Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = fluorinated monolayers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2500 KiB  
Article
Superhydrophobicity Effects on Spheroid Formation, Structure, and Viability on Co-Culture Conditions
by María del Carmen Morán, Francesca Cirisano and Michele Ferrari
Pharmaceuticals 2025, 18(7), 953; https://doi.org/10.3390/ph18070953 - 24 Jun 2025
Viewed by 357
Abstract
Background/Objectives: Three-dimensional (3D) cell culture models more accurately simulate the in vivo tissue environments as compared to conventional two-dimensional (2D) monolayer cultures. Among these, spheroid cultures are particularly valuable for pharmaceutical research, as they allow for the study of tumor growth, drug responses, [...] Read more.
Background/Objectives: Three-dimensional (3D) cell culture models more accurately simulate the in vivo tissue environments as compared to conventional two-dimensional (2D) monolayer cultures. Among these, spheroid cultures are particularly valuable for pharmaceutical research, as they allow for the study of tumor growth, drug responses, and cell–cell interactions in a physiologically relevant manner. Superhydrophobic surfaces (SHSs) have shown a promise in enhancing spheroid formation by reducing cell–substrate adhesion and promoting cell–cell aggregation. This study aims to evaluate the effectiveness of two different SHS coatings (SHS1: fluorinated; SHS2: silicone-based) in generating co-culture spheroids composed of non-tumoral fibroblasts (3T3) and tumoral epidermoid carcinoma cells (A431), thereby mimicking aspects of the tumor microenvironment. Methods: Co-cultures of 3T3 and A431 cells were seeded at varying ratios onto SHS1 and SHS2 substrates to assess their ability to support 3D spheroid formation. Spheroids were characterized by measurements of circularity and size distribution, viability through live/dead staining, and surface topography using 3D profilometry. Results: Spheroid formation was significantly influenced by both the surface properties and the fibroblast-to-carcinoma cell ratio. The fluorinated SHS1 surface facilitated superior cell viability and promoted the formation of well-rounded, uniform spheroids. In contrast, the silicone-based SHS2 surface resulted in less defined spheroidal structures and lower overall viability. Profilometry confirmed more consistent and compact 3D architectures on SHS1. Conclusions: This study demonstrates that SHS1, a fluorinated superhydrophobic coating, is more effective than SHS2 in supporting the formation of viable and structurally coherent 3D co-culture spheroids. These findings underscore the potential of SHS1 as a low-cost, tunable platform for developing in vitro cancer models and advancing the study of tumor–stroma interactions. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

14 pages, 2991 KiB  
Article
Investigating Benzoic Acid Derivatives as Potential Atomic Layer Deposition Inhibitors Using Nanoscale Infrared Spectroscopy
by Saumya Satyarthy, Mark Cheng and Ayanjeet Ghosh
Nanomaterials 2025, 15(3), 164; https://doi.org/10.3390/nano15030164 - 22 Jan 2025
Viewed by 1577
Abstract
Area-selective atomic layer deposition (AS-ALD) is a technique utilized for the fabrication of patterned thin films in the semiconductor industry due to its capability to produce uniform and conformal structures with control over thickness at the atomic scale level. In AS-ALD, surfaces are [...] Read more.
Area-selective atomic layer deposition (AS-ALD) is a technique utilized for the fabrication of patterned thin films in the semiconductor industry due to its capability to produce uniform and conformal structures with control over thickness at the atomic scale level. In AS-ALD, surfaces are functionalized such that only specific locations exhibit ALD growth, thus leading to spatial selectivity. Self-assembled monolayers (SAMs) are commonly used as ALD inhibiting agents for AS-ALD. However, the choice of organic molecules as viable options for AS-ALD remains limited and the precise effects of ALD nucleation and exposure to ALD conditions on the structure of SAMs is yet to be fully understood. In this work, we investigate the potential of small molecule carboxylates as ALD inhibitors, namely benzoic acid and two of its derivatives, 4-trifluoromethyl benzoic acid (TBA), and 3,5-Bis (trifluoromethyl)benzoic acid (BTBA) and demonstrate that monolayers of all three molecules are viable options for applications in ALD blocking. We find that the fluorinated SAMs are better ALD inhibitors; however, this property arises not from the hydrophobicity but the coordination chemistry of the SAM. Using nanoscale infrared spectroscopy, we probe the buried monolayer interface to demonstrate that the distribution of carboxylate coordination states and their evolution is correlated with ALD growth, highlighting the importance of the interfacial chemistry in optimizing and assessing ALD inhibitors. Full article
(This article belongs to the Special Issue Functional Two-Dimensional Materials, Thin Films and Coatings)
Show Figures

