Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = foam extinguishing agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4767 KB  
Article
Preparation and Characterization of a High-Performance Foam Extinguishing Agent with Sulfobetaine and Polyoxyethylene Ether for Solid Fires
by Huizhong Ma, Liang Cheng, Lan Zhang, Liyang Ma, Jia Deng, Ao Zhao, Xin Jiang and Fei Wang
Polymers 2025, 17(19), 2579; https://doi.org/10.3390/polym17192579 - 24 Sep 2025
Viewed by 122
Abstract
Although extensive studies have been conducted on the component ratios and performance of fire extinguishing foams, most research has not explored the coupling relationship between foam wettability and adhesion. Therefore, this study aims to develop an efficient foam extinguishing agent for solid fires [...] Read more.
Although extensive studies have been conducted on the component ratios and performance of fire extinguishing foams, most research has not explored the coupling relationship between foam wettability and adhesion. Therefore, this study aims to develop an efficient foam extinguishing agent for solid fires by focusing on both wettability and adhesion. First, the influence of chemical functional groups on foam wettability and adhesion was elucidated, and the contributions of individual components to foam properties were experimentally investigated. Second, adhesion and wettability tests revealed a negative correlation between these two properties, consistent with variations in foam solution viscosity and wetting time. Third, a novel adhesion evaluation method was proposed, defined as the time required for foam to flow a fixed distance on inclined wooden surfaces; longer flow times indicated stronger adhesion. Fourth, foaming and fire suppression experiments confirmed the practical performance of the optimized formulations. A composition containing 8 wt% Polyoxyethylene ether and 5 wt% Sulfobetaine yielded a wetting-type foam suitable for rapid cooling, whereas 8 wt% Polyoxyethylene ether combined with 9 wt% Sulfobetaine produced an adhesive-type foam capable of persistent attachment to combustibles. Microscopic observations further demonstrated that foams with superior extinguishing performance developed dense lamellae. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

44 pages, 4223 KB  
Review
Classification and Prevention of Electrical Fires: A Comprehensive Review
by Guohui Li, Jiapu Guo, Yanhao Kang, Que Huang, Junchao Zhao and Changcheng Liu
Fire 2025, 8(4), 154; https://doi.org/10.3390/fire8040154 - 10 Apr 2025
Cited by 4 | Viewed by 2617
Abstract
With the development of society and the advancement of technology, the application of electricity in modern life has become increasingly widespread. However, the risk of electrical fires has also significantly increased. This paper thoroughly investigates the causes, classifications, and challenges of electrical fires [...] Read more.
With the development of society and the advancement of technology, the application of electricity in modern life has become increasingly widespread. However, the risk of electrical fires has also significantly increased. This paper thoroughly investigates the causes, classifications, and challenges of electrical fires in special environments, and summarizes advanced detection and extinguishing technologies. The study reveals that the causes of electrical fires are complex and diverse, including equipment aging, improper installation, short circuits, and overloading. In special environments such as submarines, surface vessels, and aircraft, the risk of electrical fires is higher due to limited space, dense equipment, and difficult rescue operations. This paper also provides a detailed analysis of various types of electrical fires, including cable fires, electrical cabinet fires, transformer fires, battery fires, data center fires, and residential fires, and discusses their characteristics and prevention and control technologies. In terms of detection technology, this paper summarizes the progress of technologies such as arc detection, video detection, and infrared thermography, and emphasizes the importance of selecting appropriate technologies based on specific environments. Regarding extinguishing technologies, this paper discusses various means of extinguishing, such as foam extinguishing agents, dry powder extinguishing agents, and fine water mist technology, and highlights their advantages, disadvantages, and applicable scenarios. Finally, this paper identifies the limitations in the current field of electrical fire prevention and control, emphasizes the importance of interdisciplinary research and the development of advanced risk assessment models, and outlines future research directions. Full article
(This article belongs to the Special Issue Building Fires, Evacuations and Rescue)
Show Figures

