Prediction of Diamene-Based Chemosensors
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Atomic Structure and Physical Properties of C2F/C2OH Interface in Air
3.2. Atomic Structure and Physical Properties of C2F/C2OH-Interface in Liquid Media
3.3. Sensing Properties of C2F/C2OH Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venkateswarulu, M.; Gaur, P.; Koner, R.R. Sensitive molecular optical material for signaling primary amine vapors. Sens. Actuators B Chem. 2015, 210, 144–148. [Google Scholar] [CrossRef]
- Silva, A.P.; Fox, D.B.; Huxley, A.J.M.; Moody, T.S. Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Coord. Chem. Rev. 2000, 205, 41–57. [Google Scholar] [CrossRef]
- Mader, H.S.; Wolfbeis, O.S. Optical ammonia sensor based on upconverting luminescent nanoparticles. Anal Chem. 2010, 82, 5002–5004. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Betal, S.; Chattopadhyay, A.P. Luminescence sensing, DFT, extraction and monitoring of Cr3+ and Al3+via the application of first derivative fluorescence spectroscopy. New J. Chem. 2020, 44, 12692–12703. [Google Scholar] [CrossRef]
- Chai, B.-L.; Yao, S.-L.; Xie, X.; Xu, H.; Zheng, T.-F.; Li, J.-Y.; Chen, J.-L.; Liu, S.-J.; Wen, H.-R. Luminescent Metal–Organic Framework-Based Fluorescence Turn-On and Red-Shift Sensor toward Al3+ and Ga3+: Experimental Study and DFT Calculation. Cryst. Growth Des. 2022, 22, 277–284. [Google Scholar] [CrossRef]
- Vellingiri, K.; Boukhvalov, D.W.; Pandey, S.K.; Deep, A.; Kim, K.H. Luminescent metal-organic frameworks for the detection of nitrobenzene in aqueous media. Sens. Actuators B Chem. 2017, 245, 305–313. [Google Scholar] [CrossRef]
- Aulsebrook, M.L.; Graham, B.; Grace, M.R.; Tuck, K.L. Lanthanide complexes for luminescence-based sensing of low molecular weight analytes. Coord. Chem. Rev. 2018, 375, 191–220. [Google Scholar] [CrossRef]
- Timmer, B.; Olthuis, W.; van den Berg., A. Ammonia sensors and their applications—A review. Sens. Actuators. B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, A.; Maji, T.K. Lanthanide–organic frameworks for gas storage and as magneto-luminescent materials. Coord. Chem. Rev. 2014, 273–274, 139–164. [Google Scholar] [CrossRef]
- Fujisaku, T.; Igarashi, R.; Shirakawa, M. Nanometre-scale visualization of chemical parameter changes by T1-weighted ODMR imaging using a fluorescent nanodiamond. Chemosensors 2020, 8, 68. [Google Scholar] [CrossRef]
- Kočí, M.; Kromka, A.; Bouřa, A.; Szabó, O.; Husák, M. Hydrogen-terminated diamond surface as a gas sensor: A comparative study of its sensitivities. Sensors 2021, 21, 5390. [Google Scholar] [CrossRef]
- Dettenrieder, C.; Türkmen, D.; Mattsson, A.; Österlund, L.; Karlsson, M.; Mizaikoff, B. Determination of Volatile Organic Compounds in Water by Attenuated Total Reflection Infrared Spectroscopy and Diamond-Like Carbon Coated Silicon Wafers. Chemosensors 2020, 8, 75. [Google Scholar] [CrossRef]
- da Silva, Á.R.L.; de Araujo, D.M.; da Silva, E.B.S.; Vieira, D.S.; Monteiro, N.D.K.V.; Martinez-Huitle, C.A. Understanding the behavior of caffeine on a boron-doped diamond surface: Voltammetric, DFT, QTAIM and ELF studies. New J. Chem. 2017, 41, 7766–7774. [Google Scholar] [CrossRef]