Figure 1

17 pages, 4576 KiB  
Article
Mechanism of Enhanced Fluoride Adsorption Using Amino-Functionalized Aluminum-Based Metal–Organic Frameworks
by Yiting Luo, Zhao Liu, Mingqiang Ye, Yihui Zhou, Rongkui Su, Shunhong Huang, Yonghua Chen and Xiangrong Dai
Water 2024, 16(20), 2889; https://doi.org/10.3390/w16202889 - 11 Oct 2024
Cited by 7 | Viewed by 1501
Abstract
Due to the increasing fluoride concentrations in water bodies, significant environmental concerns have arisen. This study focuses on aluminum-based materials with a high affinity for fluorine, specifically enhancing metal–organic frameworks (MOFs) with amino groups to improve their adsorption and defluorination performance. We systematically [...] Read more.
Due to the increasing fluoride concentrations in water bodies, significant environmental concerns have arisen. This study focuses on aluminum-based materials with a high affinity for fluorine, specifically enhancing metal–organic frameworks (MOFs) with amino groups to improve their adsorption and defluorination performance. We systematically investigate the factors influencing and mechanisms governing the adsorption and defluorination behavior of amino-functionalized aluminum-based MOF materials in aqueous environments. An SEM, XRD, and FT-IR characterization confirms the successful preparation of NH2-MIL-101 (Al). In a 10 mg/L fluoride ion solution at pH 7.0, fluoride ion removal efficiency increases with the dosage of NH2-MIL-101 (Al), although the marginal improvement decreases beyond 0.015 g/L. Under identical conditions, the fluoride adsorption capacity of NH2-MIL-101 (Al) is seven times greater than that of NH2-MIL-101 (Fe). NH2-MIL-101 (Al) demonstrates effective fluoride ion adsorption across a broad pH range, with superior fluoride uptake in acidic conditions. At a fluoride ion concentration of 7 mg/L, with 0.015 g of NH2-MIL-101 (Al) at pH 3.0, adsorption equilibrium is achieved within 60 min, with a capacity of 31.2 mg/g. An analysis using adsorption isotherm models reveals that the fluoride ion adsorption on NH2-MIL-101 (Al) follows a monolayer adsorption model, while kinetic studies indicate that the predominant adsorption mechanism is chemical adsorption. This research provides a scientific basis for the advanced treatment of fluoride-containing wastewater, offering significant theoretical and practical contributions. Full article
Show Figures

