Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFHXA and the Anionic Surfactant SDS at the Air/Water Interface
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aggregation Behavior of Pure Surfactant at the Air/Water Interface
2.2. Aggregation Behavior of the Mixed System of PFHXA/SDS at the Air/Water Interface
2.3. Surface Tension of the Mixed System of PFHXA/SDS
2.4. Molecular Orientation of Hydrocarbon Chains of Ionic Surfactants
2.5. Radial Distribution Function (RDF)
2.5.1. Interaction of Surfactant Hydrophilic Groups with Water
2.5.2. Interactions between Surfactants and Counterions
2.5.3. Interactions between PFHXA and the Anionic Surfactants
2.6. Solvent Accessible Surface Area
2.7. Number of Hydrogen Bonds
3. Simulation Method and Details
3.1. Modelling
3.2. Simulation Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheng, Y.; Li, Y.; Yan, C.; Peng, Y.; Ma, L.; Wang, Q. Influence of nanoparticles on the foam thermal stability of mixtures of short-chain fluorocarbon and hydrocarbon surfactants. Powder Technol. 2022, 403, 117420. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, N.; Miao, X.; Li, F.; Wang, J.; Zong, R.; Lu, S. Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams. Process Saf. Environ. Prot. 2020, 133, 201–205. [Google Scholar] [CrossRef]
- Hill, C.; Czajka, A.; Hazell, G.; Grillo, I.; Rogers, S.E.; Skoda, M.W.A.; Joslin, N.; Payne, J.; Eastoe, J. Surface and bulk properties of surfactants used in fire-fighting. J. Colloid Interface Sci. 2018, 530, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.V.; Kuprin, D.S.; Abduragimov, I.M.; Kuprin, G.N.; Serebriyakov, E.; Vinogradov, V.V. Vinogradov. Silica foams for fire prevention and firefighting. ACS Appl. Mater. Interfaces 2016, 8, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yin, Q.; Shen, J.; Bai, Y.; Ma, X.; Du, Z.; Wang, W. Surface activities and aggregation behaviors of cationic—Anionic fluorocarbon—Hydrocarbon surfactants in dilute solutions. J. Mol. Liq. 2017, 234, 142–148. [Google Scholar] [CrossRef]
- Valsecchi, S.; Conti, D.; Crebelli, R.; Polesello, S.; Rusconi, M.; Mazzoni, M.; Preziosi, E.; Carere, M.; Lucentini, L.; Ferretti, E.; et al. Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. J. Hazard. Mater. 2017, 323 Pt A, 84–98. [Google Scholar] [CrossRef]
- Wang, P.; Khoso, S.A.; Cao, Z. Synergistic adsorption and molecular arrangement of mixed surfactants at the air/water interface. Ind. Eng. Chem. Res. 2023, 62, 8339–8349. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Z.; Yin, Y.; Bai, J.; Yu, B. Review of molecular simulation method for gas adsorption/desorption and diffusion in shale matrix. J. Therm. Sci. 2019, 28, 1–16. [Google Scholar] [CrossRef]
- Ho, T.A.; Criscenti, L.J. Molecular-level understanding of gibbsite particle aggregation in water. J. Colloid Interface Sci. 2021, 600, 310–317. [Google Scholar] [CrossRef]
- Zhao, T.; Xu, G.; Yuan, S.; Chen, Y.; Yan, H. Molecular dynamics study of alkyl benzene sulfonate at air/water interface: Effect of inorganic salts. J. Phys. Chem. B. 2010, 114, 5025–5033. [Google Scholar] [CrossRef]
- Jia, H.; Song, J.; Sun, Y.; Xu, M.; Wen, X.; Wei, Z.; Liu, D. Molecular insight into the effect of the number of introduced ethoxy groups on the calcium resistance of anionic-nonionicsurfactants at the oil/water interface. Colloids Surf. A Physicochem. Eng. Asp. 2023, 667, 131382. [Google Scholar] [CrossRef]
- Ma, Y.; Velioğlu, S.; Trinh, T.A.; Wang, R.; Chew, J. Investigation of Surfactant–Membrane Interaction Using Molecular Dynamics Simulation with Umbrella Sampling. ACS EST Eng. 2021, 1, 1470–1480. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Bantan, R.A.; Golmohammadzadeh, A.; Toghraie, D. The thermal properties of water-copper nanofluid in the presence of surfactant molecules using molecular dynamics simulation. J. Mol. Liq. 2021, 325, 115–149. [Google Scholar] [CrossRef]