Figure 1

25 pages, 32483 KB  
Article
A Digital Twin Approach to Forest Fire Re-Ignition: Mechanisms, Prediction, and Suppression Visualization
by Wenping Fan, Wenjiao Zai and Wenyan Li
Forests 2025, 16(3), 519; https://doi.org/10.3390/f16030519 - 15 Mar 2025
Viewed by 1219
Abstract
Statistics indicate that over 90% of large forest fires experience re-ignition after initial extinction. However, research on the mechanisms triggering forest fire rekindling remains largely empirical, lacking an intuitive 3D mathematical model to elucidate the process. To fill this gap, this study proposes [...] Read more.
Statistics indicate that over 90% of large forest fires experience re-ignition after initial extinction. However, research on the mechanisms triggering forest fire rekindling remains largely empirical, lacking an intuitive 3D mathematical model to elucidate the process. To fill this gap, this study proposes a digital twin-based forest fire re-ignition trigger model to investigate the transition from smoldering to flaming combustion. Leveraging digital twin technology, a virtual forest environment was constructed to assess the influence of ambient wind conditions and terrain slope on the smoldering-to-flaming (StF) transition based on historical rekindling data. Subsequently, logistic regression was employed in a reverse iterative process to update the model parameters, thereby establishing a matching mechanism between the model predictions and the observed rekindling states. This approach enables the adaptive adjustment of the weights assigned to key variables (e.g., wind speed and slope) and facilitates the prediction of forest fire rekindling probability within the virtual environment. Additionally, digital twin simulations are employed to assess the 3D firefighting effectiveness of unmanned aerial vehicles (UAVs) deploying hydrogel and solidified foam extinguishing agents. This visualization of the firefighting process provides valuable insights, aiding in the development of more effective strategies for preventing and controlling fire re-ignition. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

17 pages, 2765 KB  
Article
Use of Hybrid Flame Retardants in Chemically Foamed rPET Blends
by Veronika Anna Szabó, Sándor Kálmán Jakab, András Kovács, Tamara Zsuzsanna Böcz and Gábor Dogossy
Crystals 2025, 15(1), 80; https://doi.org/10.3390/cryst15010080 - 15 Jan 2025
Cited by 1 | Viewed by 1102
Abstract
The foamed structure of recycled polyethylene-terephthalate (rPET) is a promising solution for industrial applications; however, the remedy for its inherent melt-dripping property is still a challenging topic. In our research, we were able to improve the flame retardancy of the endothermic–exothermic hybrid rPET [...] Read more.
The foamed structure of recycled polyethylene-terephthalate (rPET) is a promising solution for industrial applications; however, the remedy for its inherent melt-dripping property is still a challenging topic. In our research, we were able to improve the flame retardancy of the endothermic–exothermic hybrid rPET foam by adding a different mixture of flame retardants to the formula. Three different kinds of halogen-free flame retardant agents were used: ammonium polyphosphate-based Exolit AP 422 (AP), organic aluminum phosphate in the form of Exolit OP 1240 (OP), and Budit 342 containing melamine polyphosphate (MPP). The hybrid flame retardant mixture, by combining the swelling and charring mechanism, increased the flame retardancy of the samples. The sample made with 15 phr OP and 5 phr MPP displayed outstanding performance, where five samples were capable of self-extinguishing in 5 s, while only slightly decreasing the tensile and flexural strength properties and simultaneously increasing the Young and flexural modulus compared to the reference sample. The addition of MPP reduced the porosity in many cases, while preventing cell coalescence. Our results prove that the hybrid flame retardant agent frameworks efficiently increase the flame retardancy of rPET foams, facilitating their application in industrial sectors such as the aerospace, packaging, renewable energy, and automotive industries to realize sustainability goals. The utilization of halogen-free flame retardants is beneficial for better air quality, reducing toxic gas and smoke emissions. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