Figure 1

15 pages, 2965 KiB  
Article
Degradation of Perfluorododecyl-Iodide Self-Assembled Monolayers upon Exposure to Ambient Light
by Lauren Colbeck Kirby, Jayant K. Lodha, Simon Astley, Dave Skelton, Silvia Armini, Andrew Evans and Anita Brady-Boyd
Nanomaterials 2024, 14(11), 982; https://doi.org/10.3390/nano14110982 - 5 Jun 2024
Cited by 1 | Viewed by 5262 | Correction
Abstract
Perfluorododecyl iodide (I-PFC12) is of interest for area-selective deposition (ASD) applications as it exhibits intriguing properties such as ultralow surface energy, the ability to modify silicon’s band gap, low surface friction, and suitability for micro-contact patterning. Traditional photolithography is struggling to reach the [...] Read more.
Perfluorododecyl iodide (I-PFC12) is of interest for area-selective deposition (ASD) applications as it exhibits intriguing properties such as ultralow surface energy, the ability to modify silicon’s band gap, low surface friction, and suitability for micro-contact patterning. Traditional photolithography is struggling to reach the required critical dimensions. This study investigates the potential of using I-PFC12 as a way to produce contrast between the growth area and non-growth areas of a surface subsequent to extreme ultraviolet (EUV) exposure. Once exposed to EUV, the I-PFC12 molecule should degrade with the help of the photocatalytic substrate, allowing for the subsequent selective deposition of the hard mask. The stability of a vapor-deposited I-PFC12 self-assembled monolayer (SAM) was examined when exposed to ambient light for extended periods of time by using X-ray photoelectron spectroscopy (XPS). Two substrates, SiO2 and TiO2, are investigated to ascertain the suitability of using TiO2 as a photocatalytic active substrate. Following one month of exposure to light, the atomic concentrations showed a more substantial fluorine loss of 10.2% on the TiO2 in comparison to a 6.2% loss on the SiO2 substrate. This more pronounced defluorination seen on the TiO2 is attributed to its photocatalytic nature. Interestingly, different routes to degradation were observed for each substrate. Reference samples preserved in dark conditions with no light exposure for up to three months show little degradation on the SiO2 substrate, while no change is observed on the TiO2 substrate. The results reveal that the I-PFC12 SAM is an ideal candidate for resistless EUV lithography. Full article
(This article belongs to the Special Issue Trends and Prospects in Nanoscale Thin Films and Coatings)
Show Figures

Figure 1

17 pages, 25355 KiB  
Article
Effect of Surface Wettability on Nanoparticle Deposition during Pool Boiling on Laser-Textured Copper Surfaces
by Jure Berce, Armin Hadžić, Matic Može, Klara Arhar, Henrik Gjerkeš, Matevž Zupančič and Iztok Golobič
Nanomaterials 2024, 14(3), 311; https://doi.org/10.3390/nano14030311 - 4 Feb 2024
Cited by 7 | Viewed by 2206
Abstract
Prior studies have evidenced the potential for enhancing boiling heat transfer through modifications of surface or fluid properties. The deployment of nanofluids in pool boiling systems is challenging due to the deposition of nanoparticles on structured surfaces, which may result in performance deterioration. [...] Read more.
Prior studies have evidenced the potential for enhancing boiling heat transfer through modifications of surface or fluid properties. The deployment of nanofluids in pool boiling systems is challenging due to the deposition of nanoparticles on structured surfaces, which may result in performance deterioration. This study addresses the use of TiO2–water nanofluids (mass concentrations of 0.001 wt.% and 0.1 wt.%) in pool boiling heat transfer and concurrent mitigation of nanoparticle deposition on superhydrophobic laser-textured copper surfaces. Samples, modified through nanosecond laser texturing, were subjected to boiling in an as-prepared superhydrophilic (SHPI) state and in a superhydrophobic state (SHPO) following hydrophobization with a self-assembled monolayer of fluorinated silane. The boiling performance assessment involved five consecutive boiling curve runs under saturated conditions at atmospheric pressure. Results on superhydrophilic surfaces reveal that the use of nanofluids always led to a deterioration of the heat transfer coefficient (up to 90%) compared to pure water due to high nanoparticle deposition. The latter was largely mitigated on superhydrophobic surfaces, yet their performance was still inferior to that of the same surface in water. On the other hand, CHF values of 1209 kW m−2 and 1462 kW m−2 were recorded at 0.1 wt.% concentration on both superhydrophobic and superhydrophilic surfaces, respectively, representing a slight enhancement of 16% and 27% compared to the results obtained on their counterparts investigated in water. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Applications)
Show Figures

