Self-Assembled Monolayers of a Fluorinated Phosphonic Acid as a Protective Coating on Aluminum
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1169. [Google Scholar] [CrossRef] [PubMed]
- Neves, B.R.A.; Salmon, M.E.; Russell, P.E.; Troughton, E.B. Thermal stability study of self-assembled monolayers on mica. Langmuir 2000, 16, 2409–2412. [Google Scholar] [CrossRef]
- Maoz, R.; Sagiv, J. On the formation and structure of self-assembling monolayers. J. Colloid Interface Sci. 1984, 100, 465–496. [Google Scholar] [CrossRef]
- Wang, L.M.; Schubert, U.S.; Hoeppener, S. Surface chemical reactions on self-assembled silane based monolayers. Chem. Soc. Rev. 2021, 50, 6507–6540. [Google Scholar] [CrossRef]
- Paniagua, S.A.; Giordano, A.J.; Smith, O.L.; Barlow, S.; Li, H.; Armstrong, N.R.; Pemberton, J.E.; Brédas, J.-L.; Ginger, D.; Marder, S.R. Phosphonic acids for interfacial engineering of transparent conductive oxides. Chem. Rev. 2016, 116, 7117–7158. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Nie, M.Y.; Wanga, L.; Stokes, K. Challenges and developments of self-assembled monolayers and polymer brushes as a green lubrication solution for tribological applications. RSC Adv. 2015, 5, 89698–89730. [Google Scholar] [CrossRef]
- Mandler, D.; Kraus-Ophir, S. Self-assembled monolayers (SAMs) for electrochemical sensing. J. Solid State Electrochem. 2011, 15, 1535–1588. [Google Scholar] [CrossRef]
- Yang, C.-W.; Liu, C.; Lin, D.-J.; Yeh, M.-L.; Lee, T.-M. Hydrothermal treatment and butylphosphonic acid derived self-assembled monolayers for improving the surface chemistry and corrosion resistance of AZ61 magnesium alloy. Sci. Rep. 2017, 7, 16910. [Google Scholar] [CrossRef]
- Ma, H.; Yip, H.-L.; Huang, F.; Jen, A.K.-Y. Interface engineering for organic electronics. Adv. Funct. Mater. 2010, 20, 1371–1388. [Google Scholar] [CrossRef]
- Klauk, H. Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643–2666. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.-Y.; Walzak, M.J.; McIntyre, N.S. Delivering octadecylphosphonic acid self-assembled monolayers on a Si wafer and other oxide surfaces. J. Phys. Chem. B 2006, 110, 21101–21108. [Google Scholar] [CrossRef] [PubMed]
- Shirai, T.; Yamauchi, S.; Kikuchi, H.; Fukumoto, H.; Tsukada, H.; Agou, T. Synthesis, characterization, and formation of self-assembled monolayers of a phosphonic acid bearing a vinylene-bridged fluoroalkyl chain. Appl. Surf. Sci. 2022, 577, 151959. [Google Scholar] [CrossRef]
- Wan, X.L.; Lieberman, I.; Asyuda, A.; Resch, S.; Seim, H.; Kirsch, P.; Zharnikov, M. Thermal stability of phosphonic acid self-assembled monolayers on alumina substrates. J. Phys. Chem. C 2020, 124, 2531–2542. [Google Scholar] [CrossRef]
- Pellerite, M.J.; Dunbar, T.D.; Boardman, L.D.; Wood, E.J. Effects of fluorination on self-assembled monolayer formation from alkanephosphonic acids on aluminum: kinetics and structure. J. Phys. Chem. B 2003, 107, 11726–11736. [Google Scholar] [CrossRef]
- Paramonov, P.B.; Paniagua, S.A.; Hotchkiss, P.J.; Jones, S.C.; Armstrong, N.R.; Marder, S.R.; Brédas, J.-L. Theoretical characterization of the indium tin oxide surface and of its binding sites for adsorption of phosphonic acid monolayers. Chem. Mater. 2008, 20, 5131–5133. [Google Scholar] [CrossRef]
- Sarcletti, M.; Vivod, D.; Luchs, T.; Rejek, T.; Portilla, L.; Müller, L.; Dietrich, H.; Hirsch, A.; Zahn, D.; MHalik, M. Superoleophilic Magnetic Iron Oxide Nanoparticles for Effective Hydrocarbon Removal from Water. Adv. Funct. Mater. 2019, 29, 1805742. [Google Scholar] [CrossRef]
- Nie, H.-Y. Revealing different bonding modes of self-assembled octadecylphosphonic acid monolayers on oxides by TOF-SIMS: Silicon vs aluminum. Anal. Chem. 2010, 82, 3371–3376. [Google Scholar] [CrossRef]