15 pages, 9155 KB  
Article
The Mathematical Model Based on the Parameters of Simulation Results Predicts the Fire Extinguishing Resource Demand of Naval Fires
by Jingjing Guo, Ying Zhang, Bo Zhao and Shusheng Wu
Appl. Sci. 2024, 14(21), 10038; https://doi.org/10.3390/app142110038 - 4 Nov 2024
Viewed by 1412
Abstract
In recent years, due to the diversity of fire scenes in ports and ships, the problem of fire command is complicated. In the case of power failure, the original command platform and fire extinguishing system will not be able to be used normally, [...] Read more.
In recent years, due to the diversity of fire scenes in ports and ships, the problem of fire command is complicated. In the case of power failure, the original command platform and fire extinguishing system will not be able to be used normally, or the fire extinguishing resources carried by the ship when it is on fire cannot be used. In the traditional firefighting ability research, there is no clear measure of firefighting ability, resulting in inaccurate calculation results. By corresponding to the quantity and composition of resources for the study of fire extinguishing capability, the combination of the fire dynamics simulation software PyroSim2020 and a calculation model that converts its resources into the total amount and flow of fire extinguishing agent can be provided. Based on the analytic hierarchy process (AHP), a firefighting demand grade calculation and judgment model was established, which included five factors: fire scale, combustion material characteristics, foam extinguishing agent performance, firefighting object characteristics, and external factors. It concluded that the demand assignment values of each index element were 2, 5, 6, 9, and 10, and further proposed the grade judgment criteria for the calculation results of comprehensive fire demand. Through the quantitative simulation of firefighting demand based on the fire scenario and calculation model test of the consumption prediction of cooperative firefighting equipment, it can also provide a strategic reference for related cooperative fire rescue. Full article
Show Figures

Figure 1

15 pages, 6420 KB  
Article
The Influence of the Heat Transfer Mode on the Stability of Foam Extinguishing Agents
by Xia Zhou, Zhihao An, Ziheng Liu, Hongjie Ha, Yixuan Li and Renming Pan
Fire 2024, 7(4), 137; https://doi.org/10.3390/fire7040137 - 12 Apr 2024
Cited by 5 | Viewed by 1911
Abstract
The mass loss mechanisms of an aqueous film-forming foam (AF foam), an AR/AFFF water-soluble film-forming foam extinguishing agent (AR foam), and a Class A foam extinguishing agent (A foam) at different levels of thermal radiation, thermal convection, and heat conduction intensity were studied. [...] Read more.
The mass loss mechanisms of an aqueous film-forming foam (AF foam), an AR/AFFF water-soluble film-forming foam extinguishing agent (AR foam), and a Class A foam extinguishing agent (A foam) at different levels of thermal radiation, thermal convection, and heat conduction intensity were studied. At a relatively low thermal radiation intensity, the liquid separation rate of the AF, AR, and A foams is related to the properties of the foam itself, such as viscosity and surface/interface tension, which are relatively independent of the external radiation heat flux of the foam. At low radiation intensity (15 kW/m2 and 25 kW/m2), the liquid separation rate of the AF and A foams is relatively stable. When the heat flux intensity is 35 kW/m2, the liquid separation rate of the AF and A foams increases notably, which may be mainly due to the rapid decrease in foam viscosity. And the mass loss behavior is dominated by liquid separation in the AF, AR, and A foams under the influence of thermal radiation and thermal convection. Under the same experimental conditions, the liquid separation rate of AF is the fastest. There is no significant difference in the evaporation rates of the three kinds of foam in the same heat conduction condition. In addition, the AR and A foams usually have a 25% longer liquid separation time (t) under thermal radiation and thermal convection, and the thermal stability is better than AF foam. The temperature reached by the AF foam layer under thermal convection was lower than that of the AR and A foams, and the time for the foam layer to reach the highest temperature under heat conduction was longer than that of the AR and A foams. Full article
(This article belongs to the Special Issue Fire Extinguishing Agent and Application)
Show Figures