Figure 1

13 pages, 3478 KiB  
Article
Self-Assembled Monolayers of a Fluorinated Phosphonic Acid as a Protective Coating on Aluminum
by Zhuoqi Duan, Zaixin Xie, Yongmao Hu, Jiawen Xu, Jun Ren, Yu Liu and Heng-Yong Nie
Molecules 2024, 29(3), 706; https://doi.org/10.3390/molecules29030706 - 3 Feb 2024
Cited by 2 | Viewed by 2493
Abstract
Aluminum (Al) placed in hot water (HW) at 90 °C is roughened due to its reaction with water, forming Al hydroxide and Al oxide, as well as releasing hydrogen gas. The roughened surface is thus hydrophilic and possesses a hugely increased surface area, [...] Read more.
Aluminum (Al) placed in hot water (HW) at 90 °C is roughened due to its reaction with water, forming Al hydroxide and Al oxide, as well as releasing hydrogen gas. The roughened surface is thus hydrophilic and possesses a hugely increased surface area, which can be useful in applications requiring hydrophilicity and increased surface area, such as atmospheric moisture harvesting. On the other hand, when using HW to roughen specified areas of an Al substrate, ways to protect the other areas from HW attacks are necessary. We demonstrated that self-assembled monolayers (SAMs) of a fluorinated phosphonic acid (FPA, CF3(CF2)13(CH2)2P(=O)(OH)2) derivatized on the native oxide of an Al film protected the underneath metal substrate from HW attack. The intact wettability and surface morphology of FPA-derivatized Al subjected to HW treatment were examined using contact angle measurement, and scanning electron microscopy and atomic force microscopy, respectively. Moreover, the surface and interface chemistry of FPA-derivatized Al before and after HW treatment were investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS), verifying that the FPA SAMs were intact upon HW treatment. The ToF-SIMS results therefore explained, on the molecular level, why HW treatment did not affect the underneath Al at all. FPA derivatization is thus expected to be developed as a patterning method for the formation of hydrophilic and hydrophobic areas on Al when combined with HW treatment. Full article
Show Figures

Figure 1

10 pages, 1670 KiB  
Article
On Decorating a Honeycomb AlN Monolayer with Hydrogen and Fluorine Atoms: Ab Initio and Experimental Aspects
by Edward Ferraz de Almeida, Anelia Kakanakova-Georgieva and Gueorgui Kostov Gueorguiev
Materials 2024, 17(3), 616; https://doi.org/10.3390/ma17030616 - 27 Jan 2024
Cited by 4 | Viewed by 1702
Abstract
Mono- and few-layer hexagonal AlN (h-AlN) has emerged as an alternative “beyond graphene” and “beyond h-BN” 2D material, especially in the context of its verification in ultra-high vacuum Scanning Tunneling Microscopy and Molecular-beam Epitaxy (MBE) experiments. However, graphitic-like AlN has only been recently [...] Read more.
Mono- and few-layer hexagonal AlN (h-AlN) has emerged as an alternative “beyond graphene” and “beyond h-BN” 2D material, especially in the context of its verification in ultra-high vacuum Scanning Tunneling Microscopy and Molecular-beam Epitaxy (MBE) experiments. However, graphitic-like AlN has only been recently obtained using a scalable and semiconductor-technology-related synthesis techniques, such as metal–organic chemical vapor deposition (MOCVD), which involves a hydrogen-rich environment. Motivated by these recent experimental findings, in the present work, we carried out ab initio calculations to investigate the hydrogenation of h-AlN monolayers in a variety of functionalization configurations. We also investigated the fluorination of h-AlN monolayers in different decoration configurations. We find that a remarkable span of bandgap variation in h-AlN, from metallic properties to nar-row-bandgap semiconductor, and to wide-bandgap semiconductor can be achieved by its hy-drogenation and fluorination. Exciting application prospects may also arise from the findings that H and F decoration of h-AlN can render some such configurations magnetic. We complemented this modelling picture by disclosing a viable experimental strategy for the fluorination of h-AlN. Full article
Show Figures