- Shaheen, A.; Sturm, J.M.; Ricciardi, R.; Huskens, J.; Lee, C.J.; Bijkerk, F. Characterization of self-assembled monolayers on a ruthenium surface. Langmuir 2017, 33, 6419–6426. [Google Scholar] [CrossRef]
- Yeung, C.L.; Charlesworth, S.; Iqbal, P.; Bowen, J.; Preece, J.A.; Mendes, P.M. Different formation kinetics and photoisomerization behavior of self-assembled monolayers of thiols and dithiolanes bearing azobenzene moieties. Phys. Chem. Chem. Phys. 2013, 15, 11014–11024. [Google Scholar] [CrossRef]
- Benninghoven, A. Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Angew. Chem. Int. Ed. Engl. 1994, 33, 1023–1043. [Google Scholar] [CrossRef]
- Fletcher, J.S.; Lockyer, N.P.; Vaidyanathan, S.; Vickerman, J.C. TOF-SIMS 3D biomolecular imaging of xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal. Chem. 2007, 79, 2199–2206. [Google Scholar] [CrossRef]
- Vickerman, J.C.; Winograd, N. SIMS—A precursor and partner to contemporary mass spectrometry. Int. J. Mass Spectrom. 2015, 377, 568–579. [Google Scholar] [CrossRef]
- Wandass, J.H.; Gardella, J.A. Secondary ion mass spectrometry of monomolecular layers of fatty acids prepared by Langmuir-Blodgett techniques. J. Am. Chem. Soc. 1985, 107, 6192–6195. [Google Scholar] [CrossRef]
- Chilkoti, A.; Lopez, G.P.; Ratner, B.D.; Hearn, M.J.; Briggs, D. Analysis of polymer surfaces by SIMS. 16. Investigation of surface crosslinking in polymer gels of 2-hydroxyethyl methacrylate. Macromolecules 1993, 26, 4825–4832. [Google Scholar] [CrossRef]
- Hu, Y.M.; Li, R.H.; Zhang, X.Q.; Zhu, Y.; Nie, H.-Y. Aluminium films roughened by hot water treatment and derivatized by fluoroalkyl phosphonic acid: Wettability studies. Surf. Eng. 2020, 36, 589–600. [Google Scholar] [CrossRef]
- Ran, C.B.; Ding, G.Q.; Liu, W.C.; Deng, Y.; Hou, W.T. Wetting on nanoporous alumina surface: Transition between Wenzel and Cassie states controlled by surface structure. Langmuir 2008, 24, 9952–9955. [Google Scholar] [CrossRef] [PubMed]
- Murakami, D.; Jinnai, H.; Takahara, A. Wetting transition from the Cassie–Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 2014, 30, 2061–2067. [Google Scholar] [CrossRef]
- Park, I.W.; Ribe, J.M.; Fernandino, M.; Dorao, C.A. The criterion of the Cassie–Baxter and Wenzel wetting modes and the effect of elastic substrates on it. Adv. Mater. Interfaces 2023, 10, 2202439. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Lu, H.Y.; Zhao, F.; Yu, G.H. Atmospheric water harvesting: A review of material and structural designs. ACS Mater. Lett. 2020, 2, 671–684. [Google Scholar] [CrossRef]
- Liu, X.; Beysens, D.; Bourouina, T. Water harvesting from air: Current passive approaches and outlook. ACS Mater. Lett. 2022, 4, 1003–1024. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef]
- Nørgaard, T.; Dacke, M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front. Zool. 2010, 7, 23. [Google Scholar] [CrossRef]
- Guadarrama-Cetina, J.; Mongruel, A.; Medici, M.-G.; Baquero, E.; Parker, A.R.; Milimouk-Melnytchuk, I.; González-Viñas, W.; Beysens, D. Dew condensation on desert beetle skin. Eur. Phys. J. E 2014, 37, 109. [Google Scholar] [CrossRef]
- Sun, J.X.; Weisensee, P.B. Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces. Soft Matter 2019, 15, 4808–4817. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Tang, G.H. The effect of surface wettability on water vapor condensation in nanoscale. Sci. Rep. 2016, 6, 19192. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.S.; Feng, J.; Guo, Z.G. An alternating nanoscale (hydrophilic–hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. J. Mater. Chem. A 2019, 7, 8405–8413. [Google Scholar] [CrossRef]
- Wier, K.A.; McCarthy, T.J. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir 2006, 22, 2433–2436. [Google Scholar] [CrossRef] [PubMed]