- Yuan, X.; Gao, N.; Gao, X.; Qiu, D.; Xu, R.; Sun, Z.; Jiang, Z.; Liu, J.; Li, H. Nanopyramid boron-doped diamond electrode realizing nanomolar detection limit of 4-nonylphenol. Sens. Actuators B Chem. 2019, 281, 830–836. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Phys. Rev. B 2009, 80, 245422. [Google Scholar] [CrossRef]
- Barboza, A.P.M.; Guimaraes, M.H.D.; Massote, D.V.P.; Campos, L.C.; Barbosa Neto, N.M.; Cancado, L.G.; Lacerda, R.G.; Chacham, H.; Mazzoni, M.S.C.; Neves, B.R.A. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 2011, 23, 3014. [Google Scholar] [CrossRef]
- Bakharev, P.V.; Huang, M.; Saxena, M.; Lee, S.W.; Joo, S.H.; Park, S.O.; Dong, J.; Camacho-Mojica, D.C.; Jin, S.; Kwon, Y.; et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. 2020, 15, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Lavini, F.; Rejhon, M.; Reido, E. Two-dimensional diamonds from sp2-to-sp3 phase transitions. Nat. Rev. Mater. 2022, 7, 814–832. [Google Scholar] [CrossRef]
- Martins, L.G.P.; Matos, M.J.S.; Paschoal, A.R.; Freire, P.T.C.; Andrade, N.F.; Aguiar, A.L.; Kong, J.; Neves, B.R.A.; de Oliveira, A.B.; Mazzoni, M.S.C.; et al. Raman evidence for pressure-induced formation of diamondene. Nat. Comm. 2017, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- BenMouss, A.; Soltani, A.; Schühle, U.; Haenen, K.; Chong, Y.M.; Zhang, W.J.; Hochedez, J.F. Recent developments of wide-bandgap semiconductor based UV sensors. Diam. Rel. Mater. 2009, 18, 860–864. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Yu-Lin Wang, Y.-L.; Chu, B.H.; Chen, K.H.; Chang, C.Y.; Lim, W.; Lin, J.; Norton, D.P. Recent advances in wide bandgap semiconductor biological and gas sensors. Prog. Mater. Sci. 2010, 55, 1–59. [Google Scholar] [CrossRef]
- Saasa, V.; Malwela, T.; Beukes, M.; Mokgotho, M.; Liu, C.-P.; Mwakikunga, B. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics 2018, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellingiri, K.; Deep, A.; Kim, K.-H.; Boukhvalov, D.W.; Kumar, P.; Yao, Q. The sensitive detection of formaldehyde in aqueous media using zirconium-based metal organic frameworks. Sens. Actuators B: Chem. 2017, 241, 938–948. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; Garsia, A.; Junquera, J.; Orejon, P.; Sanchez-Portal, D. The SIESTA Method for Ab-Initio Order-N Materials Simulation. J. Phys. Condens. Matter. 2002, 14, 2745. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D.C.; Lundqvist, B.I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef] [Green Version]
- Troullier, O.N.; Martins, J.L. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B 1991, 43, 1993. [Google Scholar] [CrossRef]
- Mentel, M.; Baerends, E.J. Can the Counterpoise Correction for Basis Set Superposition Effect Be Justified? J. Chem. Theory Comput. 2014, 10, 252–267. [Google Scholar] [CrossRef]
- Gutowski, M.; Grzegorz Chałasiński, G. Critical evaluation of some computational approaches to the problem of basis set superposition error. J. Chem. Phys. 1993, 98, 5540–5554. [Google Scholar] [CrossRef]
- van Schilfgaarde, M.; Kotani, T.; Faleev, S. Quasiparticle Self-Consistent GW Theory. Phys. Rev. Lett. 2006, 96, 226402. [Google Scholar] [CrossRef]
- Tian, L.; Chen, F.; Ding, H.; Li, X.; Li, X. The influence of inorganic electrolyte on the properties of carbon quantum dots in electrochemical exfoliation. J. Electrochem. Soc. 2020, 878, 114673. [Google Scholar] [CrossRef]