Figure 1

10 pages, 2367 KiB  
Article
A Micromechanical Study of Interactions of Cyanate Ester Monomer with Graphene or Boron Nitride Monolayer
by Geeta Sachdeva, Álvaro Lobato, Ravindra Pandey and Gregory M. Odegard
Materials 2024, 17(1), 108; https://doi.org/10.3390/ma17010108 - 25 Dec 2023
Viewed by 1753
Abstract
Polymer composites, hailed for their ultra-strength and lightweight attributes, stand out as promising materials for the upcoming era of space vehicles. The selection of the polymer matrix plays a pivotal role in material design, given its significant impact on bulk-level properties through the [...] Read more.
Polymer composites, hailed for their ultra-strength and lightweight attributes, stand out as promising materials for the upcoming era of space vehicles. The selection of the polymer matrix plays a pivotal role in material design, given its significant impact on bulk-level properties through the reinforcement/polymer interface. To aid in the systematic design of such composite systems, molecular-level calculations are employed to establish the relationship between interfacial characteristics and mechanical response, specifically stiffness. This study focuses on the interaction of fluorinated and non-fluorinated cyanate ester monomers with graphene or a BN monolayer, representing non-polymerized ester composites. Utilizing micromechanics and the density functional theory method to analyze interaction energy, charge density, and stiffness, our findings reveal that the fluorinated cyanate-ester monomer demonstrates lower interaction energy, reduced pull-apart force, and a higher separation point compared to the non-fluorinated counterpart. This behavior is attributed to the steric hindrance caused by fluorine atoms. Furthermore, the BN monolayer exhibits enhanced transverse stiffness due to increased interfacial strength, stemming from the polar nature of B–N bonds on the surface, as opposed to the C-C bonds of graphene. These molecular-level results are intended to inform the design of next-generation composites incorporating cyanate esters, specifically for structural applications. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

14 pages, 4753 KiB  
Article
The Influence of Surface Heterogeneity of Fluorite on the Adsorption of Alkyl Sulfonates
by Yuhao He, Zengzi Wang, Zijie Ren, Renji Zheng, Huimin Gao and Zhijie Chen
Minerals 2023, 13(8), 1005; https://doi.org/10.3390/min13081005 - 28 Jul 2023
Cited by 3 | Viewed by 1324
Abstract
Surface heterogeneity of minerals can significantly affect the adsorption of collectors. Petroleum sulfonate is widely used as a fluorite collector, but how the surface heterogeneity of fluorite influences the adsorption of alkyl sulfonates remains unknown. Herein, two kinds of surface heterogeneity situations, i.e., [...] Read more.
Surface heterogeneity of minerals can significantly affect the adsorption of collectors. Petroleum sulfonate is widely used as a fluorite collector, but how the surface heterogeneity of fluorite influences the adsorption of alkyl sulfonates remains unknown. Herein, two kinds of surface heterogeneity situations, i.e., edge and (1 1 1) _vacancy, were modeled, and the adsorption of sodium dodecyl sulfonate on them was simulated. The results show that the stable adsorption configuration of sodium dodecyl sulfonate on the edge was in a bridged mode, and the stable interaction configuration with vacancy was in a tridentate mode. The 2p orbit of fluorine on the surface of the edge and the vacancy could hinder collector adsorption. After adsorption, the 3d orbit of calcium interacted with the collector orbit above Fermi level, and moved towards the lower energy level, benefiting the adsorption process. It was also found that the adsorption intensity/strength of alkyl sulfonate on fluorite was directly proportional to the interaction intensity of the collector with the 3d orbits of calcium ions on the surface and vacancy. Therefore, the rough fluorite surface had a stronger adsorption effect on the collector, and the existence of vacancy could improve the surface adsorption energy, and thus enhance the adsorption of the collector on the fluorite surface. The rough fluorite surface requires high collector concentration to achieve saturated monolayer adsorption, so increasing vacancy was the better choice to improve the adsorption capacity of alkyl sulfonate on the fluorite surface. This study provides novel insights into the flotation mechanism, in the context of surface heterogeneity, and could guide the design of high-performance collectors for fluorite ore flotation. Full article
(This article belongs to the Special Issue Application of Advanced Quantum Chemistry in Mineral Flotation)
Show Figures