- Hoque, E.; DeRose, J.A.; Kulik, G.; Hoffmann, P.; Mathieu, H.J.; Bhushan, B. Alkylphosphonate modified aluminum oxide Surfaces. J. Phys. Chem. B 2006, 110, 10855–10861. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.-Y.; Jahangiri-Famenini, H.-R. Time-of-flight secondary ion mass spectrometry analyses of self-assembled monolayers of octadecyltrimethoxysilane on SiO2 substrate. Appl. Sci. 2022, 12, 4932. [Google Scholar] [CrossRef]
- Grey, L.H.; Nie, H.-Y.; Biesinger, M.C. Defining the nature of adventitious carbon and improving its merit as a charge correction reference for XPS. Appl. Surf. Sci. 2023, 597, 153681. [Google Scholar] [CrossRef]
- Green, F.M.; Gilmore, I.S.; Seah, M.P. TOF-SIMS: Accurate mass scale calibration. J. Am. Soc. Mass Spectrom. 2006, 17, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.J.; Gamble, L.J. Back to the basics of time-of-flight secondary ion mass spectrometry data analysis of bio-related samples. II. Data processing and display. Biointerphases 2023, 18, 031201. [Google Scholar] [CrossRef] [PubMed]
- Luschtinetz, R.; Oliveira, A.F.; Frenzel, J.; Joswig, J.-O.; Seifert, G.; Duarte, H.A. Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces. Surf. Sci. 2008, 602, 1347–1359. [Google Scholar] [CrossRef]
- Bauer, T.; Schmaltz, T.; Lenz, T.; Halik, M.; Meyer, B.; Clark, T. Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: A theoretical study of surface binding on aluminum oxide with experimental support. ACS Appl. Mater. Interfaces 2013, 5, 6073–6080. [Google Scholar] [CrossRef]
- Vedder, W.; Vermilyea, D.A. Aluminum + water reaction. Trans. Faraday Soc. 1969, 65, 561–584. [Google Scholar] [CrossRef]
- Godart, P.; Fischman, J.; Seto, K.; Hart, D. Hydrogen production from aluminum-water reactions subject to varied pressures and temperatures. Int. J. Hydrogen Energy 2019, 44, 11448–11458. [Google Scholar] [CrossRef]
- Trowell, K.; Goroshin, S.; Frost, D.; Bergthorson, J. Hydrogen production rates of aluminum reacting with varying densities of supercritical water. RSC Adv. 2022, 12, 12335–12343. [Google Scholar] [CrossRef]
- Xia, Y.N.; Whitesides, G.M. Extending microcontact printing as a microlithographic technique. Langmuir 1997, 13, 2059–2067. [Google Scholar] [CrossRef]
- Sun, S.; Leggett, G.J. Micrometer and nanometer scale photopatterning of self-assembled monolayers of phosphonic acids on aluminum oxide. Nano Lett. 2007, 7, 3753–3758. [Google Scholar] [CrossRef]
- Zschieschang, U.; Halik, M.; Klauk, H. Microcontact-printed self-assembled monolayers as ultrathin gate dielectrics in organic thin-film transistors and complementary circuits. Langmuir 2008, 24, 1665–1669. [Google Scholar] [CrossRef] [PubMed]
Sample | Averaged CA (°) |
---|---|
Cleaned Al | 45.9 ± 1.3 |
FPA/Al | 134.4 ± 1.4 |
HW-treated Al | 9.0 ± 0.5 |
HW-treated FPA/Al | 131.1 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Z.; Xie, Z.; Hu, Y.; Xu, J.; Ren, J.; Liu, Y.; Nie, H.-Y. Self-Assembled Monolayers of a Fluorinated Phosphonic Acid as a Protective Coating on Aluminum. Molecules 2024, 29, 706. https://doi.org/10.3390/molecules29030706
Duan Z, Xie Z, Hu Y, Xu J, Ren J, Liu Y, Nie H-Y. Self-Assembled Monolayers of a Fluorinated Phosphonic Acid as a Protective Coating on Aluminum. Molecules. 2024; 29(3):706. https://doi.org/10.3390/molecules29030706
Chicago/Turabian StyleDuan, Zhuoqi, Zaixin Xie, Yongmao Hu, Jiawen Xu, Jun Ren, Yu Liu, and Heng-Yong Nie. 2024. "Self-Assembled Monolayers of a Fluorinated Phosphonic Acid as a Protective Coating on Aluminum" Molecules 29, no. 3: 706. https://doi.org/10.3390/molecules29030706
APA StyleDuan, Z., Xie, Z., Hu, Y., Xu, J., Ren, J., Liu, Y., & Nie, H. -Y. (2024). Self-Assembled Monolayers of a Fluorinated Phosphonic Acid as a Protective Coating on Aluminum. Molecules, 29(3), 706. https://doi.org/10.3390/molecules29030706