 2026, 16(1), 16; https://doi.org/10.3390/agronomy16010016 - 20 Dec 2025
Viewed by 383
Abstract
Fruit cracking in jujube is a major constraint on the sustainable development of the jujube industry. In this study, 60 mg L−1 of 6-Benzylaminopurine (6-BA) was foliar-sprayed at the early fruit stage. Fruit cracking incidence was recorded during the green and white [...] Read more.
Fruit cracking in jujube is a major constraint on the sustainable development of the jujube industry. In this study, 60 mg L−1 of 6-Benzylaminopurine (6-BA) was foliar-sprayed at the early fruit stage. Fruit cracking incidence was recorded during the green and white fruit periods, and these observations were integrated with transcriptomic and metabolomic analyses to explore the potential mechanisms by which 6-BA influences fruit cracking. The results showed that the fruit cracking in the treatment groups was 53% and 18% of that in the control group during the green period and the white period, respectively. In jujube peel, catalase (CAT) activity was significantly increased in the treated peel during both periods. In the peel metabolites, compounds belonging to the cytokinin (CTK) category exhibited significant accumulation in both periods. Transcriptomic analysis showed that differentially expressed genes (DEGs) were enriched in pathways related to starch and sucrose metabolism, plant hormone signal transduction, and cellular polysaccharide metabolism. These findings suggest that 6-BA treatment may alleviate jujube fruit cracking by enhancing antioxidant capacity, modulating hormone homeostasis, and upregulating genes associated with carbohydrate and cell wall metabolism. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

22 pages, 8000 KB  
Article
Foliar Application of Bamboo-Derived Nano-Biochar Enhances Morphological and Biochemical Responses of Lettuce (Lactuca sativa L.) Under Salt Stress
by Bhornchai Harakotr, Sompop Taebuanhuad, Yaowapha Jirakiattikul and Thanpisit Puangchick
Plants 2026, 15(1), 9; https://doi.org/10.3390/plants15010009 - 19 Dec 2025
Viewed by 359
Abstract
Nano-biochar (n-BC) is an emerging eco-friendly material with potential to improve crop performance under salt stress. This study aimed to evaluate the effects of foliar applications of bamboo-derived n-BC on the morphological and biochemical responses of lettuce plants under salt stress (40 mM [...] Read more.
Nano-biochar (n-BC) is an emerging eco-friendly material with potential to improve crop performance under salt stress. This study aimed to evaluate the effects of foliar applications of bamboo-derived n-BC on the morphological and biochemical responses of lettuce plants under salt stress (40 mM NaCl). n-BC solutions (1.0, 3.0, and 5.0% w/v) were foliar-applied every five days until harvest. Salt stress markedly increased hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 264.54% and 14.02%, disrupted Na+/K+ homeostasis, and reduced biomass. Foliar n-BC mitigated these effects by reducing Na+ accumulation by 22.24–25.11% and enhancing K+, Ca2+, and Mg2+ uptake. The treatments also improved photosynthetic pigments and increased proline, soluble proteins, and soluble sugars. Oxidative damage was alleviated, as reflected by reductions in H2O2 and MDA together with enhanced ascorbate peroxidase, catalase, and superoxide dismutase activities. Total phenolics, flavonoids, and ABTS and DPPH scavenging activities also increased under n-BC application. Among all the concentrations, 3.0% (w/v) n-BC consistently produced the greatest improvements in growth, ionic balance, and antioxidant responses. These findings demonstrate that bamboo-derived n-BC is a promising foliar biostimulant for enhancing lettuce performance under saline conditions. Full article
(This article belongs to the Special Issue Mechanisms of Plant Defense Against Abiotic Stresses)
Show Figures

Graphical abstract

Back to TopTop