Figure 1

16 pages, 7889 KiB  
Article
Interaction of Aluminum and Platinum Surfaces with the Ionic Liquids 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
by Fabien Krebs, Oliver Höfft and Frank Endres
Coatings 2023, 13(7), 1182; https://doi.org/10.3390/coatings13071182 - 30 Jun 2023
Cited by 5 | Viewed by 2071
Abstract
The processes at the interface between ionic liquids (ILs) and metals are a key factor for understanding especially in electrochemical deposition, nanoscale tribology applications and batteries. In the present work, the interfaces of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Py1,4]TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm]TFSI) and [...] Read more.
The processes at the interface between ionic liquids (ILs) and metals are a key factor for understanding especially in electrochemical deposition, nanoscale tribology applications and batteries. In the present work, the interfaces of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Py1,4]TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm]TFSI) and platinum and aluminum were investigated by depositing thin IL films and studying them with X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum. It is found that there is no evidence of a decomposition reaction of either IL on platinum; however, the imidazolium cation of [EMIm]TFSI shows a strong interaction with the surface in the monolayer regime. In contrast, [Py1,4]TFSI and [EMIm]TFSI show massive decomposition on the aluminum surface without applying any electrochemical potential. The spectra for the [TFSI] anion components show cleavage of C-F or N-S bonds in both cases. Both cleavage of a single fluorine atom and complete cleavage were observed, leading to further decomposition reactions of the anion. Consequently, new components such as AlOOH, Al(OH)3, Al2S3, Al2(SO4)3 and AlF3 appear at the interface. In addition, there is also evidence of decomposition of the cation by the splitting off hydrogen atoms or parts of the alkyl chain in both ILs. Full article
Show Figures

Figure 1

11 pages, 2346 KiB  
Article
Diamane-like Films Based on Twisted G/BN Bilayers: DFT Modelling of Atomic Structures and Electronic Properties
by Victor A. Demin and Leonid A. Chernozatonskii
Nanomaterials 2023, 13(5), 841; https://doi.org/10.3390/nano13050841 - 24 Feb 2023
Cited by 6 | Viewed by 2045
Abstract
Diamanes are unique 2D carbon materials that can be obtained by the adsorption of light atoms or molecular groups onto the surfaces of bilayer graphene. Modification of the parent bilayers, such as through twisting of the layers and the substitution of one of [...] Read more.
Diamanes are unique 2D carbon materials that can be obtained by the adsorption of light atoms or molecular groups onto the surfaces of bilayer graphene. Modification of the parent bilayers, such as through twisting of the layers and the substitution of one of the layers with BN, leads to drastic changes in the structure and properties of diamane-like materials. Here, we present the results of the DFT modelling of new stable diamane-like films based on twisted Moiré G/BN bilayers. The set of angles at which this structure becomes commensurate was found. We used two commensurate structures with twisted angles of θ = 10.9° and θ = 25.3° with the smallest period as the base for the formation of the diamane-like material. Previous theoretical investigations did not take into account the incommensurability of graphene and boron nitride monolayers when considering diamane-like films. The double-sided hydrogenation or fluorination of Moiré G/BN bilayers and the following interlayer covalent bonding led to the opening of a gap up to 3.1 eV, which was lower than the corresponding values of h-BN and c-BN. The considered G/BN diamane-like films offer great potential in the future for a variety of engineering applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