- Ding, M.; Xiao, R.; Zhao, C.; Bukhvalov, D.; Chen, Z.; Xu, H.; Tang, H.; Xu, J.; Yang, X. Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward High-Efficiency Photocatalytic Hydrogen Production. Solar Rrl 2021, 5, 2000414. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Dreyer, D.R.; Bielawski, C.W.; Son, Y.-W. A Computational Investigation of the Catalytic Properties of Graphene Oxide: Exploring Mechanisms by using DFT Methods. ChemCatChem 2012, 4, 1844–1849. [Google Scholar] [CrossRef] [Green Version]
- Perrin, C.L.; Nielson, J.B. “Strong” hydrogen bonds in chemistry and biology. Ann. Rev. Phys. Chem. 1997, 48, 511–544. [Google Scholar] [CrossRef] [PubMed]
- Spanu, L.; Sorella, S.; Galli, G. Nature and strength of interlayer binding in graphite. Phys. Rev. Lett. 2009, 103, 196401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-S.; Choi, J.S.; Lee, M.J.; Park, B.H.; Boukhvalov, D.W.; Son, Y.-W.; Yoon, D.; Cheong, H.; Park, J.Y.; Salmeron, M. Between Scylla and Carbides: Hydrophobic Graphene-Guided Water Diffusion on Hydrophilic Substrates. Sci. Rep. 2013, 3, 2309. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Su, C.; Lu, J.; Loh, K.P. Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide. Angew. Chem. 2013, 125, 8870–8874. [Google Scholar] [CrossRef]
- 30 Boukhvalov, D.W.; Katsnelson, M.I.; Son, Y.-W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 2013, 13, 3930–3935. [Google Scholar] [CrossRef] [Green Version]
- Wakisaka, A.; Shimizu, Y.; Nishi, N.; Tokumaru, K.; Sakuragi, H. Interaction of hydrophobic molecules with water influenced by the clustering conditions of acetonitrile–water mixtures. J. Chem. Soc. Faraday Trans. 1992, 88, 1129–1135. [Google Scholar] [CrossRef]
- NIST Chemistry Webbook. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Mask=4 (accessed on 29 October 2022).
- Bondino, F.; Duman, S.; Nappini, S.; D’Olimpio, G.; Ghica, C.; Menteş, T.O.; Politano, A. Improving the efficiency of gallium telluride (GaTe) for photocatalysis, electrocatalysis, and chemical sensing through defects engineering and interfacing with its native oxide. Adv. Funct. Mater. 2022, 32, 2205923. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; David, C.I.; Prabhu, J.; Raju, N. Functionalized graphene oxide materials for fluorometric sensing of various analytes: A mini review. Mater. Adv. 2021, 2, 6197–6212. [Google Scholar] [CrossRef]
- Babazadeh, S.; Moghaddam, P.A.; Keshipour, S.; Mollazade, K. Colorimetric sensing of imidacloprid in cucumber fruits using a graphene quantum dot/Au (III) chemosensor. Sci. Rep. 2020, 10, 14327. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukhvalov, D.W.; Osipov, V.Y. Prediction of Diamene-Based Chemosensors. Chemosensors 2022, 10, 480. https://doi.org/10.3390/chemosensors10110480
Boukhvalov DW, Osipov VY. Prediction of Diamene-Based Chemosensors. Chemosensors. 2022; 10(11):480. https://doi.org/10.3390/chemosensors10110480
Chicago/Turabian StyleBoukhvalov, Danil W., and Vladimir Yu. Osipov. 2022. "Prediction of Diamene-Based Chemosensors" Chemosensors 10, no. 11: 480. https://doi.org/10.3390/chemosensors10110480
APA StyleBoukhvalov, D. W., & Osipov, V. Y. (2022). Prediction of Diamene-Based Chemosensors. Chemosensors, 10(11), 480. https://doi.org/10.3390/chemosensors10110480