Figure 1

17 pages, 4200 KB  
Article
Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFHXA and the Anionic Surfactant SDS at the Air/Water Interface
by Jinqing Jiao, Tao Li, Guangwen Zhang, Jing Xiong, Xuqing Lang, Xiaolong Quan, Yiwei Cheng and Yuechang Wei
Molecules 2024, 29(7), 1606; https://doi.org/10.3390/molecules29071606 - 3 Apr 2024
Cited by 15 | Viewed by 2648
Abstract
The research and development of alternatives to long-chain fluorocarbon surfactants are desperately needed because they are extremely toxic, difficult to break down, seriously harm the environment, and limit the use of conventional aqueous film-forming foam fire extinguishing agents. In this study, mixed surfactant [...] Read more.
The research and development of alternatives to long-chain fluorocarbon surfactants are desperately needed because they are extremely toxic, difficult to break down, seriously harm the environment, and limit the use of conventional aqueous film-forming foam fire extinguishing agents. In this study, mixed surfactant systems containing the short-chain fluorocarbon surfactant perfluorohexanoic acid (PFHXA) and the hydrocarbon surfactant sodium dodecyl sulfate (SDS) were investigated by molecular dynamics simulation to investigate the microscopic properties at the air/water interface at different molar ratios. Some representative parameters, such as surface tension, degree of order, density distribution, radial distribution function, number of hydrogen bonds, and solvent-accessible surface area, were calculated. Molecular dynamics simulations show that compared with a single type of surfactant, mixtures of surfactants provide superior performance in improving the interfacial properties of the gas–liquid interface. A dense monolayer film is formed by the strong synergistic impact of the two surfactants. Compared to the pure SDS system, the addition of PFHXA caused SDS to be more vertically oriented at the air/water interface with a reduced tilt angle, and a more ordered structure of the mixed surfactants was observed. Hydrogen bonding between SDS headgroups and water molecules is enhanced with the increasing PFHXA. The surface activity is arranged in the following order: PFHXA/SDS = 1:1 > PFHXA/SDS = 3:1 > PFHXA/SDS = 1:3. These results indicate that a degree of synergistic relationship exists between PFHXA and SDS at the air/water interface. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry)
Show Figures

Figure 1

20 pages, 4372 KB  
Review
Research Progress of Gel Foam Extinguishing Agent in Coal Mines
by Yan Zhang, Zhaojun Tian, Qing Ye and Yi Lu
Fire 2023, 6(12), 470; https://doi.org/10.3390/fire6120470 - 15 Dec 2023
Cited by 13 | Viewed by 3454
Abstract
Gel foam extinguishing agent (gel foam) has promising applications in the prevention and management of mine coal spontaneous combustion. Based on the research on coal spontaneous combustion and prevention technology, this article discusses recent studies on using gel foam to extinguish coal mines. [...] Read more.
Gel foam extinguishing agent (gel foam) has promising applications in the prevention and management of mine coal spontaneous combustion. Based on the research on coal spontaneous combustion and prevention technology, this article discusses recent studies on using gel foam to extinguish coal mines. The structural properties and principles of gel foam are described briefly. The research developments of three significant varieties of gel foam are then presented in detail, including silicate gel foam, acrylamide copolymer gel foam, and natural polymer gel foam. Meanwhile, the research status of gel foam anti-fire technology’s rheological properties, stability property, plugging property, and inhibitory properties are introduced. Furthermore, in conjunction with the research state, the prospects of the research direction of gel foam are proposed, which serve as a reference for future research on gel foam. Full article
(This article belongs to the Special Issue Assessment and Prevention of Mine Fires and Gas Disasters)
Show Figures

Figure 1

15 pages, 4525 KB  
Article
Synthesis and Characterization of Flame Retarded Rigid Polyurethane Foams with Different Types of Blowing Agents
by Marcin Zemła, Sławomir Michałowski and Aleksander Prociak
Materials 2023, 16(22), 7217; https://doi.org/10.3390/ma16227217 - 17 Nov 2023
Cited by 7 | Viewed by 1888
Abstract
In this study, rigid polyurethane foams modified with non-halogenated flame retardant were obtained. The foams were synthesized using two systems containing different blowing agents. In the first one, cyclopentane and water were used as a mixture of blowing agents, and in the second [...] Read more.
In this study, rigid polyurethane foams modified with non-halogenated flame retardant were obtained. The foams were synthesized using two systems containing different blowing agents. In the first one, cyclopentane and water were used as a mixture of blowing agents, and in the second one, only water was used as a chemical blowing agent. The systems were modified with the additive phosphorus flame retardant Roflam F5. The obtained modified foams were tested for their flammability and basic properties, such as apparent density, closed-cell contents and analyses of the cell structures, thermal conductivity, mechanical properties, and water absorption. Increasing the content of Roflam F5 caused a decrease in temperature during the combustion of the material and extended the burning time. The addition of 1.0 wt.% phosphorus derived from Roflam F5 caused the modified rigid polyurethane foam to become a self-extinguishing material. The increase in the content of Roflam F5 caused a decrease in the total heat release and the maximum heat release rate during the pyrolysis combustion flow calorimetry. The foams with the highest content of flame retardant and foamed with a chemical-physical and chemical blowing agent had a lower total heat release by 19% and 11%, respectively, compared to reference foams. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