6 pages, 2860 KiB  
Data Descriptor
Thermal Data of Perfluorinated Carboxylic Acid Functionalized Aluminum Nanoparticles
by Nathan J. Weeks, Bradley Martin, Enrique Gazmin and Scott T. Iacono
Data 2023, 8(1), 5; https://doi.org/10.3390/data8010005 - 23 Dec 2022
Viewed by 2037
Abstract
Improving the performance of composite energetic materials comprised of a solid metal fuel and a source of oxidizer (known as thermites) has long been pursued as thermites for pyrolant flares and rocket propellants. The performance of thermites, involving aluminum as the fuel, can [...] Read more.
Improving the performance of composite energetic materials comprised of a solid metal fuel and a source of oxidizer (known as thermites) has long been pursued as thermites for pyrolant flares and rocket propellants. The performance of thermites, involving aluminum as the fuel, can be dramatically improved by utilizing nanometer-sized aluminum particles (nAl) leading to vastly higher reaction velocities, owing to the high surface area of nAl. Despite the benefits of the increased surface area, there are still several problems inherent to nanoscale reactants including particle aggregation, and higher viscosity composited materials. The higher viscosity of nAl composites is cumbersome for processing with inert polymer binder formulations, especially at the high mass loadings of metal fuel necessary for industry standards. In order to improve the viscosity of high mass loaded nAl energetics, the surface of the nAl was passivated with covalently bound monolayers of perfluorinated carboxylic acids (PFCAs) utilizing a novel fluorinated solvent washing technique. This work also details the quantitative binding of these monolayers using infrared spectroscopy, in addition to the energetic output from calorimetric and thermogravimetric analysis. Full article
(This article belongs to the Section Chemoinformatics)
Show Figures

Figure 1

15 pages, 3830 KiB  
Article
Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives
by Federico Chianese, Lucrezia Aversa, Roberto Verucchi and Antonio Cassinese
Nanomaterials 2022, 12(23), 4239; https://doi.org/10.3390/nano12234239 - 28 Nov 2022
Cited by 1 | Viewed by 1924
Abstract
Non-covalent π-π and dipolar interactions with small aromatic molecules have been widely demonstrated to be a valid option to tune graphene work functions without adding extrinsic scattering centers for charge carriers. In this work, we investigated the interaction between a CVD-graphene monolayer and [...] Read more.
Non-covalent π-π and dipolar interactions with small aromatic molecules have been widely demonstrated to be a valid option to tune graphene work functions without adding extrinsic scattering centers for charge carriers. In this work, we investigated the interaction between a CVD-graphene monolayer and a thermally evaporated sub-monolayer and the following few-layer thin films of similar perylene diimide derivatives: PDI8-CN2 and PDIF-CN2. The molecular influence on the graphene work function was estimated by XPS and UPS analysis and by investigating the surface potentials via scanning Kelvin probe force microscopy. The perfluorinated decoration and the steric interaction in the early stages of the film growth determined a positive work function shift as high as 0.7 eV in the case of PDIF-CN2, with respect to the value of 4.41 eV for the intrinsic graphene. Our results unambiguously highlight the absence of valence band shifts in the UPS analysis, indicating the prevalence of dipolar interactions between the graphene surface and the organic species enhanced by the presence of the fluorine-enriched moieties. Full article
(This article belongs to the Special Issue Electronic Applications of Graphene-Based Composites)
Show Figures