- Lin, Y.; Tang, W.; Xiao, P.; Ma, J.; Han, X.; Xu, X.; Luo, J.; Zhao, S. Synergistic Effect of Salt and Anionic Surfactants on Interfacial Tension Reduction: Insights from Molecular Dynamics Simulations. Langmuir 2023, 39, 12392–12401. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Lin, S.; Du, J.; Sui, H. Study of the Adsorption Behavior of Surfactants on Carbonate Surface by Experiment and Molecular Dynamics Simulation. Front. Chem. 2022, 10, 847–986. [Google Scholar] [CrossRef] [PubMed]
- Piggot, T.J.; Pineiro, A.; Khalid, S. Molecular dynamics simulations of phosphatidylcholine membranes: A comparative force field study. J. Chem. Theory Comput. 2012, 8, 4593–4609. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Kar, S.; Kumar, S. The Synergistic Effect of a Mixed Surfactant (Tween 80 and SDBS) on Wettability Alteration of the Oil Wet Quartz Surface. J. Dispers. Sci. Technol. 2016, 37, 1268–1276. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Liu, R.; Liu, J.; Sun, W. Synergistic adsorption of DDA/alcohol mixtures at the air/water interface: A molecular dynamics simulation. J. Mol. Liq. 2017, 243, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Ren, T.; Wu, P.; Shen, J.W.; Zhang, W.; Wang, X. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level. Langmuir 2014, 30, 13815–13822. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, R.; Hu, Y.; Sun, W. Adsorption of mixed DDA/NaOL surfactants at the air/water interface by molecular dynamics simulations. Chem. Eng. Sci. 2016, 155, 167–174. [Google Scholar] [CrossRef]
- Bell, E.W.; Zhang, Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform. 2019, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. Gromacs: Fast, flexible and free. J. Comp. Chem. 2005, 26, 1701–1719. [Google Scholar] [CrossRef] [PubMed]
- Bjelkmar, P.; Larsson, P.; Cuendet, M.A.; Hess, B.; Lindahl, E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 2010, 6, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput. 2017, 13, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, S.; Molla, M.R.; Saha, M.; Shahriar, I.; Hoque, M.A.; Halim, M.A.; Azum, N. Conductometric and molecular dynamics studies of the aggregation behavior of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) in aqueous and electrolytes solution. J. Mol. Liq. 2019, 283, 253–275. [Google Scholar] [CrossRef]
- Sun, H.Q.; Xiao, H.Y.; Liu, X.H. Structural properties of hydroxyl-substituted alkylbenzene sulfonates at the water/vapor and water/decane interfaces. Sci. China Chem. 2011, 54, 1078–1085. [Google Scholar] [CrossRef]
- Dominguez, H.; Berkowitz, M.L. Computer simulations of sodium dodecyl sulfate at liquid/liquid and liquid/vapor interfaces. J. Phys. Chem. B 2000, 104, 5302–5308. [Google Scholar] [CrossRef]
- Wang, L.; Sun, N.; Wang, Z.; Han, H.; Yang, Y.; Liu, R.; Hu, Y.; Tang, H.; Sun, W. Self-assembly of mixed dodecylamine-dodecanol molecules at the air/water interface based on large-scale molecular dynamics. J. Mol. Liq. 2019, 276, 867–874. [Google Scholar] [CrossRef]
- Wang, C.; Ou, L. Molecular dynamics investigation of the liquid-gas interface behavior: Simulations of the sodium oleate/sodium abietate/water system. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128086. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Chen, H.; Wang, P.; Xie, Z.; Yao, Y.; Yan, Y.; Zhang, J. Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. J. Mol. Struct. 2013, 1052, 50–56. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Fox, D.J. Gaussian 09; Verion Revision E. 01; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, E.; Hess, B.; Van Der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 2001, 7, 306–317. [Google Scholar] [CrossRef]
- Abraham, M.J.; van der Spoel, D.; Lindahl, E.; Hess, B. The GROMACS Development Team, GROMACS User Manual Version. 2019. Available online: http://www.gromacs.org (accessed on 31 December 2018).