14 pages, 5575 KB  
Article
Wettability of HPMC/PEG/CS Thermosensitive Porous Hydrogels
by Li Ma, Tong Shi, Zhaoyun Zhang, Xixi Liu and Hui Wang
Gels 2023, 9(8), 667; https://doi.org/10.3390/gels9080667 - 18 Aug 2023
Cited by 8 | Viewed by 3029
Abstract
Thermosensitive hydrogels have been receiving attention in the development of fire extinguishing agents due to their stimuli responsivity. Conventional hydrogels are limited by their slow response rate, and their wettability has not been studied systematically. In the present study, a concentrate of a [...] Read more.
Thermosensitive hydrogels have been receiving attention in the development of fire extinguishing agents due to their stimuli responsivity. Conventional hydrogels are limited by their slow response rate, and their wettability has not been studied systematically. In the present study, a concentrate of a thermosensitive porous system has been successfully synthesized by adding Na2CO3/CH3COOH as a foaming agent into the mixture of hydroxypropyl methylcellulose (HPMC)/polyethylene glycol (PEG)/chitosan (CS). The systems with different concentrations were obtained by diluting the concentrate with water. Thermosensitivity, surface tension and contact angle were characterized. In addition, spreadability, wettability and adhesivity were investigated systematically. Results showed that the systems with a concentration greater than 15 wt% exhibited outstanding performance of thermosensitivity and coagulability. A total of 20 wt% of the system has the best spreadability and wettability on the wood surface, most likely due to favorable contributions brought by both adequate viscosity and hydrophilicity. The adhesive force and surface-free energy of the pre-gel droplet that reached deposition on the wood surface decreased by 46.78% and 20.71%, respectively. The gel has a great capacity of water retention over a long period of time, which makes this porous gel the best system when it comes to its wettability and adhesiveness towards the chosen wood surface. The equilibrium surface tension decreased by 45.50% compared with water. HPMC/PEG/CS thermosensitive porous hydrogel with excellent wettability presented wide-ranging possibilities for the further development of fire suppression agents of fast phase-transition thermosensitive hydrogel. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

11 pages, 2150 KB  
Article
Analysis on the Substitution of Perfluoro-Octane Sulphonates in Foam-Based Extinguishing Agents in China
by Fei Yin, Zhiyuan Ren, Javid Hussain, Zhenrong Tian, Tianqi Jia and Wenbin Liu
Sustainability 2023, 15(14), 11437; https://doi.org/10.3390/su151411437 - 24 Jul 2023
Cited by 4 | Viewed by 1871
Abstract
In this comprehensive study, we examined an extensive array of 1396 production certifications, which encompassed 136 foam-based extinguishing agent manufacturers in China. Our investigation focused on the production, application, and composition of various foam-based extinguishing agents utilized in recent years. Notably, a significant [...] Read more.
In this comprehensive study, we examined an extensive array of 1396 production certifications, which encompassed 136 foam-based extinguishing agent manufacturers in China. Our investigation focused on the production, application, and composition of various foam-based extinguishing agents utilized in recent years. Notably, a significant proportion of the domestic market, i.e., 64.1% of the total, consisted of fluorocarbon surfactants devoid of perfluorooctane sulfonates (PFOS). These manufacturers predominantly operated in the economically thriving eastern coastal region of China. Our research delved into the correlation between diverse parameters of foam-based extinguishing agents and their performance indices. It was observed that foam-based extinguishing agents with resistance to seawater exhibited superior performance to conventional agents in cold environments. Additionally, we synthesized the findings of PFOS-free products, which serve as promising alternatives to foam-based extinguishing agents in China. This study furnishes statistical evidence and establishes a theoretical foundation to facilitate future control measures for PFOS foam-based extinguishing agents, while promoting nationwide research and development of alternative solutions. Full article
Show Figures