Figure 1

20 pages, 9167 KiB  
Article
Nanosecond Laser-Textured Copper Surfaces Hydrophobized with Self-Assembled Monolayers for Enhanced Pool Boiling Heat Transfer
by Matic Može, Matevž Zupančič, Miha Steinbücher, Iztok Golobič and Henrik Gjerkeš
Nanomaterials 2022, 12(22), 4032; https://doi.org/10.3390/nano12224032 - 16 Nov 2022
Cited by 17 | Viewed by 2855
Abstract
Increased cooling requirements of many compact systems involving high heat fluxes demand the development of high-performance cooling techniques including immersion cooling utilizing pool boiling. This study presents the functionalization of copper surfaces to create interfaces for enhanced pool boiling heat transfer. Three types [...] Read more.
Increased cooling requirements of many compact systems involving high heat fluxes demand the development of high-performance cooling techniques including immersion cooling utilizing pool boiling. This study presents the functionalization of copper surfaces to create interfaces for enhanced pool boiling heat transfer. Three types of surface structures including a crosshatch pattern, shallow channels and deep channels were developed using nanosecond laser texturing to modify the surface micro- and nanomorphology. Each type of surface structure was tested in the as-prepared superhydrophilic state and superhydrophobic state following hydrophobization, achieved through the application of a nanoscale self-assembled monolayer of a fluorinated silane. Boiling performance evaluation was conducted through three consecutive runs under saturated conditions at atmospheric pressure utilizing water as the coolant. All functionalized surfaces exhibited enhanced boiling heat transfer performance in comparison with an untreated reference. The highest critical heat flux of 1697 kW m−2 was achieved on the hydrophobized surface with shallow channels. The highest heat transfer coefficient of 291.4 kW m−2 K−1 was recorded on the hydrophobized surface with deep channels at CHF incipience, which represents a 775% enhancement over the highest values recorded on the untreated reference. Surface microstructure was identified as the key reason for enhanced heat transfer parameters. Despite large differences in surface wettability, hydrophobized surfaces exhibited comparable (or even higher) CHF values in comparison with their hydrophilic counterparts, which are traditionally considered as more favorable for achieving high CHF values. A significant reduction in bubble departure diameter was observed on the hydrophobized surface with deep channels and is attributed to effective vapor entrapment, which is pointed out as a major contributing reason behind the observed extreme boiling heat transfer performance. Full article
(This article belongs to the Special Issue Laser Synthesis and Processing of Nanostructured Materials)
Show Figures

Figure 1

11 pages, 3017 KiB  
Article
Prediction of Diamene-Based Chemosensors
by Danil W. Boukhvalov and Vladimir Yu. Osipov
Chemosensors 2022, 10(11), 480; https://doi.org/10.3390/chemosensors10110480 - 15 Nov 2022
Cited by 5 | Viewed by 2733
Abstract
This paper presents the results of systematic studies of the atomic structure of the layered bulk, bilayer, and monolayer of diamene (a two-dimensional diamond monolayer recently synthesized by various methods) functionalized with fluorine and hydroxyl groups with the chemical formulas C2F [...] Read more.
This paper presents the results of systematic studies of the atomic structure of the layered bulk, bilayer, and monolayer of diamene (a two-dimensional diamond monolayer recently synthesized by various methods) functionalized with fluorine and hydroxyl groups with the chemical formulas C2F and C2OH. The results of our calculations show that both types of diamene under discussion have a wide optical gap corresponding to the absorption of light in the UV spectral range. The formation of a boundary between these two types of diamene layers leads to a significant decrease in the band gap. Therefore, this layered material, with an interface between fluorinated and hydroxylated diamenes (C2F/C2OH structures), can be considered a suitable material for converting UV radiation into visible light in the orange-yellow part of the spectrum. The adsorption of acetone or water on the C2F/C2OH structures results in visible changes in the band gap. The effect on photoemission is different for different detected analytes. The presence of formaldehyde in water ensures the appearance of distinct peaks in the absorption spectra of structures based on C2F/C2OH. Our simulation results suggest that the simulated C2F/C2OH structures can be used as chemically stable, lightweight materials composed of common elements for a highly selective chemical sensor in liquid and air. Full article
(This article belongs to the Special Issue Gas Sensors for Monitoring Environmental Changes)
Show Figures

Figure 1

Back to TopTop