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Kohnke, B.; Kutzner, C.; Grubmuller, H. A GPU-accelerated fast multipole method for GROMACS: Performance and accuracy. J. Chem. Theory Comput. 2020, 16, 6938–6949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cao, L.; Jiang, Y.; Huang, Z.; Liu, G.; Wei, Y.; Xia, Q. Molecular Dynamics Simulations on the Adsorbed Monolayers of N-Dodecyl Betaine at the Air–Water Interface. Molecules 2023, 28, 5580. [Google Scholar] [CrossRef] [PubMed]
- Mackerell, A.D. Empirical force fields for biological macromolecules: Overview and issues. J. Comput. Chem. 2004, 25, 1584–1604. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. Sobtop, Version: 1.0(dev3.1). Available online: https://sobereva.com/soft/Sobtop (accessed on 9 September 2022).
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Yan, G.; Chen, X.; Li, J. Adsorption Characteristics of Ionic Surfactants on Anthracite Surface: A Combined Experimental and Modeling Study. Molecules 2022, 27, 5314. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Bekker, H.; Berendsen, H.; Fraaije, J. Lincs: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Surfactant | Surface Tension (mN/m) |
---|---|
n(PFHXA)/n(SDS) = 0/4 | 37.4 |
n(PFHXA)/n(SDS) = 4/0 | 32.9 |
n(PFHXA)/n(SDS) = 1/3 | 28.8 |
n(PFHXA)/n(SDS) = 1/1 | 21.4 |
n(PFHXA)/n(SDS) = 3/1 | 23.2 |
Molar Ration of Surfactants in Each Simulate System | Number of Molecules | ||
---|---|---|---|
SDS | PFHXA | H2O | |
n(PFHXA)/n(SDS) = 4/0 | 0 | 25 | 2436 |
n(PFHXA)/n(SDS) = 3/1 | 6 | 19 | 2407 |
n(PFHXA)/n(SDS) = 1/1 | 13 | 12 | 2465 |
n(PFHXA)/n(SDS) = 1/3 | 19 | 6 | 2413 |
n(PFHXA)/n(SDS) = 0/4 | 25 | 0 | 2487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, J.; Li, T.; Zhang, G.; Xiong, J.; Lang, X.; Quan, X.; Cheng, Y.; Wei, Y. Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFHXA and the Anionic Surfactant SDS at the Air/Water Interface. Molecules 2024, 29, 1606. https://doi.org/10.3390/molecules29071606
Jiao J, Li T, Zhang G, Xiong J, Lang X, Quan X, Cheng Y, Wei Y. Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFHXA and the Anionic Surfactant SDS at the Air/Water Interface. Molecules. 2024; 29(7):1606. https://doi.org/10.3390/molecules29071606
Chicago/Turabian StyleJiao, Jinqing, Tao Li, Guangwen Zhang, Jing Xiong, Xuqing Lang, Xiaolong Quan, Yiwei Cheng, and Yuechang Wei. 2024. "Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFHXA and the Anionic Surfactant SDS at the Air/Water Interface" Molecules 29, no. 7: 1606. https://doi.org/10.3390/molecules29071606
APA StyleJiao, J., Li, T., Zhang, G., Xiong, J., Lang, X., Quan, X., Cheng, Y., & Wei, Y. (2024). Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFHXA and the Anionic Surfactant SDS at the Air/Water Interface. Molecules, 29(7), 1606. https://doi.org/10.3390/molecules29071606