Figure 1

16 pages, 4079 KB  
Article
Modernization of Fire Vehicles with New Technologies and Chemicals
by Cagri Un and Kadir Aydın
Vehicles 2023, 5(2), 682-697; https://doi.org/10.3390/vehicles5020037 - 4 Jun 2023
Cited by 3 | Viewed by 4951
Abstract
Fire is a stable exothermic chain reaction of flammable materials brought together with oxygen or other oxidizing substances under certain conditions, occurring uncontrollably. Fire vehicles interfere with many types of fire, such as wildfires, factory fires, building fires, etc. During this intervention, fire [...] Read more.
Fire is a stable exothermic chain reaction of flammable materials brought together with oxygen or other oxidizing substances under certain conditions, occurring uncontrollably. Fire vehicles interfere with many types of fire, such as wildfires, factory fires, building fires, etc. During this intervention, fire vehicles generally use water or foam. In this study, new effective fire suppression applications are investigated. Thermal camera applications in fire trucks and also new extinguishing agents—boron-based chemicals—were tested in forest fire simulations. In these experiments, it was observed that the thermal camera detected the fire as soon as it occurred. It seemed appropriate to use thermal cameras for all types of fire vehicles (foam trucks, water tankers, rescue trucks, etc.). It was seen that the thermal camera application could detect and monitor the fire during the fire-extinguishing work of the firefighters. The boron-based fire suppressant had a better extinguishing and cooling effect than water in the experiments. Compared to the water used as a traditional method, the liquid boron-based extinguisher provided 22% faster—while the solid boron-based extinguisher provided 42% faster—suppression and cooling. With three separate experiments, it is predicted that thermal camera applications and the use of boron-based extinguishers in fire vehicles can lead to an effective and positive transformation in the coming years. Full article
(This article belongs to the Special Issue Vehicle Design Processes)
Show Figures

Figure 1

14 pages, 3952 KB  
Article
Synthesis of Carboxyl Modified Polyether Polysiloxane Surfactant for the Biodegradable Foam Fire Extinguishing Agents
by Jinqing Jiao, Lei Qi, Jingfeng Wu, Xuqing Lang, Yuechang Wei, Guangwen Zhang, Pengyu Cui, Zuzheng Shang, Xiaodong Mu, Shanjun Mu, Yuzhuo Lv and Weichao Pan
Molecules 2023, 28(8), 3546; https://doi.org/10.3390/molecules28083546 - 18 Apr 2023
Cited by 15 | Viewed by 3810
Abstract
It is necessary to develop novel and efficient alternatives to fluorocarbon surfactant and prepare fluorine-free environmentally-friendly fire extinguishing agent. The carboxyl modified polyether polysiloxane surfactant (CMPS) with high surface activity was synthesized via the esterification reaction using hydroxyl-containing polyether modified polysiloxane (HPMS) and [...] Read more.
It is necessary to develop novel and efficient alternatives to fluorocarbon surfactant and prepare fluorine-free environmentally-friendly fire extinguishing agent. The carboxyl modified polyether polysiloxane surfactant (CMPS) with high surface activity was synthesized via the esterification reaction using hydroxyl-containing polyether modified polysiloxane (HPMS) and maleic anhydride (MA) as raw materials. The process conditions of the esterification reaction were optimized by orthogonal tests, and the optimum process parameters were determined as follows: reaction temperature of 85 °C, reaction time of 4.5 h, isopropyl alcohol content of 20% and the molar ratio of HPMS/MA of 1/1. The chemical structure, surface activity, aggregation behavior, foam properties, wetting properties and electron distribution were systematically investigated. It was found that the carboxyl group was successfully grafted into silicone molecule, and the conjugated system was formed, which changed the interaction force between the molecules and would affect the surface activity of the aqueous solution. The CMPS exhibited excellent surface activity and could effectively reduce the water’s surface tension to 18.46 mN/m. The CMPS formed spherical aggregates in aqueous solution, and the contact angle value of CMPS is 15.56°, illustrating that CMPS had excellent hydrophilicity and wetting performance. The CMPS can enhance the foam property and has good stability. The electron distribution results indicate that the introduced carboxyl groups are more inclined towards the negative charge band, which would be conducive to weak the interaction between molecules and improve the surface activity of the solution. Consequently, new foam fire extinguishing agents were prepared by using CMPS as a key component and they exhibited excellent fire-fighting performance. The prepared CMPS would be the optimal alternative to fluorocarbon surfactant and could be applied in foam extinguishing agents. Full article
(This article belongs to the Special Issue Novel Surfactants: Design and Applications)
Show Figures

Figure 1

19 pages, 11142 KB  
Article
Composition of the Gas-Air Mixture in the Containment and Suppression of Forest Fires with Promising Extinguishing Agents
by Svetlana Kropotova, Vadim Dorokhov, Aleksandr Sviridenko and Pavel Strizhak
Forests 2023, 14(4), 786; https://doi.org/10.3390/f14040786 - 11 Apr 2023
Cited by 3 | Viewed by 2265
Abstract
This paper presents experimental research findings on the gas composition of pyrolysis and combustion products of typical forest fuels (leaves, needles, twigs, a mixture of these, and timber). These experiments were performed for the combustion and application of a fire extinguishing agent to [...] Read more.
This paper presents experimental research findings on the gas composition of pyrolysis and combustion products of typical forest fuels (leaves, needles, twigs, a mixture of these, and timber). These experiments were performed for the combustion and application of a fire extinguishing agent to a pyrolyzing material. Water, a bischofite solution, a bentonite slurry, and a foaming agent solution were utilized. Two gas analysis systems were used, as follows: an industrial one based on CO2, CO, H2, CH4, and O2 sensors and a scientific one (a gas analyzer with H2, CH4, H2S, SO2, CO, and CO2 sensors). Fires were extinguished by using two common techniques, as follows: continuous liquid supply and cycling spraying. The comparative efficiency of applying a group of fire extinguishing agents to forest fires was estimated, taking account of liquid consumption, suppression time, and environmental pollution. A method was proposed for calculating the relative efficiency factors of fire extinguishing agents when containing and suppressing forest fires, allowing for the consumed time, resources, and anthropogenic emissions. Full article
Show Figures

Figure 1

15 pages, 3388 KB  
Article
Evaporation of Promising Fire Extinguishing Agent Droplets
by Alena Zhdanova, Anastasia Islamova, Roman Kurapov and Roman Volkov
Forests 2023, 14(2), 301; https://doi.org/10.3390/f14020301 - 3 Feb 2023
Cited by 3 | Viewed by 2485
Abstract
Woodland fires are a major issue worldwide. The aviation method of extinguishing forest fires is one of the main ones. However, the use of the latter is carried out according to the results of experiments, bench or flight tests in the absence of [...] Read more.
Woodland fires are a major issue worldwide. The aviation method of extinguishing forest fires is one of the main ones. However, the use of the latter is carried out according to the results of experiments, bench or flight tests in the absence of models that adequately describe the mechanisms for suppressing the combustion of forest combustible materials with specific fire extinguishing compositions (solutions, emulsions or suspensions). Therefore, the task of studying the evaporation and interaction of single drops with the surfaces of combustible materials is relevant and practically significant in the field of fire hazards. The paper presents the experimental research findings on the evaporation of specialized composition droplets for extinguishing fires under different heat supply schemes. The compositions under study included a group of widely used fire extinguishing agents: water; flame retardant FR-Les (5% solution); FR-Les (20% solution); bentonite slurry (1%); bentonite slurry (5%); bischofite solution (5%); bischofite solution (10%); fire extinguishing agent OS-5 (5% solution); fire extinguishing agent OS-5 (10% solution); fire extinguishing agent OS-5 (15% solution); foaming agent emulsion (1%); foaming agent emulsion (5%); fire retardant (5% solution). Specialized composition droplets were heated using conductive, convective and radiant heating. Empirical coefficients were obtained. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

Back to TopTop